
Vulnerability of machine learning models to

adversarial examples

Petra Vidnerová

Institute of Computer Science
The Czech Academy of Sciences

Hora Informaticae 2016



Outline

Introduction

Works on adversarial examples

Our work

Genetic algorithm

Experiments on MNIST

Ways to robustness to adversarial examples



Introduction

Applying an imperceptible non-random perturbation to an

input image, it is possible to arbitrarily change the machine

learning model prediction.

57.7% Panda 99.3% Gibbon

Figure from Explaining and Harnessing Adversarial Examples by Goodfellow et al.

Such perturbed examples are known as adversarial

examples. For human eye, they seem close to the original

examples.

They represent a security flaw in classifier.



Works on adversarial examples I.

Intriguing properties of neural networks.

2014,Christian Szegedy et al.

Perturbations are found by optimising the input to

maximize the prediction error (L-BFGS).



Works on adversarial examples I.

Learning

model f~w : Rn → R
m

error func.: E(~w) =
∑N

i=1 e(f~w (xi), yi) =
∑N

i=1(f~w (xi)− yi)
2

learning: min
~w

E(~w)

Finding adversarial example

~w is fixed, ~x is optimized

minimize ||r ||2 subject to f (x + r) = l and (x + r) ∈ [0, 1]m

a box-constrained L-BFGS



Works on adversarial examples II.

Deep Neural Networks are Easily Fooled: High Confidence

Predictions for Unrecognizable Images

2015,Anh Nguyen, Jason Yosinski, Jeff Clune

evolutionary generated images



Works on adversarial examples II.

Compositional pattern-producing network (CPPN)

similar structure to neural networks

takes (x , y) as an input, outputs pixel value

nodes: sin, sigmoid, Gaussian, and linear



Works on adversarial examples III.

Explaining and Harnessing Adversarial Examples

2015,Goodfellow et al.

linear behaviour in high dimensional spaces is sufficent to

cause adversarial examples

x̃ = x + η

x , x̃ belong to the same class if ||η||∞ < ǫ

wT x̃ = wT x + wTη

for η = ǫsign(w) activation increases ǫmn

||η||∞ does not grow with dimensionality, but ǫmn does

in large dimensions small changes of the input cause large

change to the output



Works on adversarial examples III.

nonlinear models: parameters θ, input x , target y , cost

function J(θ, x , y)

we can linearize the cost function around θ and obtain

optimal perturbation

η = ǫsign(∇xJ(θ, x , y))

adding small vector in the direction of the sign of the

derivation – fast gradient sign method



Our work

genetic algorihms used to search for adversarial examples

tested various machine learning models including both

deep and shallow architectures



Search for adversarial images

To obtain an adversarial example for the trained machine

learning model, we need to optimize the input image with

respect to model output.

For this task we employ a GA – robust optimisation method

working with the whole population of feasible solutions.

The population evolves using operators of selection,

mutation, and crossover.

The machine learning model and the target output are

fixed.



Black box approach

genetic algorithms to generate adversarial examples

machine learning method is a blackbox

applicable to all methods without the need to acess models

parameters (weights)



Genetic algorithm

Individual: image encoded as a vector of pixel values:

I = {i1, i2, . . . , iN},

where ii ∈< 0, 1 > are levels of grey and N is a size of

flatten image.

Crossover: operator performs a two-point crossover.

Mutation: with the probability pmutate_pixel each pixel is

changed:

ii = ii + r ,

where r is drawn from Gaussian distribution.

Selection: 3−tournament



GA fitness

The fitness function should reflect the following two criteria:

the individual should resemble the target image

if we evaluate the individual by our machine learning model,

we would like to obtain a target output (i.e. misclassify it).

Thus, in our case, a fitness function is defined as:

f (I) = −( 0.5 ∗ cdist(I, target_image) (1)

+ 0.5 ∗ cdist(model(I), target_answer)), (2)

where cdist is an Euclidean distance.



Dataset for our experiments

MNIST dataset

70000 images of handwritten digits

28 × 28 pixels

60000 for training, 10000 for testing

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25



Machine learning models overview

Shallow architectures

SVM — support vector machine

RBF — RBF network

DT — decision tree

Deep architectures

MLP — multilayer perceptron network

CNN — convolutional network



Support Vector Machines (SVM)

popular kernel method

learning based on searching for a separating hyperplane

with highest margin

one hidden layer of kernel units, linear output layer

Kernels used in experiments:

linear 〈x , x ′〉

polynomial (γ〈x , x ′〉+ r)d , grade 2 and 4

Gaussian exp(−γ|x − x ′|2)

sigmoid tanh(γ〈x , x ′〉+ r).

Implementation: SCIKIT-learn library



RBF network

feedforward network with one hidden layer, linear output

layer

local units (typically Gaussian functions)

our own implementation

1000 Gaussian units



Decision Tree (DT)

a non-parametric supervised learning method

Implementation: SCIKIT-learn



Deep neural networks

feedforward neural networks with multiple hidden layers

between the input and output layer

Multilayer perceptrons (MLP)

Perceptron units with sigmoid function

Rectified linear unit (ReLU): y(z) = max(0, z).

Implementation:

KERAS library

MLP — three fully connected layers, two hidden layers have

512 ReLUs each, using dropout; the output layer has 10

softmax units.



Convolutional Networks (CNN)

Convolutional units perform a simple discrete convolution

operation which for 2-D data can be represented by a

matrix multiplication.

max pooling layers that perform an input reduction by

selecting one of many inputs, typically the one with

maximal value

Implementation:

KERAS library

CNN — two convolutional layers with 32 filters and ReLUs,

each, max pooling layer, fully connected layer of 128

ReLUs, and a fully connected output softmax layer.



Baseline Classification Acurracy

model trainset testset

MLP 1.00 0.98

CNN 1.00 0.99

RBF 0.96 0.96

SVM-rbf 0.99 0.98

SVM-poly2 1.00 0.98

SVM-poly4 0.99 0.98

SVM-sigmoid 0.87 0.88

SVM-linear 0.95 0.94

DT 1.00 0.87



Experimental Setup

GA setup

population of 50 individuals

10 000 generations

crossover probability 0.6

mutation probability 0.1

DEAP framework

Images

for 10 images from training set (one representant for each

class)

target: classify as zero, one, . . . , nine



Evolved Adversarial Examples – CNN (90/90)



Evolved Adversarial Examples – DT (83/90)



Evolved Adversarial Examples – MLP (82/90)



Evolved Adversarial Examples – SVM_sigmoid (57/90)



Evolved Adversarial Examples – SVM_poly (50/90)



Evolved Adversarial Examples – SVM_poly4 (50/90)



Evolved Adversarial Examples – SVM_linear (43/90)



Evolved Adversarial Examples – SVM_rbf (43/90)



Evolved Adversarial Examples – RBF (22/90)



Experimental Results

CNN, MLP, and DT were fooled in all or almost all cases

RBF network was the most resistant model, but in 22

cases it was fooled too

from SVMs the most vulnerable is SVM_sigmoid, most

resistant is SVM_rbf and SVM_linear



Generalization

some adversarial examples generated for one model are

also missclassified by other models

0 5 10 15 20 25

0

5

10

15

20

25

Evolved against SVM-poly

0 1 2 3 4 5 6 7 8 9

RBF 0.32 0.02 0.17 0.86 -0.01 -0.09 -0.09 -0.03 -0.12 0.01
MLP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CNN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
ENS 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM-rbf 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00
SVM-poly 0.87 0.00 0.02 0.04 0.00 0.00 0.00 0.00 0.04 0.02
SVM-poly4 0.38 0.01 0.11 0.23 0.01 0.02 0.01 0.02 0.15 0.04
SVM-sigmoid 0.55 0.01 0.04 0.19 0.01 0.05 0.01 0.01 0.13 0.02
SVM-linear 0.71 0.01 0.02 0.06 0.01 0.02 0.01 0.01 0.15 0.01
DT 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00



Generalization

0 5 10 15 20 25

0

5

10

15

20

25

Evolved against SVM_sigmoid

0 1 2 3 4 5 6 7 8 9

CNN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

MLP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
SVM_sigmoid 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.85 0.11
SVM_rbf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.01
SVM_poly 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.98 0.02
SVM_poly4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.01
SVM_linear 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
RBF 0.01 0.01 0.09 0.09 -0.10 0.06 0.07 -0.02 0.44 0.41
DT 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00



Generalization Summary
MLP CNN SVM SVM SVM SVM SVM RBF DT

sigmoid poly poly4 linear rbf

MLP 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

CNN 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

SVM_sigmoid 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

SVM_poly 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

SVM_poly4 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

SVM_linear 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

SVM_rbf 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

RBF 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

DT 0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8



Adversarial vs. noisy data

We tried to learn a classifier to distinguish between

adversarial examples and examples that are only noisy.

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Figure : Digit zero —adversarials examples (top), noisy examples

(bottom). Noisy examples were classified as zero by the MLP,

adversarial examples as other class.



Adversarial vs. noisy data: results

The data contains 22500 noisy examples and 19901

adversarial examples, and are randomly divided to training

and test data (20% for test).

precision recall

SVM-rbf 0.888 0.843

MLP 0.923 0.912

CNN 0.964 0.925



New adversarial examples (for MLP)



Approaches robust to adversarial examples

Towards Deep Neural Network Architectures Robust To

Adversarial Examples.

2015, Shixiang Gu, Luca Rigazio

noise injection, Gaussian blur

autoencoder

deep contractive network



Gaussian blur of the input

a recovery strategy based on additional corruption

decrease error on adversarial data but not enough

Test error rates

clean data adversarial data

blur kernel size — 5 11 — 5 11

N100-100-10 1.8 2.6 11.3 99.9 43.5 62.8

N200-200-10 1.6 2.5 14.8 99.9 47.0 65.5

ConvNet 0.9 1.2 4.0 100 53.8 43.8



Autoencoder

a three-hidden-layer autoencoder (784-256-128-256-784

neurons)

trained to map adversarial examples back to the original

data and original data back to itself

autoencoders recover at leat 90% of adversarial errors

N-100-100-10 N200-200-10 ConvNet

N-100-100-10 2.3% 2.4% 5.2%

N-200-200-10 2.3% 2.2% 5.4%

ConvNet 7.7% 7.6% 2.6%

drawback: autoencoder and classifier can be stacked to

form a new feed-forward network, new adversarial

examples can be generated



Deep Contractive Network

layer-wise penalty approximately minimizing the network

outputs variance with respect to perturbations in the inputs

Deep Contractive Network (DNC) — generalization of the

contractive autoencoder

JDNC(θ) =
m∑

i=1

(L(t(i), y (i)) + λ||
∂y (i)

∂x (i)
||2)

JDNC(θ) =

m∑

i=1

(L(t(i), y (i)) +

H+1∑

j=1

λj ||
∂h

(i)
j

∂h
(i)
j−1

||2)



Deep Contractive Network – Experimental Results

DCN original

model error adv. distortion error adv. distortion

N100-100-10 2.3% 0.107 1.8% 0.084

N200-200-10 2.0% 0.102 1.6% 0.087

ConvNet 1.2% 0.106 0.9% 0.095



Summary

We have proposed a GA for generating adversarial

examples for machine learning models by applying minimal

changes to the existing patterns.

Our experiment showed that many machine models suffer

from vulnerability to adversarial examples.

Models with local units (RBF networks and SVMs with RBF

kernels) are quite resistant to such behaviour.

The adversarial examples evolved for one model are

usually quite general – often misclassified also by other

models.



Thank you! Questions?


