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LEARNING FROM EXAMPLES

Problem statement

« Given: set of data samples {(x;, y;) € R x R},
e Our goal: recover the unknown function or find the best estimate
of it

f(x)
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REGULARIZATION THEORY

Empirical Risk Minimization:

o find f that minimizes H[f] = & SN, (F(%) — yi)?
e generally ill-posed

e choose one solution according to a priori knowledge (smoothness,
etc.)
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REGULARIZATION THEORY

Empirical Risk Minimization:

o find f that minimizes H[f] = & SN, (F(%) — yi)?
e generally ill-posed

e choose one solution according to a priori knowledge (smoothness,
etc.)

Regularization approach

¢ add a stabiliser H[f] = ‘NZL (f(X)) — ¥i)? + y®[f]
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Reproducing Kernel Hilbert Space

Definition and properties

o RKHS is a Hilbert space of functions defined over Q c R with the
property that for each x € Q the evaluation functional on H given
by Fx : f — f(x) is bounded. (Aronszajn, 1950)

e This implies existence of positive definite symmetric function
K : Q x Q — R (kernel function) such that

n
H="Hk = comp{z aiKy; xj € Q,a; € R},
i=1

where comp means completion of the set.
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Reproducing Kernel Hilbert Space

Application in learning
[Poggio, Smale, 2003]
o Data set: {(X;,y;) € RY x R}V,
choose a symmetric, positive-definite kernel K = K (X, X2)
let Hyk be the RKHS defined by K
define the stabiliser by the norm || - ||k in Hgk

HIf) = NZ 7+l

minimise H[f] over Hx ~—  solution:

N
f(X) =) ciKz(X)
i=1
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PRODUCT KERNEL REGULARIZATION NETWORK

Motivation

o different kernels are suitable for different data types

o data attributes are often of different types (temperature, color, age)
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color | temperature | age
red 35.5 34
blue 36.0 56
red 36.9 45
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PRODUCT KERNEL REGULARIZATION NETWORK

How to deal with attributes of different types?

e preprocessing
e convert everything to real values

Our approach

« divide the attributes to several subsets
e process the subsets separately
¢ select appropriate kernel for each subset

o allow difference not only in attribute type but also different
properties — density, variance
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PRODUCT KERNEL REGULARIZATION NETWORK

Product Kernels

[Aronszajn, 1950]

Let F1 be an RKHS on Q4 with kernel Ky, F> an RKHS on Q5 with
kernel K>. Then

F— comp{z fr i(x1) (%)}

i=1

is an RKHS on Q4 x Q, with kernel given by

K((x1,x2), (y1,¥2)) = Ki(x1, y1)Ka(x2, y2),

where Xy, y; € Q1, X2, o € Qa.

Completion by scalar product:
(21 fLiCa)f, i), S04 91 j(x1) G2 (%)) = oLy 014 (fr i, 01 )1 (fo i G2, )2
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PRODUCT KERNEL REGULARIZATION NETWORK

Network structure

o feedforward network with one
hidden layer

¢ hidden layer of product units
e linear output layer

Product unit

e consists of several parts

e each part processes one
group of attributes

e each part evaluates its own
kernel function
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PRODUCT KERNEL REGULARIZATION NETWORKS

Learning algorithm

Input: Data set {¢;', 5, v}k, € R" x RM x R
Output: Product Kernel Regularization network.
1. Set the centers of kernels:

Vie{l,...,k}: & —a'
& — '
2. Compute the values of weigths wy, ..., wg:

(kyl + K)W = 7,

where [ is the |dent|ty matrix,
K,]— K1(C1 ,U1 ) Kg(Cg ,Ug) and v = (V1,...7Vk),’}/>0.
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MODEL SELECTION

Parameters of proposed algorithm

e kernel type
e kernel parameter(s) (i.e. width for Gaussian)
e regularization parameter v

How we estimate these parameters?

e kernel type by user

¢ kernel parameter and regularization parameter by grid search and
crossvalidation

¢ speed-up techniques: grid refining, lazy evaluation

P. Kudova,T. Samalova (ICS Prague) Product Kernel Regularization Network ICANNGA 2005 12/19



EXPERIMENTS

Methodology

 two disjunct data sets for training and testing
e normalized error function

N
1 . i
£ =100 ; IV — (@', &%,
e LAPACK library was used for solving linear systems

Data Tasks

e benchmark — Proben1 data repository
« real life — prediction of flow rate of the river PloucCnice
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EXPERIMENTS

Comparison with RN

PKRN RN

E, train E, test E, train E, test

canceri 2.739 1.816 2.658 1.875
cancer2 2.152 3.516 2.279 3.199
cancer3 2.374 2.798 2.348 2.873
glassi 6.141 8.590 4.899 8.033
glass2 5.269 8.202 4.570 8.317
glass3 3.691 7.411 4.837 7.691

Table: Error values for PKRN and RN on Proben1 data sets.
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EXPERIMENTS

Prediction of flow rate

« prediction of the flow rate on the Ploucnice in North Bohemia,
from origin (southwest part of the Jestéd hill) to the town Mimon

e time series containing
daily flow and rainfall
values

e prediction of the current
flow rate based on
information from the
previous one or two days

¢ 1000 training samples,
367 testing samples
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EXPERIMENTS

Error values of PKRN

pl1 pl2

Etrain 0.057 0-1 09
Etst 0.048 0.097

Comparison with conservative predictor

PKRN CP

Eirain 0.057 0.093
Etest 0.048 0.054

P. Kudova,T. Samalova (ICS Prague) Product Kernel Regularization Network

ICANNGA 2005

16/19



EXPERIMENTS

Prediction of flow rate

Prediction of flow rate on the iver Ploucnice
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CONCLUSION

Summary

e product of two kernel functions is a kernel function
e Product Kernel Regularization Network
e its behaviour demonstrated on experiments

Future work

o study properties and usability of other types of kernels
e automatic model selection (including type of kernel function)
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Thank you for your attention.

Any questions?
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