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AutoML and Neural Architecture Search

Automated Machine Learning

The process of automating all steps in the ma-
chine learning pipeline, from data cleaning, to
feature engineering and selection, to hyperpara-
meter and architecture search.

Neural Architecture Search (NAS)

Automating the design of neural network architecture. Given a
problem, NAS looks for an optimal architecture.

Number of NAS papers in AutoML.org database
o

5
=)

700
600
500
400 7
300
200
100

2015 2016 2017 2018 2019 2020 2021 2022 2023




Neural Architecture Search (NAS)

» Optimization problem
» Minimize given objectives over the given search space

» Our focus - speed up the optimization process using
performance prediction
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Search Spaces

> Space of possible solutions (architectures)

v

Trade-off between human bias and search efficiency

» Macro search spaces
» Encode the entire architecture
» Focus on macro-level hyperparameters
» Slow to search
» Chain-structured search spaces
» A sequential chain of operation layers
» Easy to design and implement
» Lower chance of discovering novel architecture
» Cell-based search spaces
» Search for cells
» Skeleton fixed
» Popular, but have limits




Objectives

» Measure the quality of a solution
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Optimisation

Black-box techniques
» Random search (baseline)
» Evolutionary and genetic algorithms
P> Bayesian optimisation

» Reinforcement learning

One-shot techniques

» Training all at once using hypernet/supernet

» Differentiable architecture search




Speed-up Techniques

Parallelisation
» Easy, parallel objective evaluation

» Evolution with islands

Performance prediction

> Regression of the objective
» Learning curve extrapolation

» Zero-cost proxies

Meta-learning

» Re-using information from previous experiments




Our work

Setting
» What benchmarks and datasets?
» Performance prediction details

» Zero-cost proxies

Goals
» Analyze zero-cost proxies as predictors
» Properties of the neural graph as a novel predictor
> Interpretability analysis of predictions

» Compare with predictors from related work




NAS Benchmarks

» Datasets of precomputed objectives on selected tasks

» Enables experiments and comparison of NAS algorithms,

performance prediction algorithms

» Important for reproducible research

» NAS-Bench-101, NAS-Bench-201, NAS-Bench-301

» HW-NAS-Bench, TransNAS-Bench-101, robustness NB201
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Image Classification Datasets

CIFAR10, CIFAR100

» Learning Multiple Layers of Features from Tiny Images, Alex

Krizhevsky, 2009. e SIS - BEEZE
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» A downsampled variant of Imagenet as an alternative to the
Cifar dataset, Chrabaszcz et al, 2017

» 1000 classes
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Limits of benchmarks

NAS-Bench-201
» Evaluated for different datasets and objectives
> Total of 15 625 candidates
» However, some of them are isomorphic
» Some have invalid branches
>

The valid and unique set is quite small

NB101, NB301
» Larger, but evaluated only on CIFAR10
» Only one objective (accuracy)
» Cell-based — but models like LLMs are different




Performance Prediction

Predict objectives

» Imprecise prediction is enough (coarse to grain)

» Ranking is enough (who is the best)

Our goals
» Performance prediction of diverse objectives
» Accuracy, robustness, energy
» Exploring/combining zero cost proxies

» Proposal of new network encodings




Methodology

Regression

» Random forest regressor

» Predict accuracy or other metrics

Input data — network encodings

» Zero cost proxies
» One hot encoding (of chosen operations)

» Graph properties

Experiments

» Analyze predictions

» Compare different network encodings, predictors




Zero-cost proxies (ZCP)

» Fast to compute metrics that correlate with accuracy
» Zero-cost ... because we don't train the network at all!
» Some proxies depend on input data

» Other use artificial batches, e.g. a batch full of 1

How to compute ZCP?

» Sample one minibatch of data (or create an artificial batch)
» Pass it through the (untrained) network

» Compute a metric as a function of the forward pass and/or the
gradient
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ZCP in performance prediction

Main approaches
» Direct approximation of performance — choose nets with the
highest score
» Warm-start search — initial generation are top-scored nets

» ZCP as net encoding — fit a regressor on multiple ZCP, predict
performance

Examples of proxies

» flops, params — just simple metrics (no batch pass)

» synflow — from network pruning, product of network
parameters

> nwot — activation of different ReLU regions (variance between

batch examples) /{7//
>



ZCP limitations

» For NB201, ZCP correlate surprisingly well with accuracy
» On some other searchspaces, the correlation is rather low
» We discovered the reason for the good correlation on NB201

» For proxies like nwot, 12__norm, the score directly depends on
the number of convolutions in the network

All networks in nb201 on cifarl0 - I2_norm by #convs
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Properties of the neural graph

.

> Inspired by the finding, we look at properties of the network
graph — paths, counts, ...
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conv Ix1
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avg pool

» Node degree (c3x3, skip) means input degree counting only
conv3x3 and skip

» Similarly, max path computes the maximum path over allowed

operations
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Properties of the neural graph

Number of operations

Min path from input over operations O

Max path from input to over operations O

Out degree of the input node counting only operations O

In degree of the output node counting only operations O

vVvYvyVvVvyVvyy

Mean in/out degree of intermediate nodes counting only
operations O

Advantages

» Simple, interpretable, fast to compute

Disadvantages

» Highly correlated, dependent on search space
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Accuracy prediction

Usage in performance prediction

» Gathering all properties, we use them as input data to a
random forest regressor

» We compare with other network encodings — all ZCP, one-hot
encoding (OH), and their combinations

Results

» Our results (GRAF) are better than ZCP and OH
» ZCP combined with network properties is the best
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Interpretable prediction

» For network properties and ZCP, we compute Shapley
coefficients (considers feature set importance)

» We look at the most important features

» Results — different features are important for diverse tasks

» nwot is important for CIFAR10, but not for autoencoder

> autoencoder needs skip connections — result from related work!
NB201 - cifar-10 TNB101l-micro - autoencoder

Feature name Mean rank Feature name Mean rank

jacov 0.00 min path over skip 0.00

nwot 1.12 jacov 1.00

flops 3.62 fisher 2.00

synflow 4.08 min path over [skip,C3x3] 5.50

min path over [skip,C3x3,C1x1] 4.78 snip 5.58

params 5.04 min path over [skip,C1x1] 5.64

epe_nas 6.04 grad__norm 6.64

zen 6.36 zen 8.08

min path over [skip,C3x3] 11.08 grasp 9.34

min path over skip 11.88 12 norm 9.74




HW metrics prediction
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Prediction of EDGEGPU energy, random forest

» HW metrics differ in difficulty of prediction
» edgegpu energy is one of difficult tasks
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Robustness prediction
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Comparison with existing predictors — NB101, CIFAR10

» Same experiment as in a predictor survey [1]
» OQutperforms all available predictors

» Some predictors take much longer to train, e.g. graph neural
networks!
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Usage in the NAS process — ImageNet16-120 search
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Discussion and future work

Pros
» Better and faster than most predictors
> Great interpretability
» Works across tasks and search spaces

» Baseline for complex predictors

Cons
» Properties need to be used with ZCP for best performance

» Some graph neural networks with ZCP can be better

Future work
» Extension to transformer or LLM search spaces
» Study why ZCP are still needed



Thank you! Questions?
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