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Introduction

Neural networks
> hot topic nowadays
> image processing, signal analysis, large language models

> classification, regression, generative tasks

Our focus
» image classification

» convolutional neural networks



Brief introduction to neural networks

Artificial Neuron

» basic building block of all neural networks




Brief introduction to neural networks

Convolutional Neural Networks
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» 1994 LeNet5 (Yann LeCun)
» convolutional layers for feature extraction
» sub-sampling layers (max-pool layers)

» end-to-end solution
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Brief introduction to neural networks

Deep Neural Networks (DNN)

» Bengio, Hinton, LeCun (2009)
» big data + GPUs/TPUs

» learning with millions of neurons

» new architectures available for computer vision, video

processing, NLP

DNN Techniques

» RelU activation function

» dropout - type of regularization

» learning with mini-batches

> transfer learning




Neural Networks Life cycle

Model Selection >< Training > Inference

Model Selection
» find suitable architecture for the given problem

» neural architecture search (NAS)

» evolutionary algorithm, Bayesian optimisation, gradient based

Training
» find suitable weights for the given architecture and problem

» gradient approaches

Inference

> evaluating the final trained network



Model/Architecture Selection

Past
» how well the network performs on the given task
» accuracy on the test set

» the better accuracy the better network

Today
» enable inference on mobile devices
» multi-objective optimisation problem

» trade-off between accuracy and network complexity (size,
energy and memory consumption, etc.)

AppNeCo project

> energy complexity of deep neural networks (Kalina, Sima,
Vidnerova)



More objectives - robustness

Robustness objective

» need for robust models

» robustness to outliers, noise, adversarial examples

Adversarial examples

» perturbed examples (inputs) constructed to force the network
to give a wrong answer
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Adversarial attacks
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Robustness and variances

AlexNet

Pretrained network (left) Trained from scratch (right)
(TR TR TTIUTTC IO T I -
0N MO - o e

1 O3 I oo

[ CILR RN T ETREE I T
TN MR § - (NN RN,
DO M OO OO N Ol

» brighter colour, higher variance



Robustness to noise
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Robustness to adversarial examples
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Energy efficient DNNs

Energy
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» reducing precision (quantisation), mixed precision
» pruning networks (sparse networks)
P> approximate computations
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Approximate Computations

Approximate Adders and Multipliers
» work of our colleagues from Brno (Mrazek, Sekanina, Vasicek)
» evolutionary hardware - evolving approximate circuits

» multi-objective optimisation - error, energy, area and delay

Library tf-approximate
» library with Tensorflow interface
> provides approximate convolutional layers

> enables simulation of approximate computations
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Approximate Layers - Robustness
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Neural Architecture Search

Towards Multi-objectivity

» accuracy
> robustness
» model size
> energy

Reducing computational complexity

» NAS is typically very computationally demanding

» reducing time and energy consumption — “green autoML"
» performance prediction

» multi-objective performance prediction (Neruda, Kadlecova,
Vidnerova, Pilat, Lukasik)
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Reducing cost of NAS

Performance prediction task

» no need for exact prediction

» comparison between two models enough (one target)

Approaches
> surrogate models
P zero-cost proxies

» learning curve extrapolation

Our Goal

» performance prediction for diverse objectives

» multi-objective performance prediction



Predicting robustness

» evaluation of robustness is very time consuming

» prediction seems to be more difficult than prediction of
accuracy




Prediction based on zero-cost proxies

» XGBoost, on NAS-Bench-201, 6466 networks

» cifar-100

» predict clean and robust accuracy based on zero-cost-proxies
> inspect feature importance

» 100/1000 training samples

training avg r2 score
samples | clean apgd square fgsm pgd worst case

100 0.697 0.261 0.329 0.668 0.227 0.261
1000 | 0.892 0.513 0.579 0.813 0.509 0.514




Prediction based on zero-cost proxies

Feature importance
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Conclusion

Takeaway

> finding a good model for the given task is a multi-objective
problem
» main objectives:

» accuracy
» robustness
P> size

> energy

» need for speed-up of the whole process

Thank you! Questions?



