On Robust Training of Regression Neural Networks

Introduction

- Neural networks are commonly used for models with a large number of variables (or even for functional data)
- Here: nonlinear regression of unknown form
- Model $Y_i = \varphi(X_i) + e_i$ for i = 1, ..., n, where $e_1, ..., e_n$ are mutually independent and $X_i \in \mathbb{R}^p$
- Standard training of common types of neural networks minimize the sum of squared residuals
- Thus, they may be heavily influenced by contamination (outliers)
- Multi-layer perceptron neural networks (MLP)
- Radial basis function networks (RBF)
- Back-MLP, Back-RBF: available robust versions, based on backward subsample selection (outlier elimination) [1]

Neural networks with a robust loss function

- $\theta \in \mathbb{R}^Q$ = the vector of parameters of the neural network
- $\hat{\theta} \in \mathbb{R}^Q$ = estimate of θ given by the neural network
- $u_i(\hat{\theta}) = \text{residual for } i = 1, \dots, n$
- $u_{(1)}^2(\hat{\theta}) \leq \cdots \leq u_{(n)}^2(\hat{\theta})$
- $\bullet |u(\hat{\theta})|_{(1)} \le \dots \le |u(\hat{\theta})|_{(n)}$
- Regularization parameter $\lambda > 0$ (found by cross validation)

LTS-MLP, LTS-RBF

Neural networks with the loss function of the least trimmed squares (LTS) defined for a fixed $h (n/2 \le h < n)$:

$$\arg\min_{\hat{\theta}\in\mathbb{R}^N} \left\{ \sum_{i=1}^h u_{(i)}^2(\hat{\theta}) + \lambda \sum_{j=1}^Q |\hat{\theta}_i| \right\}$$

LTA-MLP, LTA-RBF Neural networks with the loss function of least trimmed absolute error (LTA):

 $\arg\min_{\hat{\theta}\in\mathbb{R}^N} \left\{ \sum_{i=1}^h |u(\hat{\theta})|_{(i)} + \lambda \sum_{j=1}^Q |\hat{\theta}_i| \right\}$

Contact Information

Email: petra@cs.cas.cz, kalina@cs.cas.cz

Jan Kalina, Petra Vidnerová

The Czech Academy of Sciences, Institute of Computer Science

Interquantile neural networks

Quantile regression neural networks: $QMLP(\tau)$, $QRBF(\tau)$

 $\arg\min_{\hat{\theta}\in\mathbb{R}^Q}\sum_{i=1}^n\rho_{\tau}\left(u_i(\hat{\theta})\right),$

where $\rho_{\tau}(x) = x (\tau - \mathbb{1}[x < 0])$ for $x \in \mathbb{R}, \tau \in (0, 1)$

Interquantile neural networks (IQ-MLP, IQ-RBF)

- Choose suitable constants $\tau_1 \in (0, 1)$ and $\tau_2 \in (0, 1)$
- Fit a standard RBF network only for such measurements, for which

 $\hat{Y}_i^{\mathsf{QRBF}(\tau_1)} \leq Y_i \leq \hat{Y}_i^{\mathsf{QRBF}(\tau_2)}$

where $\hat{Y}_i^{\mathsf{QRBF}(\tau)}$ are fitted values of $\mathsf{QRBF}(\tau)$

Illustrative example – IQ-RBF (with p = 1)

The method is robust to (severe) data contamination.

Be			
	enchmark ((real) dataset	S
		Dataset	
	TTCI	Boston housing	Auto MPG
Method	MSE/TMSE	MSE/TMSE	MSE/TMSE
	Versions of MLP		
MLP	0.41/0.14	57.9/5.3	60.8/28.9
Back-MLP [1]	0.44/0.12	65.1/4.3	72.8/15.0
LTS-MLP	0.43/0.12	67.2/4.5	69.4/14.3
LTA-MLP	0.43/0.12	66.8/4.5	69.6/14.1
IQ-MLP	0.44/0.12	67.7/4.2	70.1/13.8
	Versions of RBF network		
RBF	0.39/0.14	52.7/4.4	46.9/17.2
Back-RBF [1]	0.43/0.12	59.7/3.9	51.0/13.3
LTS-RBF	0.45/0.12	60.3/4.1	52.7/12.9
LTA-RBF	0.45/0.12	61.1/4.1	53.2/12.7
IQ-RBF	0.44/0.11	60.8/ 3.7	52.3/ 12.2
The novel methors tandard training	ods: Remarka g	ble improvemen	t compared to
The novel methors standard training	ods: Remarka g	ble improvemen	t compared to
The novel methors standard training	ods: Remarka g Concl	ble improvemen usions	t compared to
The novel method standard training Several novel method types of contam The interquantil (also for heteros Future work: Ha weights, metalea	g Concl ethods [2] tur ination (also e approach se cedastic mod ard trimming arning may pr	ble improvement usions n out to be suital under no contampose to be the me els) may be replaced copose suitable w	t compared to ble for various ination) ost promising by implicit veights [3]
The novel methors standard training Several novel m types of contam The interquantil (also for heteros Future work: Ha weights, metalea	g Concl ethods [2] tur ination (also e approach se cedastic mod ard trimming arning may pr	ble improvement usions n out to be suital under no contample ems to be the me els) may be replaced copose suitable w	t compared to ble for various ination) ost promising by implicit veights [3]
The novel method standard training Several novel method types of contame The interquantil (also for heteros) Future work: Ha weights, metales	g Concl ethods [2] tur ination (also e approach se cedastic mod ard trimming arning may pr Refer	ble improvement usions n out to be suital under no contame ems to be the me els) may be replaced opose suitable w	t compared to ble for various ination) ost promising by implicit veights [3]

3 Kalina J., Neoral A., Vidnerová P. (2021): Effective automatic method selection for nonlinear regression modelling. International Journal of Neural Systems. Online first.