From perceptron
 to deep neural networks

Petra Vidnerová

Ústav informatiky, AV ČR

Intro

Mathematics stausios

 diematies Clustering
Clustering Anstificial inteligence
Sosidicios Kernel metods
 Neural networks Machine learning a

Statistios
kenelmotas

- Artificial inteligence
- Machine learning
- Statistics
- Neural networks
- Kernel methods
- Meta-learning
- Evolutionary algorithms
- Learning theory
- ...

Outline

- Neural networks overview
- First perceptron model
- MLP, RBF networks, kernel methods
- Deep and convolutional networks
- Our work
- quantile estimation by neural networks
- adversarial examples

Looking back at history ...

1957 Perceptron

- Frank Rosenblatt introduced a model of neuron with supervised learning algorithm.
- First neural computer for pattern recognition, images 20x20, Mark 1 Perceptron.

Perceptron model

- inputs, weights, bias, potencial
- implement only linearly separable functions

$$
y= \begin{cases}1 & \text { if } \sum_{i=1}^{n} w_{i} x_{i}-\theta \geq 0 \\ 0 & \text { else }\end{cases}
$$

Perceptron learning algorithm

Problem: inputs x_{1}, \ldots, x_{n}; output 0/1

```
Algorithm: Perceptron Learning Algorithm
\(P \leftarrow\) inputs with label 1 ;
\(N \leftarrow\) inputs with label 0 ;
Initialize w randomly;
while !convergence do
    Pick random \(\mathrm{x} \in P \cup N\);
    if \(\mathrm{x} \in P\) and \(\quad \mathrm{w} . \mathrm{x}<0\) then
    \(\mathbf{w}=\mathbf{w}+\mathbf{x} ;\)
    end
    if \(\mathrm{x} \in N\) and \(\mathrm{w} \cdot \mathrm{x} \geq 0\) then
        \(\mathrm{w}=\mathrm{w}-\mathrm{x}\);
    end
end
//the algorithm converges when all the
    inputs are classified correctly
```


Geometric interpretation

$$
x \in P \text { we need } \mathbf{w x}>0
$$

i.e. we need angle between \mathbf{W} and $\mathbf{x}<90^{\circ}$

$$
\begin{gathered}
\cos \alpha=\frac{\mathbf{w x}}{\|\mathbf{w}\| \cdot\|\mathbf{x}\|} \\
\mathbf{w x}>0 \rightarrow \cos \alpha>0 \rightarrow \alpha<90^{\circ}
\end{gathered}
$$

Explanation

$$
\begin{array}{r|r}
\left(\alpha_{\text {new }}\right) \text { when } \mathbf{w}_{\mathbf{n e w}}=\mathbf{w}+\mathbf{x} & \left(\alpha_{\text {new }}\right) \text { when } \mathbf{w}_{\text {new }}=\mathbf{w}-\mathbf{x} \\
\cos \left(\alpha_{\text {new }}\right) & \propto \mathbf{w}_{\text {new }}^{T} \mathbf{x} \\
& \propto(\mathbf{w}+\mathbf{x})^{T} \mathbf{x} \\
& \propto \mathbf{w}^{T} \mathbf{x}+\mathbf{x}^{T} \mathbf{x} \\
& \propto \cos \left(\alpha_{\text {new }}\right) \propto \mathbf{w}_{\mathbf{n e w}}^{T} \mathbf{x}^{T}+\mathbf{x}^{T} \mathbf{x} \\
& \propto(\mathbf{w}-\mathbf{x})^{T} \mathbf{x} \\
\cos \left(\alpha_{\text {new }}\right) & \propto \cos \alpha
\end{array} \quad \begin{gathered}
T \\
\mathbf{x}-\mathbf{x}^{T} \mathbf{x} \\
\end{gathered} \quad \propto \cos \alpha-\mathbf{x}^{T} \mathbf{x} .
$$

Was proven that the algorithm converges. See for example Michael Collins proof.

Problem XOR

1969 Minsky

Limitation of perceptron. Cannot solve the problem XOR. Start of AI winter.

Multi-layer perceptrons (MLP)

Input layer

1986 Backpropagation (Rumelhart et al and others)
Least square method for learning neural networks with multiple layers.

Back propagation

- gradient learning of neural networks by means of backward error propagation
- optimisation of error/loss function
- how many layers we need (theory)
- how many layers we should use (practice)
- gradient descent algorithm

$$
\Delta w_{i j}=-\eta \frac{\partial E}{\partial w_{i j}}
$$

Derivatives

$$
\begin{array}{cl}
E=\sum_{k=1}^{N} E_{k} & \triangle w_{i j}=-\varepsilon \frac{\delta E}{\delta w_{i j}} \\
\frac{\delta E}{\delta w_{i j}}=\sum_{k=1}^{N} \frac{\delta E_{k}}{\delta w_{i j}} & \frac{\delta E_{k}}{\delta w_{i j}}=\frac{\delta E_{k}}{\delta o_{i}} \frac{\delta o_{i}}{\delta \xi_{i}} \frac{\delta \xi_{i}}{\delta w_{i j}} \\
o_{i j}=\varphi\left(\sum_{k=1}^{p}\left(w_{i j k} x_{k}-\theta_{i j}\right)\right) & \varphi(z)=\frac{1}{1+e^{-z}}, \frac{\delta \varphi(z)}{\delta z}=\varphi(z)(1-\varphi(z)) \\
\frac{\delta E_{k}}{\delta w_{i j}}=\frac{\delta E_{k}}{\delta o_{i}} o_{i}\left(1-o_{i}\right) o_{j} &
\end{array}
$$

If o_{i} is the output neuron: $\frac{\delta E_{k}}{\delta o_{i}}=y_{i}-d_{k}$
If o_{i} is an hidden neuron: $\frac{\delta E_{k}}{\delta o_{i}}=\sum_{r \in i \rightarrow} \frac{\delta E_{k}}{\delta o_{r}} o_{r}\left(1-o_{r}\right) w_{i r}$

Loss function and regularization

- Mean square error (MSE):

$$
E=\frac{1}{N} \sum_{k=1}^{N}\left(f\left(x_{k}\right)-d_{k}\right)^{2} q
$$

- Function approximation - ill posed problem

- Add regularization, weight decay

Loss function and regularization

- Mean square error (MSE):

$$
E=\frac{1}{N} \sum_{k=1}^{N}\left(f\left(x_{k}\right)-d_{k}\right)+\gamma \Phi[f]
$$

- Function approximation - ill posed problem

- Add regularization, weight decay

RBF Networks

- originated in 1980s, function approximation
- network with one hidden layer
- local units
- alternative to perceptron

RBF unit: $y(\vec{x})=\varphi\left(\frac{\|\vec{x}-\vec{c}\|}{b}\right)=e^{-\left(\frac{\|\vec{x}-\vec{c}\|}{b}\right)^{2}}$
Network function: $f(\vec{x})=\sum_{j=1}^{h} w_{j} \varphi\left(\frac{\|\vec{x}-\vec{c}\|}{b}\right)$

Two spirals problem

Difficult problem for linear separation.

Kernel methods (SVM)

In '90s kernel methods and SVMs were very popular.

Mapping to the feature space

Choose a mapping to a (high dimensional) dot-product space

- feature space.

Mercer's condition and kernels

Mercer theorem:

If a symmetric function $K(x, y)$ satisfies

$$
\sum_{i, j=1}^{M} a_{i} a_{j} K\left(x_{i}, x_{j}\right)>0
$$

for all $M \in \mathbf{N}, x_{i}$ and $a_{i} \in \mathbf{R}$, there exists a mapping function ϕ that maps x into the dot-product feature space and

$$
K(x, y)=\langle\phi(x), \phi(y)\rangle
$$

and vise versa. Functio K is called kernel.

Support vector machine

Looking for a separating hyperplane with the maximal margin.

Convolutional Networks

1994 LeNet5 (Yann LeCun)

Convolutional layers for feature extraction. Subsampling layers (max-pool layers).

Descrete convolution

Edge detection

LeNet network Example

Was applied in several banks for recognition of numbers on cheques.

Deep neural networks

Bengio, Hinton, LeCun (2009)
Big data + GPUs/TPUs. Learning with millions of neurons. New architectures available for computer vision, video processing, NLP.

Advances in deep learning ...

- ReLU activation units (vanishing gradient problem)

Advances in deep learning

- Dropout - type of regularization, as ansamble
- Learning with mini-batches
- Convolutional layers - adaptive preprocessing

- Transfer learning
- Float types with lower numbers of bits (8bits)
- Missing interpretation

Our
 Work

Quantile Estimation

- instead of mean trend predict the desired quantile
- joint work with Jan Kalina

Quantile Estimation

- data points $\left(x_{i}, y_{i}\right), i=1, \ldots, N$
- for each i resudial $\xi_{i}=y_{i}-f\left(x_{i}\right)$
- MSE:

$$
\begin{gathered}
E=\sum_{k=1}^{N} \xi_{i}^{2}=\sum_{k=1}^{N} \rho\left(\xi_{i}\right) \\
\rho(z)=z^{2}
\end{gathered}
$$

Quantile Estimation

- modify a loss function (R. Koenker)

$$
\rho(z)= \begin{cases}\tau|x|, & \text { if } x>0 \\ (1-\tau)|x|, & \text { else }\end{cases}
$$

Quantile Estimation - toy example

Simple MLP.

$$
\begin{gathered}
\tau=0.1 \text { and } 0.9 \text { (left) } \\
\tau=0.2 \text { and } 0.8 \text { (center) } \\
\tau=0.3 \text { and } 0.7 \text { (right) }
\end{gathered}
$$

Quantile Estimation - toy example

Simple MLP.

$$
\begin{gathered}
\tau=0.1 \text { and } 0.9 \text { (left) } \\
\tau=0.2 \text { and } 0.8 \text { (center) } \\
\tau=0.3 \text { and } 0.7 \text { (right) }
\end{gathered}
$$

Network robustification

Simple RBF.

Data above and bellow quantiles are omitted.

Adversarial Examples

$\operatorname{sign}\left(\nabla_{x} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)$
"nematode" 8.2% confidence

2015 Goodfellow

- applying an imperceptible non-random pertrubation to an input image, it is possible to arbitrarily change the machine learning model prediction
- for a human eye, adversarial examples seem close to the original examples
- a security flaw in a classifier

Crafting adversarial examples

- optimisation problem, w is fixed, x is optimised
- minimize $\|r\|_{2}$ subject to $f(x+r)=l$ and $(x+r) \in\langle 0,1\rangle^{m}$
- a box-constrained L-BFGS
- gradient sign method - adding small vector in the direction of the sign of the derivation
- we can linearize the cost function around θ and obtain optimal perturbation

$$
\eta=\varepsilon \operatorname{sign}\left(\Delta_{x} J(\theta, x, y)\right)
$$

Crafting adversarial examples II.

- adversarial saliency maps -- identify features of the input that most significantly impact output classifications (Papernot, 2016)
- motivation: output function (left), forward derivation (right)

- misclasify X such that it is assigned a target class $t \neq \operatorname{label}(X), F_{t}(X)$ must increase, while $F_{j}(X), j \neq t$ decrease

$$
S(X, t)[i]=\left\{\begin{array}{l}
0 \text { if } \frac{\delta F_{t}(X)}{\delta X_{i}}<0 \text { or } \sum_{j \neq t} \frac{\delta F_{j}(X)}{\delta X_{i}}>0 \\
\frac{\delta F_{t}(X)}{\delta X_{i}}\left|\sum_{j \neq t} \frac{\delta F_{j}(X)}{\delta X_{i}}\right| \text { otherwise }
\end{array}\right.
$$

FGSM vs. Saliency maps

$$
7210414959
$$

Crafted by FGSM:

Crafted by saliency maps:

$$
78564+9 \times 9
$$

Attack taxonomy

Results on GTSRB

Genetic Crafting Algorithm

- To obtain an adversarial example for the trained machine learning model, we need to optimize the input image with respect to model output.
- For this task we employ a GA - robust optimisation method working with the whole population of feasible solutions.
- The population evolves using operators of selection, mutation, and crossover.
- The ML model and the target output are fixed.

Black-box approach

- genetic algorithms to generate adversarial examples
- machine learning method is a blackbox
- applicable to all methods without the need to acess models parameters (weights)

Results for different ML models

Questions?

