
Faculty of Mathematics and Physics, Charles University, Prague

Institute of Computer Science, Academy of Sciences of the Czech Republic

Learning with Regularization Networks

Petra Kudov́a

PhD Thesis Summary

I–1 Theoretical Computer Science

Prague 2006

Matematicko-fyzikálnı́ fakulta, Univerzita Karlova, Praha

Ústav informatiky, Akademie věďCeské Republiky

Learning with Regularization Networks

Petra Kudov́a

Autorefeŕat dizertǎcńı práce

I–1 Teoretická informatika

Praha, 2006

Dizertačnı́ práce byla vypracována v rámci doktorského studia uchazeče na Matematicko-
-fyzikálnı́ fakultě Univerzity Karlovy v Praze (MFF UK) vletech 2001–2006.

Uchazeč RNDr. Petra Kudová

Školitel Mgr. Roman Neruda, CSc.

Školicı́ pracoviště Ústav informatiky
Akademie věďCeské Republiky
Pod Vodárenskou věžı́ 2
182 07 Praha 8

Oponenti

Předseda OR I–1 Prof. RNDr. PetrŠtěpánek, DrSc..

Autoreferát byl rozeslán dne

Obhajoba dizertačnı́ práce se koná dne ve hodin v budově MFF UK,
................................... S dizertačnı́ pracı́ je možno se seznámit na studijnı́m oddělenı́ dok-
torského studia MFF UK, Ke Karlovu 3, Praha 2.

Contents

1 Introduction 6

2 Goals and Objectives 7

3 Methods and algorithms 8
3.1 Regularization Networks .. 8
3.2 Product and Sum Kernels . 10
3.3 Autonomous Learning Framework .. 12
3.4 RBF Networks . 13

4 Experimental Results 17
4.1 Regularization Networks .. 18
4.2 RBF Networks . 19
4.3 Regularization Networks vs. RBF Networks 21
4.4 Rainfall-Runoff Modeling .. 22

5 Conclusion 23

5

1 Introduction

In the last few years, machine learning has witnessed an increase of interest, which is a con-
sequence of rapid development of the information industry and its need for an “intelligent”
data analysis.

A learning problem can be described as finding a general rule that explains data given
only by a sample of limited size. In addition, collected datamay contain measurement
errors or noise. Efficient algorithms are required to filter out the noise and capture the true
underlying trend.

In this thesis we will deal withsupervised learning. In such a case we are given pairs
of input objects (typically vectors), and desired outputs.The output can be of continuous
value, or it can predict a class label of the input object. Thetask of supervised learning is to
predict the output value for any valid input object after having seen a number of examples,
i.e. input-output pairs. To achieve this, a “reasonable” generalization from the presented
data to unseen situations is needed. Such a problem appears in a wide range of application
areas, covering various approximation, classification, and prediction tasks.

Artificial neural networks(ANNs) represent one of the approaches that are applicable
to the learning problem. Though their original motivation was to model neural systems of
living organisms, neural networks are successfully used insuch diverse fields as modeling,
time series analysis, pattern recognition, signal processing, and control.

The primary property of ANNs is their ability to learn from their environment and to
improve their performance through learning. There is a goodsupply of network archi-
tectures and corresponding supervised learning algorithms (e.g. [6]). The model, that is,
a particular type of neural network, is usually chosen in advance and its parameters are
tuned during learning so as to fit the given data. The difficulties that might occur during
the learning process include slow convergence, getting stuck in local optima,over-fitting
etc.

Over-fitting typically occurs in cases where learning was performed for too long or
where training examples are rare. Then the network may learnvery specific random fea-
tures of the training data that have completely no relation to the underlying function. In
this process the performance on the training examples stillincreases while the performance
on unseen data becomes worse.

The problem of over-fitting can be cured by regularization theory. The regularization
theory is a rigorous approach that formulates the learning problem as a function approx-
imation problem. Given a set of examples obtained by random sampling of some real
function, possibly in the presence of noise, the goal of learning is to find this function or
its estimate. Since this problem is generally ill-posed, some a priori knowledge about the
function should be added. Usually it is assumed that the function is smooth, where the
smoothness is understood in a very general sense. Often it means that two similar inputs
correspond to two similar outputs and/or that the function does not oscillate too much. The
solution is found by minimizing the functional containing both the data and stabilizer, i.e.
the term representing our a priori knowledge.

It was shown that for a wide class of stabilizers the solutioncan be expressed in a form
of feed-forward neural network with one hidden layer, called a regularization network.
Different types of stabilizers lead to different types of activation functions calledkernel
functionsin the hidden layer.

6

The regularization network as a solution derived from the regularization theory has as
many units in the hidden layer as the number of training examples was. Such a solution is
unfeasible for bigger data sets, therefore the class ofgeneralized regularization networks
was introduced.

Radial basis function networks(RBF networks) represent a subclass of generalized
regularization networks. They belong among more recent types of neural networks. In
contrast to classical models (multilayer perceptrons, etc.), the RBF network is a network
with local units, the proposal of which was motivated by presence of many local response
units in human brain. Other motivation came from numerical mathematics, where radial
basis functions were first introduced in the solution of realmultivariate problems. It was
shown that RBF networks possess the universal approximation property.

Based on a good theoretical background, the classes of regularization networks and
RBF networks represent promising approaches to learning and deserve further investiga-
tions. Though the theoretical knowledge is very beneficial,it does not cover all aspects of
their practical applicability. Experimental study of corresponding learning algorithms may
justify the theoretical results and give an idea of real complexity and efficiency of the algo-
rithms. Both good theoretical and good empirical knowledgeare the best starting point for
successful applications, further improvements of the existing algorithms, or creating new
learning approaches.

2 Goals and Objectives

The main goal of the work is to study and develop learning algorithms for networks based
on the regularization theory. In particular, learning possibilities for a family of regulariza-
tion networks and RBF networks should be studied. The available approaches, including
gradient techniques, genetic algorithms, and linear optimizations methods, should be in-
vestigated and potential improvements suggested. Based onthe obtained theoretical and
experimental results, new algorithms should be proposed, possibly as hybrid methods com-
bining the existing algorithms. All the algorithms should be implemented and their behav-
ior studied experimentally.

The goal of the work will be achieved by means of the followingobjectives:

• Study of regularization network learning and its properties

The regularization theory leads to a solution of the regularized learning problem in
the form of regularization network having as many hidden units as the number of
data points is. Such a solution leads to quite a straightforward learning algorithm,
since the centers of hidden units are fixed to the given data points and the output
weights are estimated as a solution of linear optimization problem. Despite its seem-
ing simplicity, problems may occur due to round-off errors,numerical unstability
etc. Therefore the real applicability and behavior of the algorithm should be studied.

In addition, the regularization network learning algorithm requires knowledge of
the regularization parameter and kernel function. To set upthese parameters, good
knowledge of the role of regularization parameter and kernel function in the learning

7

is needed. The impact of regularization parameter and kernel function choice on the
performance of the learning algorithm should be studied anddifferent types of kernel
functions compared.

• Design of autonomous learning algorithm for regularization network

The regularization parameter and kernel function are parameters that represent our
prior knowledge of the given problem. In fact, they are a partof the learning problem
definition, and therefore assumed to be known in the theory. However, this is not
always true in practice. In most applications such knowledge is not available and a
desired learning algorithm should be able to estimate theseparameters itself. The
framework above the basic learning algorithm should be created to establish a fully
autonomous learning procedure.

• Study and design of learning algorithms for generalized regularization net-
works

A regularization network as an exact solution of the regularized learning problem
has as many kernel functions as the number of data points is. This fact makes its
learning quite straightforward and simple, but limits its practical applicability. Since
such a solution is unfeasible for larger data sets, generalized regularization networks
were introduced.

Different learning approaches for the generalized regularization networks should be
studied, with focus on RBF networks. The RBF networks already possess a wide
range of learning possibilities, including gradient techniques, combinations of clus-
tering and linear optimization, and genetic algorithms. The main concern of further
research is to create hybrid approaches.

• Performance comparison of regularization network and RBF network

Unlike the regularization network, the RBF network typically has a much smaller
number of basis functions than the size of the data set is. Thebasis functions are
usually distributed using various heuristics, so that the resulting network may be far
from the optimal solution. On the other hand, the solution isusually much cheaper
in terms of space complexity.

The comparison of learning performance of regularization networks and RBF net-
works might throw new light on the difference between the “exact” solution and the
“approximate” solution. Optimally, if this difference is reasonable, the RBF net-
works might represent a cheaper alternative to the regularization networks.

3 Methods and algorithms

3.1 Regularization Networks

Regularization networks [5, 14] belong to a family of feed-forward neural networks with
one hidden layer. They are based on the regularization theory, where the problem of super-
vised learning is handled as an function approximation problem.

8

Definition 3.1 (Learning from Examples) We are given a set of examples (pairs)

{(xi, yi) ∈ R
d ×R}Ni=1

(1)

that was obtained by random sampling of a real functionf , generally in presence of noise.
The problem of recovering the functionf from data, or finding the best estimate of it, is
called learning from examples(or supervised learning). The set of input-output pairs (1)
is called thetraining set.

The problem is generally ill-posed [14, 7]. We are interested only in such solutions
that possess thegeneralization ability, i.e. functions that give relevant outputs also for the
data not included in the training set. It is usually assumed that the function issmooth,
two similar inputs correspond to two similar outputs, or thefunction does not oscillate too
much.

Based on this assumption, the solution is stabilized by means of an auxiliary non-
negative functional that embeds prior information about the solution. Then the solution is
sought as a minimum of the functional:

H [f] =
N

∑

i=1

(f(xi)− yi)
2 + γΦ[f], (2)

whereΦ is called astabilizeror regularization termandγ > 0 is the regularization pa-
rametercontrolling the trade-off between closeness to the data anddegree of satisfaction
of the desired property of the solution.

The functional (2) was shown to have a unique solution for a wide class of stabilizers.
The solution has a form:

f(x) =
N

∑

i=1

wiK(x,xi), (3)

whereN is the number of training samples,xi ∈ R
d are the training samples,K :

R
d × R

d → R is a positive semi-definite function, called akernel function, wi ∈ R are
coefficients, calledweights. Different stabilizers lead to different types of kernel functions.
In fact, the choice of kernel function is equivalent to the choice of the stabilizer, i.e. to
the choice of our prior assumption. Solution derivation canbe found in [5, 4, 14, 16], and
others.

The regularized learning problem solution (3) can be represented by a feed-forward
neural network with one hidden layer. Such a network is called a regularization network.
Its learning algorithm is sketched in Algorithm 3.1.

Definition 3.2 (Regularization Network) Aregularization networkis a feed-forward neu-
ral network with one hidden layer of kernel units and one linear output unit. It represents
a function

f(x) =

N
∑

i=1

wiK(xi, ci), (4)

whereN is the number of hidden neurons (i.e. the number of basis functions),wi ∈ R,
ci ∈ R

d,xi ∈ R
d, K : R

d → R is a chosen kernel (basis) function. To coefficients of the
linear combinationwi we refer as toweights, the vectorsci are calledcenters.

9

Figure 1: Regularization network
scheme.

Input: Data set {xi, yi}
N
i=1 ⊆ R

d × R

Output: Regularization Network

1. Set the centers of kernels:

∀i ∈ {1, . . . , N} : ci ← xi

2. Compute the values of weights
w1, . . . , wN :

(K + γI)w = y, (5)

where I is the identity matrix,
Kij = K(xi,xj), and y = (y1, . . . , yN),
γ > 0.

Algorithm 3.1. The RN learning algorithm.

3.2 Product and Sum Kernels

The kernel function used in a particular application of regularization network is typically
supposed to be given in advance, for instance chosen by the user. As a kernel function we
can use any symmetric, positive semi-definite function, possibly a conditionally positive
semi-definite function.

Since different kernel functions correspond to different prior assumptions, the choice
of kernel function always depends on the particular task. However, we often have to deal
with heterogeneous data, in the sense that different attributes differ in type or quality, or
that the character of data differs in different parts of the input space. Then for the different
parts of the data different kernel functions are suitable.

In such situations, kernel functions created as a combination of simpler kernel functions
might better reflect the character of the data. We can benefit from the fact that the set of
positive semi-definite functions is closed with respect to several operations, such as sum,
product, difference, limits, etc. [1, 15]. Based on the operations of product and sum we
introduce two types of composite kernel units, namely aproduct kerneland asum kernel.

Product Kernel

Definition 3.3 (Product Kernel) LetK1, . . . , Kk be kernel functions defined onΩ1, . . . , Ωk

(Ωi ⊂ R
di), respectively. LetΩ = Ω1 × Ω2 × · · · × Ωk. The kernel functionK defined on

Ω that satisfies

K(x1,x2, . . . ,xk,y1,y2, . . . ,yk) = K1(x1,y1)K2(x2,y2) · · ·Kk(xk,yk), (6)

wherexi,yi ∈ Ωi, is called aproduct kernel.

A computational unit that realizes the product kernel function will be called aproduct
unit (see Figure 2). A regularization network with the hidden layer formed by product
kernels is called aproduct kernel regularization network(PKRN).

Product kernels might be useful if a priori knowledge of datasuggests looking for the
solution as a member of a product of two or more function spaces. This is typically in a

10

Figure 2: A unit realizing a product kernel. Figure 3: A unit realizing a sum kernel.

situation when the individual attributes, or groups of attributes, differ in type or quality.
In such situations, we can split the attributes into groups,which means that instead of one
input vectorx ∈ R

d we will deal withk input vectorsxi ∈ R
di , for i = 1, . . . , k. Then the

training set has the form

{(xi
1
,xi

2
, . . . ,xi

k, y
i) ∈ R

d1 ×R
d2 × . . .×R

dk × R}Ni=1
. (7)

Using a product kernel on such training data enables us to process differentxi separately.

Sum Kernel

Definition 3.4 (Sum Kernel) The kernel functionK : Ω× Ω→ R that can be obtained as
a sum of two or more other kernel functionsK1, . . . , Kk

K(x,y) =

k
∑

i=1

Ki(x,y), (8)

wherex,y ∈ Ω, is called asum kernel.

A computational unit realizing the sum kernel is shown in Figure 3. We call it asum
unit. A regularization network that has sum units in its hidden layer we call asum kernel
regularization network(SKRN).

The sum kernel is intended for use in cases when prior knowledge or analysis of data
suggests looking for a solution as a sum of two or more functions. For example, when the
data is generated from a function influenced by two sources ofdifferent frequencies, we
can use a kernel obtained as a sum of two parts corresponding to high and low frequencies.

Restricted Sum Kernel

Approximation of data with different distributions in different parts of the input space may
be done with the help of arestricted sum kernel.

Definition 3.5 (Restricted Sum Kernel) LetK : Ω × Ω → R be a kernel function and let
A be a subset ofΩ. Then the kernelKA defined by

KA(x,y) =

{

K(x,y) if x,y ∈ A,

0 otherwise;
(9)

is called arestricted sum kernel.

11

In situations when different kernels are suitable for different parts of the input space, we
can divide the input space into several subsetsA1, . . . , Ak and choose different kernelsKi

for eachAi.
Then we obtain the kernel as a sum of kernelsKi restricted to the corresponding sets:

K(x,y) =

{

Ki(x,y) if x,y ∈ Ai

0 otherwise.
(10)

Divide et Impera

The second application of restricted sum kernels is a derivation of theDivide et Impera
approach that represents a technique for dealing with bigger data sets.

Note that an SKRN with restricted sum kernels represents a function

f(x) =
∑

xi∈A1

wiK1(x,xi) + . . . +
∑

xi∈Ak

wiKk(x,xi), (11)

which can be also interpreted as a sum ofk regularization networks, each using its own
kernel functionKs, s = 1, . . . , k.

For the case of disjoint setsAs, always exactly one member of (11) is nonzero. Thus for
an inputx only the regularization network corresponding to the setAs, for whichx ∈ As,
has the nonzero output. Conversely, to determine the value of wi, only the training samples
{(xj , yj)|xj ∈ As} are needed.

So the partitioning of the input space defines the partitioning of the training set into
k subsets. The weights of the SKRN with restricted sum kernelscan be determined by
solvingk smaller linear systems instead of a big one.

Replacing one linear system byk smaller ones reduces both the space and time require-
ments of learning. The drawback of this approach is a slightly bigger approximation error
that is caused by the lack of information on the borders of theinput space areas, i.e. sets
Ai.

3.3 Autonomous Learning Framework

The RN learning algorithm (Algorithm 3.1) is based on the assumption that the regulariza-
tion parameterγ and the kernel functionK are given in advance. We call these parameters
metaparametersto distinguish them from the parameters of the network itself (i.e. weights,
centers).

Ideally, the metaparameters are selected by the user based on their knowledge of the
given problem. Since this is not possible or very difficult inmajority of practical applica-
tions, we need to build a framework above this algorithm to make it capable of finding not
only the network parameters but also optimal metaparameters.

We propose the following procedure:

1. Setup of the algorithm

(a) Choice of a type of the kernel function: By the type we meanthat we decide
whether to use a Gaussian, multi-quadratic, sum, product oranother kernel

12

function (For sum and product kernels it is necessary to determine the type for
all kernels used in the sum and product respectively.).

(b) Choice of the additional parameters of the kernel function: Some kernels have
additional parameters that have to be estimated (such as thewidth in the case
of the Gaussian function).

(c) Choice of the regularization parameterγ.

2. Running the RN learning algorithm (Algorithm 3.1).

Typically, we suppose that the type of kernel function — Step1(a) — is given by the
user. The Step 1(b) is performed as a search for the metaparameters with the minimal
cross-validation error.

Clearly, it is not possible to go through all possible metaparameter values. Therefore
we create a grid of couples[γ, p] (wherep is a kernel parameter) using a suitable sampling
and evaluate the cross-validation error for each point of this grid. The point with the lowest
cross-validation error is picked.

To speed up the process, we proposed theadaptive grid searchalgorithm (see [8, Sec-
tion 4.5]). It starts with a coarse grid, i.e. sparse sampling, and then creates a finer grid
around the point with the minimum.

The disadvantage of this approach is the high number of evaluations of the Algo-
rithm 3.1 needed during the search. Nevertheless, these evaluations are completely in-
dependent, so they can be performed in parallel.

In addition, we proposed a more sophisticated search algorithm, calledgenetic param-
eter search(see [8, Section 4.6]). It applies genetic algorithms to search for the optimal
metaparameters. It can be simply extended to search also forthe kernel function type.

3.4 RBF Networks

An RBF network is a feed-forward neural network with one hidden layer of RBF units and
a linear output layer (see Fig. 4). By the RBF unit we mean a neuron with d real inputs
and one real output, realizing a radial basis functionϕ (such as the Gaussian function).
Instead of the most commonly used Euclidean norm, we use theweighted norm‖ · ‖C,
where‖x‖2C = (Cx)T (Cx) = xT CT Cx.

Definition 3.6 (RBF Network) AnRBF networkis a 3-layer feed-forward network with
the first layer consisting ofd input units, a hidden layer consisting ofh RBF units and
an output layer ofm linear units. Thus, the network computes the following function:
f = (f1, . . . , fs, . . . , fm) : R

d → R
m :

fs(x) =

h
∑

j=1

wjsϕ

(

‖ x− cj ‖Cj

bj

)

, (12)

wherewji ∈ R, ϕ is a radial basis function,cj ∈ R
d are calledcenters, b ∈ R are called

widths, andCj are the weighted norm matices.

13

Figure 4: An RBF network.

From the regularization framework point of view, the RBF network belongs to the
family of generalized regularization networks. The generalized regularization networks
are RNs with lower number of kernels than data points and alsoit is not necessary that the
kernels are uniform.

The goal of RBF network learning is to find the parameters (i.e. centersc, widthsb,
norm matricesC and weightsw) so that the network function approximates the function
given by the training set{(xi,yi) ∈ R

n×R
m}Ni=1

. There is a variety of algorithms for RBF
network learning, in our previous work we studied their behavior and possibilities of their
combinations [11, 12]. The three most significant approaches are thegradient learning,
three-step learning, andgenetic learning.

Input: Data set S = {xi,yi}
N
i=1 ⊆ R

d × R
m

Output: Network parameters:
ck, bk, Σ−1

k , wks, s = 1, · · · , m and k = 1, · · · , h

1. τ := 0
Setup randomly ck(0), bk(0), Σ−1

k (0), wks(0) and ∆ck(0), ∆bk(0),
∆Σ−1

k (0), ∆wks(0) for s = 1, · · · , m and k = 1, · · · , h

2. τ := τ + 1

3. Evaluate: s = 1, · · · , m and k = 1, · · · , h

∆ck(τ) = −ǫ ∂E
∂ck

+ α∆ck(τ − 1) ∆bk(τ) = −ǫ ∂E
∂bk

+ α∆bk(τ − 1)

∆Σ−1

k (τ) = −ǫ ∂E

∂Σ
−1

k

+ α∆Σ−1

k (τ − 1) ∆wks(τ) = −ǫ ∂E
∂wks

+ α∆wks(τ − 1),

ǫ ∈ (0, 1) is the learning rate, α ∈ 〈0, 1〉 is the momentum
coefficient.

4. Change the values of parameters: s = 1, · · · , m and k = 1, · · · , h

ck(τ) = ck(τ − 1) + ∆ck bk(τ) = bk(τ − 1) + ∆bk

Σ−1

k (τ) = Σ−1

k (τ − 1) + ∆Σ−1

k wks(τ) = wks(τ − 1) + ∆wks

5. Evaluate the error of the network.

6. If the stop criterion is not satisfied, go to 2.

Algorithm 3.2. Gradient learning.

14

Gradient Learning

The most straightforward approach to RBF network learning is based on the well-known
back-propagation algorithm for the multilayer perceptrons (MLPs). The back-propagation
learning is a non-linear gradient descent algorithm that modifies all network parameters
proportionally to the partial derivative of the training error. The trick is in clever ordering
of the parameters so that all partial derivatives can be computed consequently.

Since the RBF network has a structure formally similar to theMLP, it can be trained
by the modification of the back-propagation algorithm. Unlike the MLP, the RBF network
has always only one hidden layer, so evaluating its derivatives is rather simple.

The gradient learning algorithm is sketched in Algorithm 3.2. It uses a gradient descent
enhanced with a momentum term [13] for the stepwise parameter modifications. Since it
depends on the random initialization and may suffer from local minima, it is recommended
to try several different initializations and pick the best solution.

Three-Step Learning

The gradient learning described in the previous section unifies all parameters by treating
them in the same way. Thethree-step learning, on the contrary, takes advantage of the
well-defined meaning of RBF network parameters.

The learning process is divided into three consequent stepscorresponding to the three
distinct sets of network parameters. The first step consistsof determining the hidden unit
centers, in the second step the additional hidden unit parameters (widths, weighted norm
matrices) are estimated. During the third step the output weights are determined. The
algorithm is listed in Algorithm 3.3.

Input: Data set S = {xi,yi}
N
i=1 ⊆ R

d × R
m

Output: Network parameters:
ck, bk, Σ−1

k , wks, s = 1, · · · , m and k = 1, · · · , h

1. Determine the centers ci, i = 1, . . . , h using a vector quantization
method

2. Set up widths bi and matrices Σ−1
i for i = 1, . . . , h by minimization

of

E(b1 · · · bh; Σ−1
1 · · ·Σ

−1

h) =
1

2

h
∑

r=1

[

h
∑

s=1

ϕ (ξsr) ξ2
sr − P

]2

ξsr =
‖ cs − cr ‖Cr

br

, (13)

where P is the overlap parameter.

3. Compute the values for wjs for j = 1, . . . , h and s = 1, . . . , m by

W = P+Y, (14)

where the matrix P is a d × h matrix of outputs of RBF units and
P+ is its pseudoinverse, W is a d×m matrix of weights and Y

is a h×m matrix of the desired outputs yi.

Algorithm 3.3. Three-step learning.

15

Genetic Learning

The third learning method introduced here is based on the genetic algorithms (GAs). It
is sketched in Algorithm 3.4. Unlike the traditional GA approaches, we use a direct float
encoding for the RBF network parameters. An individual is formed by a sequence of
blocks, where each block contains a vector of one RBF unit parameter values.

A selection operator is used to choose individuals to a new population. Each individual
is associated with the value of the error function of the corresponding network. Selection
is a stochastic procedure, in which the individual probability of being chosen to the new
population is the higher, the smaller the error function of the corresponding network is.

The crossover operator composes a pair of new individuals combining parts of two old
individuals. The positive effect of the crossover is the creation of new solutions recombin-
ing the current individuals. Finally, the mutation operator represents small local random
changes of an individual.

The GAs represent a robust mechanism that usually does not suffer from the local
extremes problem. The price for this robustness is a bigger time complexity, especially for
problems with bigger individuals resulting in a huge searchspace.

Input: Data set S = {xi,yi}
N
i=1 ⊆ R

d × R
m

Output: Network parameters:
ck, bk, Σ−1

k , wks, s = 1, · · · , m and k = 1, · · · , h

1. Create random population of N individuals P0 = {I1, · · · , IN}.
i← 0

2. For each individual compute the error on the training set.

3. If the minimal error in the population is small enough,
stop.

4. Create an empty population Pi+1 and while the population has
less than N individuals repeat:

Selection: Select two individuals from Pi.
I1 ← selection(Pi)
I2 ← selection(Pi)

Crossover: with probability pcross:
(I1, I2)← crossover(I1 , I2)

Mutation: with probability pmutate:
Ik ← mutate(Ik), k = 1, 2

Insert: insert I1, I2 into Pi+1

5. Go to 2.

Algorithm 3.4. Genetic learning.

Hybrid Methods

The three described algorithms represent three main branches of the wide range of RBF
learning algorithms. Since these learning algorithms havebeen studied quite well, we
believe that the main potential for the further improvements lies in clever combinations
rather than further modifications of the available algorithms. Hybrid approaches based on

16

combinations of the well-known algorithms may achieve a synergy effect and thus over-
-perform the single algorithms.

We proposed two hybrid approaches — thehybrid genetic learningand thefour-step
learning algorithm.

The hybrid genetic learning replaces both the first and second step of the three-step
learning by the GAs. The third step setting the output weights is performed by a linear
optimization technique, see Algorithm 3.5 for the sketch ofthe error evaluation procedure.
There are good reasons for such combinations. The first two steps are based on heuristics
so the use of the GAs is appropriate for them. On the other hand, the determination of
output weights is a linear optimization task, for which manyefficient algorithms exist.

Input: Individual I, data set T

Output: Error associated with I

1. Create the RBF network f represented by the individual I

2. Run the least squares method to set the weights of f

3. Compute the error of network f on the data set T

Algorithm 3.5. Error evaluation in hybrid genetic learning.

Input: Data set S = {xi,yi}
N
i=1 ⊆ R

d × R
m

Output: Network parameters:
ck, bk, Σ−1

k , wks, s = 1, · · · , m and k = 1, · · · , h

1. Run the Algorithm 3.3.

2. Run the Algorithm 3.2, but instead of the random
initialization use the result of step 1.

Algorithm 3.6. Four-step learning.

The four-step learning — Algorithm 3.6 — is based on the three-step learning followed
by the gradient learning. The result of the three-step learning is used as an initial value for
the gradient learning that further tunes the values of all parameters.

4 Experimental Results

The main goals of our experiments can be summarized as following:

1. demonstrate the behavior of regularization networks;

2. study the role of regularization parameter and kernel function;

3. compare different types of kernel functions;

4. demonstrate the behavior of our product kernels and sum kernels and compare them
to the classical solutions;

17

5. demonstrate the behavior of RBF networks as the representatives of generalized reg-
ularization networks;

6. compare the regularization networks and RBF networks in order to find out the dif-
ference between an “exact solution” and an “approximate solution”.

In order to achieve high comparability of our results, we have chosen frequently used
tasks for the experiments with learning algorithms. As benchmark tasks we use the data
sets from the PROBEN1 repository, the artificial tasktwo spiralsand the well-known image
of Lenna. In addition, the task of flow rate prediction was picked to represent real-life
problems.

In all our experiments we work with distinct data sets for training and testing, referred
to as thetraining setand thetest set. The learning algorithm is run on the training set,
including the possible cross-validation. The test set is never used during the learning phase,
it is only used for the evaluation of the resulting network error.

For the data set{xi,yi}
N
i=1
⊂ R

d × R
m and the network representing a functionf , the

normalized error is computed as follows:

E = 100
1

Nm

N
∑

i=1

||yi − f(xi)||
2, (15)

where|| · || denotes the Euclidean norm. We use the notationEtrain andEtest for the error
computed over the training set and test set, respectively.

The experiments have been performed using implementation in system Bang [2], the
standard numerical library LAPACK [9] was used to solve linear least square problems
(step 2 in Algorithm 3.1). Most experiments were run on the computer clustersLomond[10],
JoyceandBlade. The former cluster is the Sun cluster available in Edinburgh Parallel Com-
puting Centre, University of Edinburgh. The latter two are clusters of workstations with
the Linux operating system at the Institute of Computer Science, Academy of Sciences of
the Czech Republic. Time requirements listed in following sections refer to an Intel Xeon
2.80 GHz processor.

4.1 Regularization Networks

We demonstrated the role of metaparameters on the tasks fromthe PROBEN1 repository
and on an approximation of the Lenna image — see [8, Subsection 6.3.1] and Figure 5.
Both the experiments show that the choice of the regularization parameter and the kernel
function is crucial for the successful learning, one cannotchoose arbitrary values and a
search for optimal metaparameters is necessary. In addition, a wrong choice of the kernel
function cannot be cured by any change of the regularizationparameter, and might result
in a completely useless solution.

The two methods for the metaparameters setup were tested on the tasks from the
PROBEN1 repository — see [8, Subsection 6.3.2]. It was shown that the simpler method
— adaptive grid search algorithm — is sufficient for this tasks. The more sophisticated
genetic parameter search suffers from high time requirements.

Several common kernel functions were compared on the collection of benchmarks
PROBEN1 — see [8, Subsection 6.3.3] and Figure 6. In most cases, the lowest error was

18

0.5 1.0 2.0
0.0

10−4

10−3

Figure 5: Images generated by the regularization network learned on the Lenna image
(50×50 pixels) using Gaussian kernels with the widths from 0.5 to2.0 and the regulariza-
tion parameters from 0.0 to 0.001.

achieved by the RN with the inverse multi-quadratic kernel function. For many cases, the
Gaussian function achieves the second lowest test error. Both the functions are functions
with local response, i.e. they give a relevant output only inthe local area around its center.
The results justify usage of local functions, including theGaussian function, and show that
the commonly used Gaussian function is a good first choice.

Our product and sum kernels were tested on the tasks from PROBEN1 — see [8, Sub-
section 6.3.4]. The SKRN achieved the lowest error on 23 tasks, the RN on 13 tasks, and
the PKRN on two tasks. However, the errors of all the three networks are comparable. In
addition, the SKRN achieved very low test errors on several data sets without the loss of
generalization ability. Table 1 shows the the results on a part of PROBEN1 tasks.

Also theDivide et Imperaapproach was demonstrated — see [8, Subseciton 6.3.6]. It
represents an alternative for the bigger data sets that cannot be processed by the simple RN
learning algorithm. Dividing into two or three subtasks brings significant reduction of time
complexity, while it only slightly increases the result errors.

4.2 RBF Networks

The three studied algorithms for RBF network learning, as well as our hybrid methods,
were tested on tasks selected from the PROBEN1 repository.

Table 2 summarizes the results from two experiments with various RBF network learn-
ing algorithms.

First, consider the main three approaches, the gradient learning, three-step learning, and

19

Figure 6: Comparison of overall training error (left) and test error (right) for different
kernels.

RN SKRN PKRN
Task Etrain Etest Etrain Etest Etrain Etest

cancer1 2.28 1.75 0.00 1.77 2.68 1.81
cancer2 1.86 3.01 0.00 2.96 2.07 3.61
cancer3 2.11 2.79 0.00 2.73 2.28 2.81
card1 8.75 10.01 8.81 10.03 8.90 10.05
card2 7.55 12.53 0.00 12.54 8.11 12.55
card3 6.52 12.35 6.5512.32 7.01 12.45
flare1 0.36 0.55 0.35 0.54 0.36 0.54
flare2 0.42 0.28 0.44 0.26 0.42 0.28
flare3 0.38 0.35 0.42 0.33 0.40 0.35
glass1 3.37 6.99 2.35 6.15 2.64 7.31
glass2 4.32 7.93 1.09 6.97 2.55 7.46
glass3 3.96 7.25 3.04 6.29 3.31 7.26

Table 1: Comparisons of errors on training and test set for the RN with Gaussian kernels,
the SKRN, and the PKRN.

genetic learning. The gradient learning is able to achieve better results in terms of error
measured on both the training and test set. The three-step learning is the fastest method,
due to the unsupervised phase to set the centers, and rather fast linear optimization to set the
output weights. The errors achieved are still competitive.The genetic learning is in general
slower about an order of magnitude. While most of the measured running times were in
the order of seconds and minutes, it takes minutes to hours for the GA to converge to the
desired values. The results are still not as good as with the gradient learning. Nevertheless,
the GA — as a general learning procedure — has its potential inlearning the networks with
heterogeneous units; and it is suitable for parallelization.

Second, the table includes the two hybrid methods. The four-step learning further im-
proves the results obtained by the three-step learning. OnCANCER it achieves comparable
results with the gradient learning. The hybrid genetic learning achieves very good results,
slightly better than the gradient learning. However, it suffers from high time requirements.

20

Cancer (5 units) Glass (15 units)
Used learning Etrain Etest Time Etrain Etest Time

method h:m:s m:s
Gradient 2.19 2.76 00:00:28 3.25 7.13 13:41

Three-step 3.67 3.57 00:00:01 7.50 9.90 00:17
Four-step 2.20 2.55 00:00:36 7.04 9.55 03:32
Genetic 4.69 4.60 07:24:16 – – –

Hybrid genetic 2.09 2.75 02:30:31 – – –

Table 2: Comparison of learning methods on the cancer data set for network with 5 hidden
units and on the glass data set for the network with 15 hidden units. Average training and
test error.

RN RBF MLP
Etest # units Etest # units Etest arch.

mean std mean std
cancer1 1.76 525 2.11 0.01 15 1.60 0.41 4+2
cancer2 3.01 525 3.12 0.07 15 3.40 0.33 8+4
cancer3 2.80 525 3.19 0.13 15 2.57 0.24 16+8
card1 10.00 518 10.16 0.56 10 10.53 0.57 32+0
card2 12.53 518 12.81 0.01 10 15.47 0.75 24+0
card3 12.32 518 12.09 0.00 10 13.03 0.50 16+8
flare1 0.54 800 0.37 0.00 10 0.74 0.80 32+0
flare2 0.27 800 0.31 0.00 10 0.41 0.47 32+0
flare3 0.34 800 0.38 0.00 10 0.37 0.01 24+0
glass1 6.95 161 6.76 0.02 20 9.75 0.41 16+8
glass2 7.91 161 7.96 0.00 20 10.27 0.40 16+8
glass3 7.33 161 8.06 0.97 20 10.91 0.48 16+8

Table 3: Comparison ofEtest of RN, RBF, and MLP. For RBF and MLP the mean and
standard deviation from 10 repetitions of the runs are listed (RN learning is deterministic).
The numbers of neurons in the first and second hidden layer arelisted for the MLP.

4.3 Regularization Networks vs. RBF Networks

The main aim of the experimental part of this work was to assess the relative performance
of the RNs and RBF networks. The PROBEN1 repository was used to perform the compar-
ison.

The regularization networks have been trained with the RN learning algorithm (Al-
gorithm 3.1) with the metaparameters setup done by the adaptive grid search. The RBF
networks have been trained by the gradient learning.

Table 3 compares the results obtained by the RNs and RBF networks by means of the
test error. In addition, the results are related to the performance of the MLP.

In terms of the test error, the regularization networks achieved the best results on 23
tasks; the RBF networks on 8 tasks (see Table 3 for a part of theresults). Both the training
and testing errors are quite comparable, the difference is in average about 6%. In addition,
the RBF networks need a 10 to 50 times lower number of hidden units to obtain comparable

21

approximation and generalization performance. The time requirements needed to achieve
the listed errors varied from 1 to 30 minutes depending on thesize of the particular data
set, and were similar for both the regularization networks and RBF networks.

The regularization networks, in their exact form, are therefore suitable rather for the
tasks with smaller data sets, where is a high danger of over-fitting. For the tasks possessing
large data amounts, “cheaper” alternatives represented bythe generalized regularization
networks, such as the RBF networks, are more competent.

To show that the RNs and RBF networks represent competitive learning methods not
only to the MLP, but also to modern learning algorithms, we picked the comparison to the
support vector machine (SVM). The comparison was made on theclassification tasksCAN-
CER andGLASS. The SVM was trained using the available library [3], which represents a
current standard of SVM learning.

Table 4 compares the RN, RBF network, and SVM in terms of classification accuracy
on the test set. The results obtained by the three methods arecomparable, the differences
in accuracy are not high. We see that both the regularizationnetworks and RBF networks
are vital alternatives to the SVM.

RN RBF SVM
cancer1 98.85% 98.74% 97.12%
cancer2 95.40% 96.84% 96.55%
cancer3 95.98% 96.95% 95.97%
glass1 75.00% 72.45% 73.58%
glass2 73.07% 64.53% 66.03%
glass3 76.92% 72.26%79.24%

Table 4: Comparison of classification ac-
curacy of RN, RBF and support vector
machines (SVM).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400

Ploucnice

prediction
real data

Figure 7: Prediction of flow rate by the regu-
larization network.

4.4 Rainfall-Runoff Modeling

Both the RBF network and the RN were applied to rainfall-runoff modeling, i.e. model-
ing of river-flow rates based on daily flow and rainfall values. The research is realized
in cooperation with University of J. E. Purkyně and the Czech Hydrometeorological In-
stitute inÚstı́ nad Labem. The Ploučnice River in North Bohemia has been chosen as an
experimental catchment to calibrate and evaluate the models.

See Figure 7 for an example of flow rate prediction by the RN. Ithas been shown that
both the RBF networks and regularization networks can be successfully used for creating
small rainfall-runoff models. These models can be built from historical time series data,
without knowing anything about the physics of the process.

22

5 Conclusion

The main goal of our work was to study the possible ways of learning based on the regular-
ization theory. Learning algorithms, including the RN learning algorithm derived directly
from the theory, and various learning algorithms for RBF networks were investigated.

The RN learning algorithm (Algorithm 3.1) represents an incomplete tool for learning,
since it requires a nontrivial setup of metaparameters. It was shown in the experiments that
these metaparameters, the regularization parameter and the kernel function, significantly
influence the quality of the solution (Subsection 4.1). Therefore a framework above the
basic RN learning algorithm was created, including the estimation of the metaparameters.
Two techniques for this setup were introduced — the adaptivegrid search and the genetic
parameter search (Subsection 3.3).

Since the choice of the kernel function plays a crucial role in learning, we decided that
it deserves more attention. It resulted in proposing the composite types of kernel functions
— a product kernel and sum kernel (Subsection 3.2). In the experiments (Subsection 4.1)
we showed that they are a vital alternative to the classical (i.e. simple) kernels. They are
especially useful on tasks that are heterogenous, either varying in attributes or different
parts of the input space. Good behavior was observed while experimenting with the sum
kernels. The setup phase adjusted the widths of the two Gaussians addends, so that one
Gaussian was very narrow and the other one wide. Such a kernelfunction obtained good
results even without the regularization term. Almost zero training errors were achieved,
while the generalization property was preserved. Such kernel functions may be very useful
for tasks with a low level of noise. Inspired by the concept ofrestricted sum kernels, we
proposed the “Divide et Impera” approach. It is a simple procedure that splits the tasks
into several disjoint subtasks. The learning algorithm is applied on each of these subtasks,
possibly in parallel. The solution is then obtained as a sum of networks obtained. Such an
approach does not only save the space, but also significantlyreduces the time requirements.

Despite the good theoretical background, the regularization network may be not feasi-
ble in some situations. Particularly, the solution is too large for tasks with huge data sets.
Therefore the notion of generalized regularization networks was introduced. We focused
on one concrete subclass — RBF networks. The RBF networks benefit from a wide range
of learning possibilities. Three main approaches were described (Subsection 3.4) and com-
pared in the experiments (Subsection 4.2). The best results, in terms of the training and test
error, were obtained by the gradient learning. The three-step learning, on the other hand,
represented the fastest approach, while the resulting errors were still competitive. The ge-
netic learning was significantly slower, and still it does not outperform the other methods.
Inspired by these results, the two hybrid approaches were proposed — the four-step learn-
ing (Algorithm 3.6) and the hybrid genetic learning (Algorithm 3.5). Their behavior was
demonstrated experimentally (Subsection 4.2) and it was shown that they, in some aspects,
improve the original algorithms. The four-step learning adds a gradient phase after the
three-step learning. The first part formed by the three-steplearning saves time, while the
second gradient part further improves the solution. The hybrid genetic learning represents
a combination of the genetic learning and the third part of the three-step learning. Only
the hidden layer is estimated by the GAs, the output weights are found by linear optimiza-
tion. Such an approach achieved very good results, outperforming the other approaches;
however, it suffers from very high time requirements.

23

When studying the learning from the point of view of both the regularization networks
and RBF networks, the comparison of both the approaches is inevitable. In our experi-
ments, the regularization networks and RBF networks achieved comparable results. So we
claim that the RBF networks represent a cheaper alternativeto the regularization networks.
Finally, we presented an application of the studied algorithms to a real-life problem. Both
the regularization networks and RBF networks were successfully applied on the prediction
of the river-flow rate (Subsection 4.4).

References

[1] N. Aronszajn. Theory of reproducing kernels.Transactions of the AMS, 68:337–404, 1950.

[2] Project Bang,http://bang.sf.net/ .

[3] Ch. Chih-Chung and L. Chi-Jen. Libsvm: a library for support vector machines, 2002.
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/ .

[4] F. Girosi. An equivalence between sparse approximationand support vector machines. Tech-
nical report, Massachutesetts Institute of Technology, 1997. A.I. Memo No. 1606.

[5] F. Girosi, M. Jones, and T. Poggio. Regularization theory and Neural Networks architectures.
Neural Computation, 2:219–269, 7 1995.

[6] S. Haykin. Neural Networks: a comprehensive foundation. Tom Robins, 2nd edition, 1999.

[7] V. Kůrková. Learning from data as an inverse problem. In Antoch J., editor,Computational
Statistics, pages 1377–1384. Heidelberg, Physica Verlag, 2004.

[8] P. Kudová.Learning with regularization networks. PhD thesis, MFF UK, 2006.

[9] LAPACK. Linear algebra package,
http://www.netlib.org/lapack/ .

[10] Lomond machine. Introduction to the university of edinburgh HPC service,
http://www.epcc.ed.ac.uk/computing/services/sun/
documents/hpc-intro/hpc_introdoc.pdf .

[11] R. Neruda and P. Kudová. Hybrid learning of RBF networks. Neural Network World,
12(6):573–585, 2002.

[12] R. Neruda and P. Kudová. Learning methods for radial basis functions networks.Future
Generation Computer Systems, 21:1131–1142, 2005.

[13] D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning by back propagation.
Technical Report CMU-CS-86-126, Carnegie-Mellon University, 1986.

[14] T. Poggio and S. Smale. The mathematics of learning: Dealing with data.Notices of the AMS,
50:536–544, 5 2003.

[15] B. Schoelkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, Mas-
sachusetts, 2002.

[16] T. Šidlofová. Existence and uniqueness of minimization problems with fourier based stabiliz-
ers. InProceedings of Compstat, Prague, 2004.

24

