Faculty of Mathematics and Physics, Charles UniversitggBe

Institute of Computer Science, Academy of Sciences of trecl@Republic

Learning with Regularization Networks
Petra Kudo®

PhD Thesis Summary

I-1 Theoretical Computer Science

Prague 2006

Matematicko-fyzikalni fakulta, Univerzita Karlova, &va

Ustav informatiky, Akademie véGeske Republiky

Learning with Regularization Networks
Petra Kudo®

Autorefeat dizert&ni prace

-1 Teoreticka informatika

Praha, 2006

DizertaCni prace byla vypracovana v ramci doktohskétudia uchazete na Matematicko-
-fyzikalni fakulté Univerzity Karlovy v Praze (MFF UK) ketech 2001-2006.

UchazecC RNDr. Petra Kudova
Skolitel Mgr. Roman Neruda, CSc.

Skolici pracovisté Ustav informatiky
Akademie védCeské Republiky
Pod Vodarenskou vézi 2
182 07 Praha 8

Oponenti

Pfedseda OR I-1 Prof. RNDr. P&tépanek, DrSc..

Autoreferat byl rozeslan dne

Obhajoba dizertacni prace se kona dne A/ I hodin v budové MFF UK,
................................... S dizertacnigirge mozno se seznamit na studijnim oddéleni dok-

torského studia MFF UK, Ke Karlovu 3, Praha 2.

Contents

1 Introduction 6

2 Goals and Objectives 7

3 Methods and algorithms 8
3.1 Regularization Networks 8
3.2 Productand SumKernels a1
3.3 Autonomous Learning Framework 12
3.4 RBFNetworks e 13

4 Experimental Results 17
4.1 Regularization Networks L L 18
42 RBFNetworks 19
4.3 Regularization Networks vs. RBF Networks 21
4.4 Rainfall-Runoff Modeling 22

5 Conclusion 23

1 Introduction

In the last few years, machine learning has witnessed aeaserof interest, which is a con-
sequence of rapid development of the information industdyits need for an “intelligent”
data analysis.

A learning problem can be described as finding a general haleeixplains data given
only by a sample of limited size. In addition, collected datay contain measurement
errors or noise. Efficient algorithms are required to filtet the noise and capture the true
underlying trend.

In this thesis we will deal witlsupervised learningin such a case we are given pairs
of input objects (typically vectors), and desired outpUike output can be of continuous
value, or it can predict a class label of the input object. tHs& of supervised learning is to
predict the output value for any valid input object aftering\seen a number of examples,
i.e. input-output pairs. To achieve this, a “reasonableaiggalization from the presented
data to unseen situations is needed. Such a problem appeavdade range of application
areas, covering various approximation, classificatiod,@ediction tasks.

Artificial neural network§ANNS) represent one of the approaches that are applicable
to the learning problem. Though their original motivatioasto model neural systems of
living organisms, neural networks are successfully usediah diverse fields as modeling,
time series analysis, pattern recognition, signal prangsand control.

The primary property of ANNSs is their ability to learn frometin environment and to
improve their performance through learning. There is a gaquply of network archi-
tectures and corresponding supervised learning algositfeng. [6]). The model, that is,
a particular type of neural network, is usually chosen inaaxde and its parameters are
tuned during learning so as to fit the given data. The diffieslthat might occur during
the learning process include slow convergence, gettingkstulocal optima,over-fitting
etc.

Over-fitting typically occurs in cases where learning wagqrened for too long or
where training examples are rare. Then the network may kamnspecific random fea-
tures of the training data that have completely no relatmthe underlying function. In
this process the performance on the training examplegstitases while the performance
on unseen data becomes worse.

The problem of over-fitting can be cured by regularizatiogotty. The regularization
theory is a rigorous approach that formulates the learnmglpm as a function approx-
imation problem. Given a set of examples obtained by randamp$ing of some real
function, possibly in the presence of noise, the goal ofrlieay is to find this function or
its estimate. Since this problem is generally ill-posednsa@ priori knowledge about the
function should be added. Usually it is assumed that thetimmdés smooth where the
smoothness is understood in a very general sense. Ofteraitsiibat two similar inputs
correspond to two similar outputs and/or that the functioesinot oscillate too much. The
solution is found by minimizing the functional containingth the data and stabilizer, i.e.
the term representing our a priori knowledge.

It was shown that for a wide class of stabilizers the solutiam be expressed in a form
of feed-forward neural network with one hidden layer, ahléeregularization network
Different types of stabilizers lead to different types ofiation functions calleckernel
functionsin the hidden layer.

The regularization network as a solution derived from tlgilarization theory has as
many units in the hidden layer as the number of training exas\was. Such a solution is
unfeasible for bigger data sets, therefore the claggotralized regularization networks
was introduced.

Radial basis function network®BF networks) represent a subclass of generalized
regularization networks. They belong among more recergsygd neural networks. In
contrast to classical models (multilayer perceptrons),dite RBF network is a network
with local units, the proposal of which was motivated by prese of many local response
units in human brain. Other motivation came from numericathmmatics, where radial
basis functions were first introduced in the solution of maaltivariate problems. It was
shown that RBF networks possess the universal approximptaperty.

Based on a good theoretical background, the classes ofaregatlon networks and
RBF networks represent promising approaches to learnidglaeerve further investiga-
tions. Though the theoretical knowledge is very benefidialoes not cover all aspects of
their practical applicability. Experimental study of cesponding learning algorithms may
justify the theoretical results and give an idea of real clexipy and efficiency of the algo-
rithms. Both good theoretical and good empirical knowledgethe best starting point for
successful applications, further improvements of thetejsalgorithms, or creating new
learning approaches.

2 Goals and Objectives

The main goal of the work is to study and develop learningriigms for networks based
on the regularization theory. In particular, learning ploidisies for a family of regulariza-
tion networks and RBF networks should be studied. The availapproaches, including
gradient techniques, genetic algorithms, and linear apéitions methods, should be in-
vestigated and potential improvements suggested. Baséueaobtained theoretical and
experimental results, new algorithms should be proposessiply as hybrid methods com-
bining the existing algorithms. All the algorithms shouklimplemented and their behav-
ior studied experimentally.

The goal of the work will be achieved by means of the followaimgectives:

e Study of regularization network learning and its properties

The regularization theory leads to a solution of the regzdak learning problem in
the form of regularization network having as many hiddertsuas the number of
data points is. Such a solution leads to quite a straighdoimviearning algorithm,
since the centers of hidden units are fixed to the given datapand the output
weights are estimated as a solution of linear optimizatiablem. Despite its seem-
ing simplicity, problems may occur due to round-off erransmerical unstability
etc. Therefore the real applicability and behavior of tiggathm should be studied.

In addition, the regularization network learning algaomitlrequires knowledge of
the regularization parameter and kernel function. To sehepe parameters, good
knowledge of the role of regularization parameter and Kdumetion in the learning

7

3

is needed. The impact of regularization parameter and kkmnetion choice on the
performance of the learning algorithm should be studiedddferent types of kernel
functions compared.

Design of autonomous learning algorithm for regularization network

The regularization parameter and kernel function are petrars that represent our
prior knowledge of the given problem. In fact, they are a péthe learning problem
definition, and therefore assumed to be known in the theogwaeer, this is not
always true in practice. In most applications such knowdedghot available and a
desired learning algorithm should be able to estimate tpasg@meters itself. The
framework above the basic learning algorithm should betedet establish a fully
autonomous learning procedure.

Study and design of learning algorithms for generalized reglarization net-
works

A regularization network as an exact solution of the regedat learning problem
has as many kernel functions as the number of data pointshis fact makes its
learning quite straightforward and simple, but limits itagtical applicability. Since
such a solution is unfeasible for larger data sets, gezedhtegularization networks
were introduced.

Different learning approaches for the generalized regadtion networks should be
studied, with focus on RBF networks. The RBF networks alygamssess a wide
range of learning possibilities, including gradient teicjues, combinations of clus-
tering and linear optimization, and genetic algorithmse fmain concern of further
research is to create hybrid approaches.

Performance comparison of regularization network and RBF retwork

Unlike the regularization network, the RBF network typlgdias a much smaller
number of basis functions than the size of the data set is. bk functions are
usually distributed using various heuristics, so that #sulting network may be far
from the optimal solution. On the other hand, the solutionssally much cheaper
in terms of space complexity.

The comparison of learning performance of regularizatietworks and RBF net-

works might throw new light on the difference between thed&X solution and the

“approximate” solution. Optimally, if this difference igasonable, the RBF net-
works might represent a cheaper alternative to the regaléwn networks.

Methods and algorithms

3.1 Regularization Networks

Regularization networks [5, 14] belong to a family of fe@avwiard neural networks with
one hidden layer. They are based on the regularizationyhebere the problem of super-
vised learning is handled as an function approximation lerab

Definition 3.1 (Learning from Examples) We are given a set of examplesgpair
{(xi,y;) € RT x R}, 1)

that was obtained by random sampling of a real functiggenerally in presence of noise.
The problem of recovering the functignfrom data, or finding the best estimate of it, is
calledlearning from example®r supervised learnirjg The set of input-output pairs (1)

is called thetraining set

The problem is generally ill-posed [14, 7]. We are interdstaly in such solutions
that possess thgeneralization abilityi.e. functions that give relevant outputs also for the
data not included in the training set. It is usually assunied the function issmooth
two similar inputs correspond to two similar outputs, or filnection does not oscillate too
much.

Based on this assumption, the solution is stabilized by sedran auxiliary non-
negative functional that embeds prior information aboetgblution. Then the solution is
sought as a minimum of the functional:

N
Hf] =Y (f(x:) — %:)* + @[], 2)

i=1
where® is called astabilizeror regularization termand~ > 0 is the regularization pa-
rametercontrolling the trade-off between closeness to the datadagdee of satisfaction
of the desired property of the solution.

The functional (2) was shown to have a unique solution for@evelass of stabilizers.

The solution has a form:

N
fx) = ZwiK(Xa X;), 3)
i=1

where N is the number of training samples, € R? are the training samplesy :
R? x RY — R is a positive semi-definite function, calledkarnel functionw; € R are
coefficients, calleaveights Different stabilizers lead to different types of kernehdtions.
In fact, the choice of kernel function is equivalent to th@ick of the stabilizer, i.e. to
the choice of our prior assumption. Solution derivation barfound in [5, 4, 14, 16], and
others.

The regularized learning problem solution (3) can be represl by a feed-forward
neural network with one hidden layer. Such a network is dadleegularization network
Its learning algorithm is sketched in Algorithm 3.1.

Definition 3.2 (Regularization Network) Aegularization networks a feed-forward neu-
ral network with one hidden layer of kernel units and onedineutput unit. It represents
a function

N
f(X) = Z wiK(Xiv ci)v (4)
i=1

where N is the number of hidden neurons (i.e. the number of basiditums), w; € R,
c; € RYx;, € RY K : RT — R is a chosen kernel (basis) function. To coefficients of the
linear combinationu; we refer as taveights the vectors:; are calledcenters

Input: Data set {x;,v:}Y; CRYxR
Output: Regularization Network

1. Set the centers of kernels:
Vi € {17...,N}2Ci — X;

2. Compute the values of weights
Wiy .., WN:

(K+1Dw =y, (5)

where 1T is the identity matrix,
K; = K(x;,%x;), and 'y = (y1,...,Y~n),
v > 0.

Figure 1: Regularization network Algorithm 3.1. The RN learning algorithm.
scheme.

3.2 Product and Sum Kernels

The kernel function used in a particular application of tegaation network is typically
supposed to be given in advance, for instance chosen by éneAsa kernel function we
can use any symmetric, positive semi-definite functionsfiubg a conditionally positive
semi-definite function.

Since different kernel functions correspond to differenbipassumptions, the choice
of kernel function always depends on the particular taskwél@r, we often have to deal
with heterogeneous data, in the sense that different at&sbdiffer in type or quality, or
that the character of data differs in different parts of tifgut space. Then for the different
parts of the data different kernel functions are suitable.

In such situations, kernel functions created as a comloinafisimpler kernel functions
might better reflect the character of the data. We can bemefit the fact that the set of
positive semi-definite functions is closed with respectaweesal operations, such as sum,
product, difference, limits, etc. [1, 15]. Based on the atiens of product and sum we
introduce two types of composite kernel units, namegbyaduct kernebnd asum kernel

Product Kernel

Definition 3.3 (Product Kernel) Lef<, . .., K} be kernel functions defined én, . . .,
(% C R%), respectively. Lef2 = ©; x Qy x --- x Q. The kernel functiok” defined on
Q) that satisfies

K(X17X27 s Xe Y1, Y2, 7yk’) = Kl(xlaY1)K2(X2>YZ) o Kk(xkvyk’)v (6)

wherex;,y; € €;, is called aproduct kernel

A computational unit that realizes the product kernel fiorcwill be called aproduct
unit (see Figure 2). A regularization network with the hiddenrelafjormed by product
kernels is called aroduct kernel regularization netwo(lPKRN).

Product kernels might be useful if a priori knowledge of daiggests looking for the
solution as a member of a product of two or more function spaddis is typically in a

10

X11 Xig1 X1 Xod2 =---- X1 Xidk

Figure 2: A unit realizing a product kernel. Figure 3: A unit realizing a sum kernel.

situation when the individual attributes, or groups ofihtttes, differ in type or quality.
In such situations, we can split the attributes into growgsch means that instead of one

input vectorx € R? we will deal withk input vectorsx; € R%, fori = 1,..., k. Then the
training set has the form
{(x4, x5, ..., xb y') € RE x R®2 x ... x R% x R}Y,. (7)

Using a product kernel on such training data enables us tepsdifferenk; separately.

Sum Kernel

Definition 3.4 (Sum Kernel) The kernel functidi : €2 x 2 — R that can be obtained as
a sum of two or more other kernel functiofs, . . ., K},

k
i=1
wherex,y € (), is called asum kernel

A computational unit realizing the sum kernel is shown inUfegg3. We call it asum
unit. A regularization network that has sum units in its hidderetave call asum kernel
regularization networKSKRN).

The sum kernel is intended for use in cases when prior kn@eled analysis of data
suggests looking for a solution as a sum of two or more funstié-or example, when the
data is generated from a function influenced by two sourcefifigrent frequencies, we
can use a kernel obtained as a sum of two parts corresporamgtt and low frequencies.

Restricted Sum Kernel

Approximation of data with different distributions in déffent parts of the input space may
be done with the help of gestricted sum kernel

Definition 3.5 (Restricted Sum Kernel) Léf : ©2 x 2 — R be a kernel function and let
A be a subset d2. Then the kernek’, defined by

K(x,y) If x,y €4,
0 otherwise;

KA(Xv Y) = { (9)

is called arestricted sum kernel

11

In situations when different kernels are suitable for défe parts of the input space, we
can divide the input space into several subsits . ., A, and choose different kernels;
for eachA,.

Then we obtain the kernel as a sum of kern€]gestricted to the corresponding sets:

Ki(x,y) ifx,yec A,

) (20)
0 otherwise.

K(X>Y):{

Divide et Impera

The second application of restricted sum kernels is a davivaf the Divide et Impera
approach that represents a technique for dealing with bidgf@ sets.
Note that an SKRN with restricted sum kernels representactifan

f(x) = Z wi K1 (x,%;) + ...+ Z w; K (x,%;), (11)

xX; €A x; EAL

which can be also interpreted as a sunkakgularization networks, each using its own
kernel functionK,s = 1,..., k.

For the case of disjoint sets;, always exactly one member of (11) is nonzero. Thus for
an inputx only the regularization network corresponding to theAgtfor whichx € A,
has the nonzero output. Conversely, to determine the vélug only the training samples
{(xj,y;)|x; € Ay} are needed.

So the partitioning of the input space defines the partitigrof the training set into
k subsets. The weights of the SKRN with restricted sum kercatsbe determined by
solving k smaller linear systems instead of a big one.

Replacing one linear system kysmaller ones reduces both the space and time require-
ments of learning. The drawback of this approach is a skdsitiger approximation error
that is caused by the lack of information on the borders oirtpbat space areas, i.e. sets
Ai.

3.3 Autonomous Learning Framework

The RN learning algorithm (Algorithm 3.1) is based on theuagstion that the regulariza-
tion parametety and the kernel functio are given in advance. We call these parameters
metaparameter® distinguish them from the parameters of the networkfi{gel weights,
centers).

Ideally, the metaparameters are selected by the user bastxtio knowledge of the
given problem. Since this is not possible or very difficult@jority of practical applica-
tions, we need to build a framework above this algorithm t&enticapable of finding not
only the network parameters but also optimal metaparaseter

We propose the following procedure:

1. Setup of the algorithm

(&) Choice of a type of the kernel function: By the type we mtwet we decide
whether to use a Gaussian, multi-quadratic, sum, produeinother kernel

12

function (For sum and product kernels it is necessary torahete the type for
all kernels used in the sum and product respectively.).

(b) Choice of the additional parameters of the kernel fumctiSome kernels have
additional parameters that have to be estimated (such asiditie in the case
of the Gaussian function).

(c) Choice of the regularization parameter

2. Running the RN learning algorithm (Algorithm 3.1).

Typically, we suppose that the type of kernel function — Stég) — is given by the
user. The Step 1(b) is performed as a search for the metapamenwith the minimal
cross-validation error.

Clearly, it is not possible to go through all possible metapseter values. Therefore
we create a grid of couplés, p| (Wherep is a kernel parameter) using a suitable sampling
and evaluate the cross-validation error for each pointiefghd. The point with the lowest
cross-validation error is picked.

To speed up the process, we proposeckitieptive grid searclalgorithm (see [8, Sec-
tion 4.5]). It starts with a coarse grid, i.e. sparse sangpland then creates a finer grid
around the point with the minimum.

The disadvantage of this approach is the high number of atiahs of the Algo-
rithm 3.1 needed during the search. Nevertheless, theseatioas are completely in-
dependent, so they can be performed in parallel.

In addition, we proposed a more sophisticated search #hgoyrcalledgenetic param-
eter searchsee [8, Section 4.6]). It applies genetic algorithms tadeéor the optimal
metaparameters. It can be simply extended to search alsoefdernel function type.

3.4 RBF Networks

An RBF network is a feed-forward neural network with one leiddayer of RBF units and
a linear output layer (see Fig. 4). By the RBF unit we mean aarewith d real inputs
and one real output, realizing a radial basis functiofsuch as the Gaussian function).
Instead of the most commonly used Euclidean norm, we usevétighted norm| - ||¢,
where||x||Z2 = (Cx)T(Cx) = xTCTCx.

Definition 3.6 (RBF Network) ArRBF networkis a 3-layer feed-forward network with

the first layer consisting of input units, a hidden layer consisting 6fRBF units and
an output layer ofm linear units. Thus, the network computes the following fiomc

f=(f1, ., forooos fn) RT—R™:

h J— .
fs(x) = ijSQO (“A)) (12)
j=1 J

wherew;; € R, ¢ is a radial basis functiong; € R are calledcentersb € R are called
widths andC; are the weighted norm matices.

13

Figure 4: An RBF network.

From the regularization framework point of view, the RBFvmatk belongs to the
family of generalized regularization networksl'he generalized regularization networks
are RNs with lower number of kernels than data points andibismot necessary that the
kernels are uniform.

The goal of RBF network learning is to find the parameters @entersc, widthsb,
norm matrices” and weightsw) so that the network function approximates the function
given by the training s€ft(x;, y;) € R" x R™}Y,. There is a variety of algorithms for RBF
network learning, in our previous work we studied their hetiaand possibilities of their
combinations [11, 12]. The three most significant approscre thegradient learning
three-step learningandgenetic learning

Input: Data set S = {x;,y:}}Y, CR?xR™
Output: Network parameters:
ck7bk72;17wks,s: 1,---,mand k=1,---,h
1. 7:=0
Setup randomly ¢ (0), bk(0), £.'(0), wys(0) and Acy(0), Aby(0),
A H0), Awgs(0) for s=1,---,m and k=1,---,h

2. T =741
3. Evaluate: s=1,---,mand k=1,---,h
Acg(t) = _EaaTEk + aAck(r — 1) Abp(t) = _EgTPi + aAbi(r — 1)
AE;l T) = _Eag? + aAE;l(T —1) Awys(T) = —ea?fis + aAwis (T — 1),
€ € (0,1) is the learning rate, o € (0,1) is the momentum
coefficient.
4. Change the values of parameters: s=1,---,mand k=1,---,h
Ck(T) = Ck(T—l)—l—ACk bk(T) = bk(T—l)—i-Abk
Z,;l T) = Z,:I(T -1+ AE;l wrs(T) = wis(T — 1) + Awgs

5. Evaluate the error of the network.
6. If the stop criterion is not satisfied, go to 2.

Algorithm 3.2. Gradient learning.

14

Gradient Learning

The most straightforward approach to RBF network learninigased on the well-known
back-propagation algorithm for the multilayer percepsr@MLPs). The back-propagation
learning is a non-linear gradient descent algorithm thadlifres all network parameters
proportionally to the partial derivative of the training@r The trick is in clever ordering
of the parameters so that all partial derivatives can be coatconsequently.

Since the RBF network has a structure formally similar toNteP, it can be trained
by the modification of the back-propagation algorithm. Walihe MLP, the RBF network
has always only one hidden layer, so evaluating its devigatis rather simple.

The gradient learning algorithm is sketched in Algorithr.3t uses a gradient descent
enhanced with a momentum term [13] for the stepwise parammteifications. Since it
depends on the random initialization and may suffer fromlloginima, it is recommended
to try several different initializations and pick the besiigion.

Three-Step Learning

The gradient learning described in the previous sectiohasnall parameters by treating
them in the same way. Théree-step learningon the contrary, takes advantage of the
well-defined meaning of RBF network parameters.

The learning process is divided into three consequent s@pssponding to the three
distinct sets of network parameters. The first step consfaigtermining the hidden unit
centers, in the second step the additional hidden unit peteasi(widths, weighted norm
matrices) are estimated. During the third step the outpughte are determined. The
algorithm is listed in Algorithm 3.3.

Input: Data set S = {x;,y:}}¥, CR?xR™
Output: Network parameters:

ck7bk72;17wks,s: 1,---,m and k=1,---,h
1. Determine the centers ci,i=1,...,h using a vector quantization
method
2. Set up widths b; and matrices X' for i = 1,...,h by minimization

of

2
. H Cs — Cr Hcr (13)

o =
by ’

1 h
E(bl...bh;zl—l...xgl) = 52 [Z‘P(fsr)g?r - P

r=1

s=1

where P is the overlap parameter.

3. Compute the values for wjs for j=1,...,h and s=1,...,m by
W =P'Y, (14)
where the matrix P is a d x h matrix of outputs of RBF units and
P* is its pseudoinverse, W is a dxm matrix of weights and Y
is a h xm matrix of the desired outputs Vi

Algorithm 3.3. Three-step learning.

15

Genetic Learning

The third learning method introduced here is based on thetgealgorithms (GAs). It
is sketched in Algorithm 3.4. Unlike the traditional GA appches, we use a direct float
encoding for the RBF network parameters. An individual isrfed by a sequence of
blocks, where each block contains a vector of one RBF unérpater values.

A selection operator is used to choose individuals to a ngwjation. Each individual
is associated with the value of the error function of the egponding network. Selection
is a stochastic procedure, in which the individual probgbdf being chosen to the new
population is the higher, the smaller the error functionhaf torresponding network is.

The crossover operator composes a pair of new individuaibatng parts of two old
individuals. The positive effect of the crossover is theatian of new solutions recombin-
ing the current individuals. Finally, the mutation operatepresents small local random
changes of an individual.

The GAs represent a robust mechanism that usually does ffet stom the local
extremes problem. The price for this robustness is a biggercomplexity, especially for
problems with bigger individuals resulting in a huge seajpace.

Input: Data set S ={x;,y;}}Y, CR?xR™
Output: Network parameters:
ck7bk,2;1,wks,s: 1,---.m and k=1,---,h
1. Create random population of N individuals Py={6L, - ,In}.
1+ 0
2. For each individual compute the error on the training set.
3. If the minimal error in the population is small enough,

stop.
4. Create an empty population P11 and while the population has
less than N individuals repeat:
Selection: Select two individuals from P;.
I «— selection(F;)
I, — selection(F;)
Crossover: with probability Deross.
(I, Iy) « crossover(Iy, I3)
Mutation: with probability Pmautate:
I, — mutate(Iy), k = 1,2
Insert: insert I, I, into Py
5. Go to 2.

Algorithm 3.4. Genetic learning.

Hybrid Methods

The three described algorithms represent three main beanmhthe wide range of RBF
learning algorithms. Since these learning algorithms Hasen studied quite well, we
believe that the main potential for the further improversdigs in clever combinations
rather than further modifications of the available algongh Hybrid approaches based on

16

combinations of the well-known algorithms may achieve aesgn effect and thus over-
-perform the single algorithms.

We proposed two hybrid approaches — thrid genetic learningnd thefour-step
learning algorithm

The hybrid genetic learning replaces both the first and ststep of the three-step
learning by the GAs. The third step setting the output weightperformed by a linear
optimization technique, see Algorithm 3.5 for the sketctheferror evaluation procedure.
There are good reasons for such combinations. The first ®ys stre based on heuristics
so the use of the GAs is appropriate for them. On the other,hfweddetermination of
output weights is a linear optimization task, for which maffycient algorithms exist.

Input: Individual I, data set T

Output: Error associated with 1

1. Create the RBF network f represented by the individual 1
2. Run the least squares method to set the weights of f

3. Compute the error of network f on the data set T

Algorithm 3.5. Error evaluation in hybrid genetic learning.

Input: Data set S = {x;,y;}X, CR!xR™
Output: Network parameters:
ck,bk,Egl,wks,s =1,---,m and k= 1,---,h
1. Run the Algorithm 3.3.

2. Run the Algorithm 3.2, but instead of the random
initialization use the result of step 1.

Algorithm 3.6. Four-step learning.

The four-step learning — Algorithm 3.6 — is based on the thetap learning followed
by the gradient learning. The result of the three-step lagris used as an initial value for
the gradient learning that further tunes the values of alipeters.

4 Experimental Results

The main goals of our experiments can be summarized as fioldpw
1. demonstrate the behavior of regularization networks;
2. study the role of regularization parameter and kernedtian;
3. compare different types of kernel functions;
4. demonstrate the behavior of our product kernels and sunelseand compare them

to the classical solutions;

17

5. demonstrate the behavior of RBF networks as the repisers of generalized reg-
ularization networks;

6. compare the regularization networks and RBF networksderao find out the dif-
ference between an “exact solution” and an “approximatetswi”.

In order to achieve high comparability of our results, weehekiosen frequently used
tasks for the experiments with learning algorithms. As bemark tasks we use the data
sets from the ROBENL repository, the artificial tasikvo spiralsand the well-known image
of Lenna In addition, the task of flow rate prediction was picked tpresent real-life
problems.

In all our experiments we work with distinct data sets foirtirag and testing, referred
to as thetraining setand thetest set The learning algorithm is run on the training set,
including the possible cross-validation. The test setvenased during the learning phase,
it is only used for the evaluation of the resulting netwonoer

For the data sefx;, y; }¥, € R? x R™ and the network representing a functipnthe
normalized error is computed as follows:

N
o 100Nm;uyz FEP, (15)

where|| - || denotes the Euclidean norm. We use the notatigp,, and E., for the error
computed over the training set and test set, respectively.

The experiments have been performed using implementatisgstem Bang [2], the
standard numerical library LAPACK [9] was used to solve éinéeast square problems
(step 2 in Algorithm 3.1). Most experiments were run on thepater clustersomond10],
JoyceandBlade The former cluster is the Sun cluster available in Edinbdrgrallel Com-
puting Centre, University of Edinburgh. The latter two ahesters of workstations with
the Linux operating system at the Institute of Computer i8m¢ Academy of Sciences of
the Czech Republic. Time requirements listed in followiegteons refer to an Intel Xeon
2.80 GHz processor.

4.1 Regularization Networks

We demonstrated the role of metaparameters on the taskstfi®fROBENL repository
and on an approximation of the Lenna image — see [8, Subse6t®y1] and Figure 5.
Both the experiments show that the choice of the regulanizatarameter and the kernel
function is crucial for the successful learning, one carofaiose arbitrary values and a
search for optimal metaparameters is necessary. In addéiarong choice of the kernel
function cannot be cured by any change of the regularizaggmameter, and might result
in a completely useless solution.

The two methods for the metaparameters setup were testebeotatks from the
PROBENL repository — see [8, Subsection 6.3.2]. It was shown thastimpler method
— adaptive grid search algorithm — is sufficient for this ®sk’he more sophisticated
genetic parameter search suffers from high time requirésnen

Several common kernel functions were compared on the twiieof benchmarks
PROBEN1 — see [8, Subsection 6.3.3] and Figure 6. In most casespwest error was

18

3

Figure 5: Images generated by the regularization netwakntd on the Lenna image
(50x50 pixels) using Gaussian kernels with the widths from 0.8.@and the regulariza-
tion parameters from 0.0 to 0.001.

achieved by the RN with the inverse multi-quadratic kernelction. For many cases, the
Gaussian function achieves the second lowest test errdh tBe functions are functions

with local response, i.e. they give a relevant output onithanlocal area around its center.
The results justify usage of local functions, including G&ussian function, and show that
the commonly used Gaussian function is a good first choice.

Our product and sum kernels were tested on the tasks frRoBEN1 — see [8, Sub-
section 6.3.4]. The SKRN achieved the lowest error on 23stable RN on 13 tasks, and
the PKRN on two tasks. However, the errors of all the threevorkds are comparable. In
addition, the SKRN achieved very low test errors on seveatd dets without the loss of
generalization ability. Table 1 shows the the results onraqgi@ROBENL1 tasks.

Also theDivide et Imperaapproach was demonstrated — see [8, Subseciton 6.3.6].

represents an alternative for the bigger data sets thabtaerprocessed by the simple RN
learning algorithm. Dividing into two or three subtaskaigs significant reduction of time
complexity, while it only slightly increases the resultas.

4.2 RBF Networks

The three studied algorithms for RBF network learning, ali a& our hybrid methods,
were tested on tasks selected from tiBENL repository.

Table 2 summarizes the results from two experiments wittouaRBF network learn-
ing algorithms.

First, consider the main three approaches, the gradiamiheg three-step learning, and

19

400

[l Multi-quadratic
[Inverse Multi-
quadratic

[l Sigmoid
W Thin-Plate Spline

[l Multi-quadratic
[l Inverse Multi-
quadratic

[l Sigmoid
[l Thin-Plate Spline

75+

50
25+

. 07
training error test error

Figure 6: Comparison of overall training error (left) andtterror (right) for different
kernels.

RN SKRN PKRN

Task Etraz'n Etest Etrain Etest Etraz'n Etest

cancerl 2.28 1.75 0.00 1.77 268 181
cancer2 1.86 3.01 0.00 2.96 207 361
cancer3 211 279 0.00 2.73 228 281
cardl 8.75 10.01 8.81 10.03 8.90 10.05
card2 7.55 12.53 0.00 1254 8.11 12.55
card3 6.52 12.35 6.5512.32 7.01 12.45
flarel 0.36 0.55 0.35 0.54 0.36 0.54

flare2 042 0.28 0.44 0.26 042 0.28
flare3 0.38 0.35 0.42 0.33 040 0.35
glassl 3.37 6.99 2.35 6.15 264 731
glass2 432 7.93 1.09 6.97 255 7.46
glass3 3.96 7.25 3.04 6.29 331 7.26

Table 1: Comparisons of errors on training and test set ®RN with Gaussian kernels,
the SKRN, and the PKRN.

genetic learning. The gradient learning is able to achieteebresults in terms of error
measured on both the training and test set. The three-sepng is the fastest method,
due to the unsupervised phase to set the centers, and i@hknéar optimization to set the
output weights. The errors achieved are still competifilee genetic learning is in general
slower about an order of magnitude. While most of the measurening times were in
the order of seconds and minutes, it takes minutes to houtedoGA to converge to the
desired values. The results are still not as good as withrémtient learning. Nevertheless,
the GA — as a general learning procedure — has its potentiehiming the networks with
heterogeneous units; and it is suitable for parallelizatio

Second, the table includes the two hybrid methods. The $tep-earning further im-
proves the results obtained by the three-step learningcANTER it achieves comparable
results with the gradient learning. The hybrid geneticiéay achieves very good results,
slightly better than the gradient learning. However, ifetd from high time requirements.

20

Cancer (5 units) Glass (15 units)

Used learning FEiwin Frest Time Eirain Epess TiMme
method h:m:s m:s
Gradient 2.19 2.76 00:00:28 3.25 7.13 1341

Three-step 3.67 3.57 00:00:01 7.50 9.90 00:17
Four-step 2.20 2.55 00:00:36 7.04 9,55 03:32
Genetic 469 4.60 07:24:16 - - -

Hybrid genetic 2.09 2.75 02:30:31 - — -

Table 2: Comparison of learning methods on the cancer datarsgetwork with 5 hidden
units and on the glass data set for the network with 15 hideés.uAverage training and
test error.

RN RBF MLP
Ei..e #units B # units B arch.
mean std mean std

cancerl 1.76 525 2.11 0.01 15 1.60 0.41 4+2
cancer2 3.01 525 3.12 0.07 15 3.40 0.33 8+4
cancer3 2.80 525 3.19 0.13 15 257 0.24 16+8
cardl 10.00 518 10.16 0.56 10 10.53 0.57 32+0
card2 12.53 518 12.81 0.01 10 15.47 0.75 24+0
card3 12.32 518 12.09 0.00 10 13.03 0.50 16+8
flarel 0.54 800 0.37 0.00 10 0.74 0.80 32+0
flare2 0.27 800 0.31 0.00 10 0.41 0.47 32+0
flare3 0.34 800 0.38 0.00 10 0.37 0.01 24+0
glassl 6.95 161 6.76 0.02 20 9.75 0.41 16+8
glass2 7.91 161 7.96 0.00 20 10.27 0.40 16+8
glass3 7.33 161 8.06 0.97 20 10.91 0.48 16+8

Table 3: Comparison oF,.,; of RN, RBF, and MLP. For RBF and MLP the mean and
standard deviation from 10 repetitions of the runs aredi¢RN learning is deterministic).
The numbers of neurons in the first and second hidden layéisted for the MLP.

4.3 Regularization Networks vs. RBF Networks

The main aim of the experimental part of this work was to ast®s relative performance
of the RNs and RBF networks. Th&BBENL repository was used to perform the compar-
ison.

The regularization networks have been trained with the Riinieag algorithm (Al-
gorithm 3.1) with the metaparameters setup done by the i&dagrid search. The RBF
networks have been trained by the gradient learning.

Table 3 compares the results obtained by the RNs and RBF rietlog means of the
test error. In addition, the results are related to the perémce of the MLP.

In terms of the test error, the regularization networks edd the best results on 23
tasks; the RBF networks on 8 tasks (see Table 3 for a part séthwdts). Both the training
and testing errors are quite comparable, the differenaeaserage about 6%. In addition,
the RBF networks need a 10 to 50 times lower number of hiddés taobtain comparable

21

approximation and generalization performance. The timgairements needed to achieve
the listed errors varied from 1 to 30 minutes depending orsibe of the particular data
set, and were similar for both the regularization network$ RBF networks.

The regularization networks, in their exact form, are thfaee suitable rather for the
tasks with smaller data sets, where is a high danger of ottergfi For the tasks possessing
large data amounts, “cheaper” alternatives representdatidogeneralized regularization
networks, such as the RBF networks, are more competent.

To show that the RNs and RBF networks represent competéaeing methods not
only to the MLP, but also to modern learning algorithms, wekpd the comparison to the
support vector machine (SVM). The comparison was made oclaissification tasksSAN-
CERandGLASS. The SVM was trained using the available library [3], whielpresents a
current standard of SVM learning.

Table 4 compares the RN, RBF network, and SVM in terms of ilagson accuracy
on the test set. The results obtained by the three methodoarearable, the differences
in accuracy are not high. We see that both the regularizagtnworks and RBF networks
are vital alternatives to the SVM.

T T
prediction

RN RBF SVM
cancerl 98.85% 98.74% 97.12% s} "
cancer2 95.40%96.84% 96.55% o H
cancer3 95.98% 96.95% 95.97% o= \‘\
glassl 75.00% 72.45% 7358% | |
glass2 73.07% 64.53% 66.03% | I M
glass3 76.92% 72.26%79.24% | Ul M e

Table 4: Comparison of classification ac- Figure 7: Prediction of flow rate by the regu-
curacy of RN, RBF and support vector larization network.
machines (SVM).

4.4 Rainfall-Runoff Modeling

Both the RBF network and the RN were applied to rainfall-ffinoodeling, i.e. model-
ing of river-flow rates based on daily flow and rainfall valuekhe research is realized
in cooperation with University of J. E. Purkyné and the Qrétydrometeorological In-
stitute inUsti nad Labem. The Plougnice River in North Bohemia hanhehosen as an
experimental catchment to calibrate and evaluate the raodel

See Figure 7 for an example of flow rate prediction by the RNalt been shown that
both the RBF networks and regularization networks can beessfully used for creating
small rainfall-runoff models. These models can be builbfrbistorical time series data,
without knowing anything about the physics of the process.

22

5 Conclusion

The main goal of our work was to study the possible ways ohiegrbased on the regular-
ization theory. Learning algorithms, including the RN laag algorithm derived directly
from the theory, and various learning algorithms for RBRamgks were investigated.

The RN learning algorithm (Algorithm 3.1) represents aromglete tool for learning,
since it requires a nontrivial setup of metaparametersa#t shown in the experiments that
these metaparameters, the regularization parameter arcethel function, significantly
influence the quality of the solution (Subsection 4.1). Efene a framework above the
basic RN learning algorithm was created, including thenestiion of the metaparameters.
Two techniques for this setup were introduced — the adaptikesearch and the genetic
parameter search (Subsection 3.3).

Since the choice of the kernel function plays a crucial roleearning, we decided that
it deserves more attention. It resulted in proposing thepmsite types of kernel functions
— a product kernel and sum kernel (Subsection 3.2). In theraxygnts (Subsection 4.1)
we showed that they are a vital alternative to the classil $imple) kernels. They are
especially useful on tasks that are heterogenous, eitigingain attributes or different
parts of the input space. Good behavior was observed whilererenting with the sum
kernels. The setup phase adjusted the widths of the two @assaddends, so that one
Gaussian was very narrow and the other one wide. Such a Kemation obtained good
results even without the regularization term. Almost zeaining errors were achieved,
while the generalization property was preserved. Suchegkéunctions may be very useful
for tasks with a low level of noise. Inspired by the conceptasitricted sum kernels, we
proposed the “Divide et Impera” approach. It is a simple pthoe that splits the tasks
into several disjoint subtasks. The learning algorithnpigli@d on each of these subtasks,
possibly in parallel. The solution is then obtained as a stimetworks obtained. Such an
approach does not only save the space, but also significgaailices the time requirements.

Despite the good theoretical background, the reguladgmatetwork may be not feasi-
ble in some situations. Particularly, the solution is tagéafor tasks with huge data sets.
Therefore the notion of generalized regularization neksavas introduced. We focused
on one concrete subclass — RBF networks. The RBF networlefibélom a wide range
of learning possibilities. Three main approaches wererdsssit (Subsection 3.4) and com-
pared in the experiments (Subsection 4.2). The best resutesms of the training and test
error, were obtained by the gradient learning. The threp-iarning, on the other hand,
represented the fastest approach, while the resultingsenrere still competitive. The ge-
netic learning was significantly slower, and still it does aotperform the other methods.
Inspired by these results, the two hybrid approaches wegoged — the four-step learn-
ing (Algorithm 3.6) and the hybrid genetic learning (Algbrn 3.5). Their behavior was
demonstrated experimentally (Subsection 4.2) and it wawshhat they, in some aspects,
improve the original algorithms. The four-step learningle@ gradient phase after the
three-step learning. The first part formed by the three-gaming saves time, while the
second gradient part further improves the solution. Theitydenetic learning represents
a combination of the genetic learning and the third part efttiree-step learning. Only
the hidden layer is estimated by the GAs, the output weiglet$cund by linear optimiza-
tion. Such an approach achieved very good results, outpeirig the other approaches;
however, it suffers from very high time requirements.

23

When studying the learning from the point of view of both tegularization networks
and RBF networks, the comparison of both the approaches\stamle. In our experi-
ments, the regularization networks and RBF networks aekieeamparable results. So we
claim that the RBF networks represent a cheaper alternatives regularization networks.
Finally, we presented an application of the studied algorg to a real-life problem. Both
the regularization networks and RBF networks were sucalgsipplied on the prediction
of the river-flow rate (Subsection 4.4).

References

[1] N. Aronszajn. Theory of reproducing kernelEransactions of the AM$8:337-404, 1950.
[2] Project Banghttp://bang.sf.net/

[3] Ch. Chih-Chung and L. Chi-Jen. Libsvm: a library for soppvector machines, 2002.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/

[4] F. Girosi. An equivalence between sparse approximadiuh support vector machines. Tech-
nical report, Massachutesetts Institute of Technolog9/71%.1. Memo No. 1606.

[5] F. Girosi, M. Jones, and T. Poggio. Regularization tlyeaoxd Neural Networks architectures.
Neural Computation2:219-269, 7 1995.

[6] S. Haykin. Neural Networks: a comprehensive foundatidiom Robins, 2nd edition, 1999.

[7] V. Klirkova. Learning from data as an inverse problem.Ahtoch J., editorComputational
Statistics pages 1377-1384. Heidelberg, Physica Verlag, 2004.

[8] P. Kudova.Learning with regularization network$?hD thesis, MFF UK, 2006.

[9] LAPACK. Linear algebra package,
http://www.netlib.org/lapack/

[10] Lomond machine. Introduction to the university of éalingh HPC service,
http://www.epcc.ed.ac.uk/computing/services/sun/
documents/hpc-intro/hpc_introdoc.pdf

[11] R. Neruda and P. Kudova. Hybrid learning of RBF netvgorkNeural Network World
12(6):573-585, 2002.

[12] R. Neruda and P. Kudova. Learning methods for radigisbéunctions networks.Future
Generation Computer Systen24:1131-1142, 2005.

[13] D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experimemdearning by back propagation.
Technical Report CMU-CS-86-126, Carnegie-Mellon Uniitgr4986.

[14] T. Poggio and S. Smale. The mathematics of learningiibgwith data.Notices of the AMS
50:536-544, 5 2003.

[15] B. Schoelkopf and A. J. Smolalearning with Kernels MIT Press, Cambridge, Mas-
sachusetts, 2002.

[16] T. Sidlofova. Existence and uniqueness of minimization [@ois with fourier based stabiliz-
ers. InProceedings of Compstat, Pragu#004.

24

