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Statistical approach to neural network learning
Specificity of the expectation-based learning
Strong law of large numbers for network learing
Central limit theorem for artificial neural networks

A central limit theorem application to network pruning




¢ A MLP with n input neurons, m output neurons

¢ The training pairs z; = (x;, y;) with x; € R™,y; € R™ are viewed
as realizations of random vectors Z;, respectively X; and Y;

¢ All random vectors Z; are assumed mutually independent
and identically distributed with a distribution u

« X; andY; have the marginal distributions u, and u, of u




¢ Z;and F(X;) have finite 2" moments: E||Z;||?, E||F (X))||* < 4+
» equivalently in terms of function spaces: Z; € L,(u), F(X;) € L,(u,)
« for a bounded F, F(X;) € L,(u,) already follows from Z; € L, (u)

= 1. For expectation and variance: E Z; € R™™ Var Z; € R*mn+m
« for inputs and outputs: EX; € RY, EY;, € R™ Var X; € R*", VarY; € R*"

= 2. For conditional moments: E(Y;|X;) € L,(u,), Var (Y;|X;) € L;(u,)




¢ EXxpectation consideres all possible inputs + their probability

¢ This learning yields weights w and biasses b minimizing an
expected loss EL of network predictions F,, ,)(X) to outputs Y:
(w*,b") = arg min E, L(F w,p)(X),Y)

 The most common loss — sum of squares (SSE):

* L%\ . . . 2
(w*,b*) = arg fnin SSE = arg fmin IEMHF(W,,,)(X) — ||




¢ Typically, E,L(F ) (X),Y) cannot be computed < p is unknown

¢ But for a random sample (x1,y,), ..., (x,, ¥, ), the mean

%zgzl L(Fowp) (%), yx) is an unbiased estimate of E,L(F, (X),Y)
e as (x1,¥1), ., (xp,¥,) can serve all / some training data

¢ Coincides with the traditional way of learning because

1

p p
min — z L(F o py(x), ¥ ) = min Z L(F w0y (i), Vi)
’ p k=1 Wb k=1




¢ Notation: (-}, lll-llL,w) — Scalar product | normin L, (u)

2

¢ SSE = HF(w,b)(X) _ YHLZ(M)

= [IFaum @O —EXO| +

FIIEQ1X) = Y1100 + (Foum 00 = ECIX), EYIX) = ¥),




(Fup @) —EYIX),EY1X) —Y), .=

=E, (F(W,b)(X) — E(Y |X))T (EY]X) —Y) =
=E,, [IE ((F(W,b>(x) - IE(YIX))T (EY]X) - Y)‘X )] =

= By [ (Foum () — ECV1X)) ECE(Y1X) - y|x): _

= By | (Foon (0 — BOID) (B 1) — ECV10)| = 0
EEEEEEE—




IECYIX) = YII7 (= ELNEQIX) — Y2 =

= E,, E(IIEY1X) - YI[?|X) =

= E,, (Z(E,(1%); - ;)" |x) =
=E,, X Var(Y|X);; =

= E, trace Var(Y|X)




¢ Notation: (-}, lll*llL,w) — Scalar product | normin L, (u)

¢ SSE=Faum @) =Y||° = |[Faum@®) —EX 10|’

Ly(u) Ly(u )

FIEQ1X) = Y110 + (Foum 00 = ECIX), EVIX) = ¥),

2
= |[Fawsy @) —EQIX|[ |+ By, trace Var(Y|X)
. . 2 : .
¢ Thus arg (r‘g/ul% SSE = arg (I‘EZI,II%HF(W,I?) (X) IE(YlX)HLZ(ﬂ), and if exist

(w,b) (vix) such that Fovb) i (X) =E(Y|X), then arg (rg}ﬂB SSE=(w, b) (vix)
]




¢ Expectation-based learning is not common because
the distribution of learning samples is typically unknown

¢ But random sample empirical mean estimates expectation

1. in an unbiased way: EM%Z£=1L(F(XR),YR) =E, L(F(X),Y)

2. in a consistent way: %Zizlﬁ(F(xk),yk) — E,L(F(X),Y)




¢ The consistence property, that %ZizlL(F(xk),yk) converges
to E,L(F(X),Y) is called law of large numbers.

¢ Weak law: convergence of random variables in probability

Ve > 0: lim p (E D L(F o), yi) — By L(F(X), Y)‘ > g) — 0

¢ Strong law (= weak law): convergence almost everywhere

p(lim 20, £(FGi0, 710 = B LFCO,1) ) = 1




¢ Laws of large numbers cannot be directly applied

to MLPs < Y _, L(F (5 (xx), ¥ ) changed by minimum
« therefore, for MLPs, specific additional assumptions are needed
¢ LetZ;,i € N, be Borel-measurable, Z;: (Q,A,P) » (R*™, B, u)
¢ The probability space (Q, A, P) is assumed being complete:

A€ A&B c Q& (A\B)U (B\A) c C € A&P(C)=0=B €A




1. (Q,A,P)is acomplete probability space
2. (X;,Y;),i €N, are ii.d. (independent and identically distributed)

3. W = {admissible (w, b)|w — weights, b — bias} is a compact set
4. (Y(w,b) e W)L(F, (x),y) is a Borel-measurable function of (xy)
5. (V(xy) € R™™) L(Fy,(%),y) is a W-continuous function of (w,b)

6. L(Fuyp (X),Y) has an R*™-integrable majorizer over W




¢ Consider the set of expectation-based learning results

w* = {(W*,b*) € W‘ E,L(F e p(X),Y) = (rvnvilg E, L(F oy p) (X)), Y)}
+ random-sample-based learning results for (x;, y;) =4
(Vp (S N)(WP’BP) = arg I’Iu}’lgl Z£=1 L(F(W,b)(xk),yk)

¢ Then (Wp,Bp);ozl converges almost everywhere to W*

H (z}grolo inf pyew (WP’BP) - w5 b)| = O) =1




¢ Removing connections from fully connected networks

» decreases the risk of overtraining + computational costs
¢ If all input connections / all output connections of
a hidden neuron h are pruned, then h is removed
¢ Formalised: S(w, b) = 0 with a O/1-valued matrix S, rows contain

for the 1 connection / for neuron’s all connections + bias




¢ Because (W, b,) that results from learning is only

an estimate (unbiased + consistent) of (w*, b*), what we

actually need is to know whether S(w*,b*) =0

e cannot be directly checked < (w*, b*) is not known

¢ Statistical approach to checking statements for estimated values:

hypotheses testing using their estimator ((Wp, Bp))




¢ Testing a null hypotheses H, against H,: checking whether T e €
o T- test statistics: random variable with some assumed distribution
e @- critical set: € c ValT with Hy, = P(T € €|H,v-H, ) < a- significance

¢ The assumed T distribution can always asymptotically rely on

1

VP
- not directly applicable <=Y1_, L(Fup (%),%) changed by minimum

the normality of vt L(F(q), ) < CLT (central limit theorem)




1.

(Q, A, P) is a complete probability space

2. (X;,Y;),i €N, areiid. (independent and identically distributed)

3.

4.

W = {admissible (w, b)|w — weights, b — bias} is a compact set

w* ={(w* b*)} with (w*, b*) an inner point of W
(V(w,b) € W) L(Fpp (x),y) is a Borel-measurable function of (xy)

LZ(Fw,p(X),Y) has an R*™-integrable majorizer over W




¢ VewnL = Vwn)L(Fwp) (X),Y): arrandom vector such that
(V(xy) € R¥™M 1L =the gradient of L(Fg, 5 (x),y) w.r. to (w,b)
¢ V%, L(Fwp (X),Y): arandom matrix such that (V(x,y) € R™*™)

ey ) L(Fewp) (%), y) = the Hessian of L(Fyp) (x),y) w.r. to (w, b)




7. (v, y)L(F @y (x),y) has W-continuous Hessian w.r. to (w, b)
8. The matrix A" defined A" = E, (V(Z‘A,*,b*)L(F(W,b) (X),Y)) IS regular
9. Vi L(Fawp ), y) has an R*™-integrable majorizer over W
10. The matrix B* defined B* = E, (V)L Viw,p L) iS regular

11. ||£(Fiwp ), y)||* has an R*™-integrable majorizer over W

12. A {0,1}-valued matrix S has s = rank S rows




¢ VewnL = Vwn)L(Fwp) (X),Y): arrandom vector such that
(V(xy) € R¥™M 1L =the gradient of L(Fg, 5 (x),y) w.r. to (w,b)

¢ V%, L(Fwp (X),Y): arandom matrix such that (V(x,y) € R™*™)
ey ) L(Fewp) (%), y) = the Hessian of L(Fyp) (x),y) w.r. to (w, b)

~ 1 2
¢ Ap — ;Z?:]_ V(W,b)L (F(WP'BP) (xi), yl)

= 1ap T
¢ By =i V£ (F(wp,zap)(xi)»yi) L (F(Wp,Bp)(xi)JYi)
] .




Cco

. ( \/T?((Wp» b,) — (W, b*)))p_1 converges to the distribution N(0,C*),

the covariance matrix of which is C* = A* " 'B*A*™*

¢ If S(w*b*) =0, then (\/ES(WP,BP)) converges to N(0,SC*S")

p=1
¢ If S(w*b*) =0, then the quadratic forms of (\/ﬁS(v’l‘/p, Bp))oo
p=1

(p(v’Dp, BP)TST(SC*ST)_ls(Wp' Bp))
p=1
converge to the distribution y? with s degrees of freedom




. A-1B A-1 ifp € N, A, is regular
¢ Define anestimate ¢, ={ " ” " P P 5
B, if p € N, 4, is singular

¢ Then C'p — C”* In probabillity (: 1}1_1%10 ,u((f'p is regular) :1)

¢ If S(w*b*) =0, then also the quadratic forms

(p(wp, b,) ST(SC,S") "' s(m,, Bp)) converge to the distribution x2
p=1




. For given observations (x;,),....(%,), get [= compute] (#y,b,)
Fori=1,...p get V(W,b)L(F(Wp,Bp) (x), yl-) and \7(2“,,1))15(17(%,1310) (xi);Yi)
. Get 4, B, and check whether any is singular

. Then the test cannot proceed, else get C‘p
- Get p(W,b,) 'S'(SC,S) " S(#,B,) and compare with the distribution x2

. If¥*> the quantile y2(1 — a),a € (0,1), reject S (w*,b*) = 0
]
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