What will it be about?

- ♦ Statistical approach to neural network learning
- ♦ Specificity of the expectation-based learning
- Strong law of large numbers for network learing
- Central limit theorem for artificial neural networks
- ♦ A central limit theorem application to network pruning

Basic framework

- ♦ A MLP with *n* input neurons, *m* output neurons
- ♦ The *training pairs* $z_i = (x_i, y_i)$ with $x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}^m$ are viewed as realizations of *random vectors* Z_i , respectively X_i and Y_i
- lacktriangle All random vectors Z_i are assumed mutually independent and identically distributed with a distribution μ
 - X_i and Y_i have the marginal distributions μ_x and μ_y of μ

Assumption about moments

- ♦ Z_i and $F(X_i)$ have finite 2nd moments: $\mathbb{E}||Z_i||^2$, $\mathbb{E}||F(X_i)||^2 < +\infty$
 - equivalently in terms of function spaces: $Z_i \in L_2(\mu)$, $F(X_i) \in L_2(\mu_x)$
 - for a bounded $F, F(X_i) \in L_2(\mu_x)$ already follows from $Z_i \in L_2(\mu)$
- \implies 1. For expectation and variance: $\mathbb{E} Z_i \in \mathbb{R}^{n+m}$, $\text{Var } Z_i \in \mathbb{R}^{n+m,n+m}$
 - for inputs and outputs: $\mathbb{E} X_i \in \mathbb{R}^n$, $\mathbb{E} Y_i \in \mathbb{R}^m$, $\text{Var } X_i \in \mathbb{R}^{n,n}$, $\text{Var } Y_i \in \mathbb{R}^{n,n}$
- \Rightarrow 2. For conditional moments: $\mathbb{E}(Y_i|X_i) \in L_2(\mu_x)$, $\text{Var}(Y_i|X_i) \in L_1(\mu_x)$

Expectation-based learning

- ♦ Expectation consideres all possible inputs + their probability
- ♦ This learning yields weights w and biasses b minimizing an expected loss $\mathbb{E}\mathcal{L}$ of network predictions $F_{(w,b)}(X)$ to outputs Y:

$$(w^*, b^*) = \arg\min_{(w,b)} \mathbb{E}_{\mu} \mathcal{L}(F_{(w,b)}(X), Y)$$

• The *most common* loss – sum of squares (SSE):

$$(w^*, b^*) = \arg\min_{(w,b)} SSE = \arg\min_{(w,b)} \mathbb{E}_{\mu} ||F_{(w,b)}(X) - Y||^2$$

Random-sample-based learning

- ♦ Typically, $\mathbb{E}_{\mu} \mathcal{L}(F_{(w,b)}(X), Y)$ cannot be computed $\Leftarrow \mu$ is unknown
- But for a random sample $(x_1, y_1), ..., (x_p, y_p)$, the mean

$$\frac{1}{p}\sum_{k=1}^{p}\mathcal{L}(F_{(w,b)}(x_k),y_k)$$
 is an unbiased estimate of $\mathbb{E}_{\mu}\mathcal{L}(F_{(w,b)}(X),Y)$

- as $(x_1, y_1), ..., (x_p, y_p)$ can serve all / some training data
- ♦ Coincides with the traditional way of learning because

$$\min_{w,b} \frac{1}{p} \sum_{k=1}^{p} \mathcal{L}(F_{(w,b)}(x_k), y_k) = \min_{w,b} \sum_{k=1}^{p} \mathcal{L}(F_{(w,b)}(x_k), y_k)$$

Specificity of SSE learning

lacktriangle Notation: $\langle \cdot, \cdot \rangle_{L_2(\mu)} | || \cdot ||_{L_2(\mu)} - \text{scalar product } || \text{ norm in } L_2(\mu)$

• SSE =
$$||F_{(w,b)}(X) - Y||_{L_2(\mu)}^2 = ||F_{(w,b)}(X) - \mathbb{E}(Y|X)||_{L_2(\mu)}^2 +$$

+
$$\|\mathbb{E}(Y|X) - Y\|_{L_2(\mu)}^2 + \langle F_{(w,b)}(X) - \mathbb{E}(Y|X), \mathbb{E}(Y|X) - Y \rangle_{L_2(\mu)}$$

$$\langle F_{(w,b)}(X) - \mathbb{E}(Y|X), \mathbb{E}(Y|X) - Y \rangle_{L_2(\mu)}$$

$$\left\langle F_{(w,b)}(X) - \mathbb{E}(Y|X), \mathbb{E}(Y|X) - Y \right\rangle_{L_{2}(\mu)} =$$

$$= \mathbb{E}_{\mu} \left(F_{(w,b)}(X) - \mathbb{E}(Y|X) \right)^{\mathsf{T}} \left(\mathbb{E}(Y|X) - Y \right) =$$

$$= \mathbb{E}_{\mu_{X}} \left[\mathbb{E} \left(\left(F_{(w,b)}(X) - \mathbb{E}(Y|X) \right)^{\mathsf{T}} \left(\mathbb{E}(Y|X) - Y \right) \middle| X \right) \right] =$$

$$= \mathbb{E}_{\mu_{X}} \left[\left(F_{(w,b)}(X) - \mathbb{E}(Y|X) \right)^{\mathsf{T}} \mathbb{E}(\mathbb{E}(Y|X) - Y|X) \right] =$$

$$= \mathbb{E}_{\mu_{X}} \left[\left(F_{(w,b)}(X) - \mathbb{E}(Y|X) \right)^{\mathsf{T}} \left(\mathbb{E}(Y|X) - \mathbb{E}(Y|X) \right) \right] = 0$$

$\|\mathbb{E}(Y|X) - Y\|_{L_2(\mu)}^2$

$$\|\mathbb{E}(Y|X) - Y\|_{L_{2}(\mu)}^{2} = \mathbb{E}_{\mu} \|\mathbb{E}(Y|X) - Y\|^{2} =$$

$$= \mathbb{E}_{\mu_{X}} \mathbb{E}(\|\mathbb{E}(Y|X) - Y\|^{2} | X) =$$

$$= \mathbb{E}_{\mu_{X}} \left(\sum (\mathbb{E}_{\mu}(Y|X)_{i} - Y_{i})^{2} | X \right) =$$

$$= \mathbb{E}_{\mu_{X}} \sum \text{Var}(Y|X)_{i,i} =$$

$$= \mathbb{E}_{\mu_{X}} \text{trace Var}(Y|X)$$

Specificity of SSE learning

- lacktriangle Notation: $\langle \cdot, \cdot \rangle_{L_2(\mu)} | || \cdot ||_{L_2(\mu)} \text{scalar product } || \text{ norm in } L_2(\mu)$
- $\bullet \quad SSE = \left\| F_{(w,b)}(X) Y \right\|_{L_2(\mu)}^2 = \left\| F_{(w,b)}(X) \mathbb{E}(Y|X) \right\|_{L_2(\mu)}^2 +$

+
$$\|\mathbb{E}(Y|X) - Y\|_{L_2(\mu)}^2 + \langle F_{(w,b)}(X) - \mathbb{E}(Y|X), \mathbb{E}(Y|X) - Y \rangle_{L_2(\mu)}$$

$$= \left\| F_{(w,b)}(X) - \mathbb{E}(Y|X) \right\|_{L_2(\mu)}^2 + \mathbb{E}_{\mu_X} \operatorname{trace} \operatorname{Var}(Y|X)$$

• Thus $\arg\min_{(w,b)} SSE = \arg\min_{(w,b)} \left\| F_{(w,b)}(X) - \mathbb{E}(Y|X) \right\|_{L_2(\mu)}^2$, and if exist

 $(w,b)_{(Y|X)}$ such that $F_{(w,b)_{(Y|X)}}(X) = \mathbb{E}(Y|X)$, then $\arg\min_{(w,b)} SSE = (w,b)_{(Y|X)}$

Random-sample ⋈ expectation

- Expectation-based learning is not common because
 the distribution of learning samples is typically unknown
- ♦ But random sample empirical *mean estimates expectation*
 - 1. in an *unbiased* way: $\mathbb{E}_{\mu} \frac{1}{p} \sum_{k=1}^{p} \mathcal{L}(F(x_k), y_k) = \mathbb{E}_{\mu} \mathcal{L}(F(X), Y)$
 - 2. in a *consistent* way: $\frac{1}{p}\sum_{k=1}^{p} \mathcal{L}(F(x_k), y_k) \longrightarrow \mathbb{E}_{\mu}\mathcal{L}(F(X), Y)$

Laws of large numbers

- The consistence property, that $\frac{1}{p}\sum_{k=1}^{p}\mathcal{L}(F(x_k),y_k)$ converges to $\mathbb{E}_{\mu}\mathcal{L}(F(X),Y)$ is called law of large numbers.
- ♦ Weak law: convergence of random variables in probability

$$\forall \varepsilon > 0 : \lim_{p \to \infty} \mu \left(\left| \frac{1}{p} \sum_{k=1}^{p} \mathcal{L}(F(x_k), y_k) - \mathbb{E}_{\mu} \mathcal{L}(F(X), Y) \right| > \varepsilon \right) = 0$$

♦ *Strong* law (⇒ weak law): convergence *almost everywhere*

$$\mu\left(\lim_{p\to\infty}\frac{1}{p}\sum_{k=1}^p\mathcal{L}(F(x_k),y_k)=\mathbb{E}_{\mu}\mathcal{L}(F(X),Y)\right)=1$$

Complete probability space

♦ Laws of large numbers cannot be directly applied

to MLPs
$$\Leftarrow \sum_{k=1}^{p} \mathcal{L}(F_{(w,b)}(x_k), y_k)$$
 changed by minimum

- therefore, for MLPs, specific additional assumptions are needed
- ♦ Let Z_i , $i \in \mathbb{N}$, be Borel-measurable, Z_i : $(\Omega, \mathcal{A}, P) \to (\mathbb{R}^{n+m}, \mathcal{B}, \mu)$
- ♦ The probability space (Ω, A, P) is assumed being *complete*:

$$A \in \mathcal{A}\&B \subset \Omega\&(A \setminus B) \cup (B \setminus A) \subset C \in \mathcal{A}\&P(C) = 0 \Longrightarrow B \in \mathcal{A}$$

Assumptions for the strong law

- 1. (Ω, \mathcal{A}, P) is a complete probability space
- 2. (X_i, Y_i) , $i \in \mathbb{N}$, are *i.i.d.* (independent and identically distributed)
- 3. $W = \{admissible (w, b)|w weights, b bias\}$ is a *compact* set
- 4. $(\forall (w,b) \in W) \mathcal{L}(F_{(w,b)}(x),y)$ is a Borel-*measurable* function of (x,y)
- 5. $(\forall (x,y) \in \mathbb{R}^{n+m}) \mathcal{L}(F_{(w,b)}(x),y)$ is a *W-continuous* function of (w,b)
- 6. $\mathcal{L}(F_{(w,b)}(X), Y)$ has an \mathbb{R}^{n+m} -integrable *majorizer* over W

Statement of the strong law

♦ Consider the set of expectation-based learning results

$$W^* = \left\{ (w^*, b^*) \in W \middle| \mathbb{E}_{\mu} \mathcal{L} \big(F_{(w^*, b^*)}(X), Y \big) = \min_{(w, b)} \mathbb{E}_{\mu} \mathcal{L} \big(F_{(w, b)}(X), Y \big) \right\}$$

+ random-sample-based learning results for $(x_i, y_i)_{p=1}^{\infty}$

$$(\forall p \in \mathbb{N})(\widehat{w}_p, \widehat{b}_p) = \arg\min_{w, b} \sum_{k=1}^p \mathcal{L}(F_{(w,b)}(x_k), y_k)$$

lacktriangle Then $(\widehat{w}_p, \widehat{b}_p)_{p=1}^{\infty}$ converges almost everywhere to W^*

$$\mu\left(\lim_{p\to\infty}\inf_{(w^*,b^*)\in W^*} \left\| (\widehat{w}_p,\widehat{b}_p) - (w^*,b^*) \right\| = 0\right) = 1$$

Network pruning

- ♦ Removing connections from fully connected networks
 - decreases the risk of overtraining + computational costs
- ♦ If all input connections / all output connections of
 a hidden neuron h are pruned, then h is removed
- Formalised: S(w,b) = 0 with a 0/1-valued matrix S, rows contain for the 1 connection / for neuron's all connections + bias

Statistical approach to pruning

- Because $(\widehat{w}_p, \widehat{b}_p)$ that results from learning is only an estimate (unbiased + consistent) of (w^*, b^*) , what we actually need is to know whether $S(w^*, b^*) = 0$
 - cannot be directly checked $\leftarrow (w^*, b^*)$ is not known
- ♦ Statistical approach to checking statements for estimated values:

hypotheses testing using their estimator $\left(\left(\widehat{w}_{p},\widehat{b}_{p}\right)\right)$

Hypotheses testing recalled

- ♦ Testing a null hypotheses H_0 against H_1 : checking whether $T ∈ \mathfrak{C}$
 - *T test statistics*: random variable with some assumed distribution
 - \mathbb{C} *critical set*: $\mathbb{C} \subset \operatorname{Val} T$ with $H_0 \Rightarrow P(T \in \mathbb{C} | H_0 \lor H_1) \leq \alpha$ significance
- ♦ The assumed T distribution can always asymptotically rely on the normality of $\frac{1}{\sqrt{p}}\sum_{k=1}^{p}\mathcal{L}(F(x_k),y_k) \Leftarrow CLT$ (central limit theorem)
 - not directly applicable $\Leftarrow \sum_{k=1}^{p} \mathcal{L}(F_{(wb)}(x_k), y_k)$ changed by minimum

CLT for MLPs: assumptions 1.– 6.

- 1. (Ω, \mathcal{A}, P) is a complete probability space
- 2. $(X_i, Y_i), i \in \mathbb{N}$, are *i.i.d.* (independent and identically distributed)
- 3. $W = \{admissible (w, b)|w weights, b bias\}$ is a *compact* set
- 4. $W^* = \{(w^*, b^*)\}$ with (w^*, b^*) an *inner* point of W
- 5. $(\forall (w,b) \in W) \mathcal{L}(F_{(w,b)}(x),y)$ is a Borel-measurable function of (x,y)
- 6. $\mathcal{L}Z(F_{(w,b)}(X),Y)$ has an \mathbb{R}^{n+m} -integrable *majorizer* over W

CLT for MLPs: auxiliary notation

$$(\forall (x,y) \in \mathbb{R}^{n+m}) \nabla_{(w,b)} \mathcal{L} = \text{the } \underline{gradient} \text{ of } \mathcal{L}(F_{(w,b)}(x),y) \text{ w.r. to } (w,b)$$

$$\nabla^2_{(w,b)}\mathcal{L}(F_{(w,b)}(x),y) = \text{the } Hessian \text{ of } \mathcal{L}(F_{(w,b)}(x),y) \text{ w.r. to } (w,b)$$

CLT for MLPs: assumptions 7.– 12.

- 7. $(\forall x, y) \mathcal{L}(F_{(w,b)}(x), y)$ has W-continuous Hessian w.r. to (w, b)
- 8. The matrix A^* defined $A^* = \mathbb{E}_{\mu} \left(\nabla^2_{(w^*,b^*)} \mathcal{L} \left(F_{(w,b)}(X), Y \right) \right)$ is regular
- 9. $\nabla^2_{(w,b)} \mathcal{L}(F_{(w,b)}(x),y)$ has an \mathbb{R}^{n+m} -integrable majorizer over W
- 10. The matrix B^* defined $B^* = \mathbb{E}_{\mu}(\nabla_{(w,b)}\mathcal{L}^{\mathsf{T}}\nabla_{(w,b)}\mathcal{L})$ is regular
- 11. $\|\mathcal{L}(F_{(w,b)}(x),y)\|^2$ has an \mathbb{R}^{n+m} -integrable majorizer over W
- 12. A $\{0,1\}$ -valued matrix S has s = rank S rows

CLT for MLPs: auxiliary notation

$$(\forall (x,y) \in \mathbb{R}^{n+m}) \nabla_{(w,b)} \mathcal{L} = \text{the } \underline{gradient} \text{ of } \mathcal{L}(F_{(w,b)}(x),y) \text{ w.r. to } (w,b)$$

♦ $\nabla^2_{(w,b)} \mathcal{L}(F_{(w,b)}(X),Y)$: a random matrix such that $(\forall (x,y) \in \mathbb{R}^{n+m})$

$$\nabla^2_{(w,b)}\mathcal{L}(F_{(w,b)}(x),y) = \text{the } Hessian \text{ of } \mathcal{L}(F_{(w,b)}(x),y) \text{ w.r. to } (w,b)$$

- $\hat{A}_p = \frac{1}{p} \sum_{i=1}^p \nabla^2_{(\mathbf{w},\mathbf{b})} \mathcal{L}\left(F_{(\widehat{w}_p,\widehat{b}_p)}(x_i), y_i\right)$
- $\hat{B}_p = \frac{1}{p} \sum_{i=1}^p \nabla_{(\mathbf{w},\mathbf{b})} \mathcal{L}\left(\mathbf{F}_{(\widehat{w}_p,\widehat{b}_p)}(x_i), y_i\right) \mathcal{L}\left(\mathbf{F}_{(\widehat{w}_p,\widehat{b}_p)}(x_i), y_i\right)^\mathsf{T}$

CLT for MLPs: exact covariance

- $\left(\sqrt{p} \left((\hat{w}_p, \hat{b}_p) (w^*, b^*) \right) \right)_{p=1}^{\infty}$ converges to the *distribution N*(0, C^*), the covariance matrix of which is $C^* = A^{*-1}B^*A^{*-1}$
- If $S(w^*, b^*) = 0$, then $\left(\sqrt{p}S(\widehat{w}_p, \widehat{b}_p)\right)_{p=1}^{\infty}$ converges to $N(0, SC^*S^{\mathsf{T}})$
- If $S(w^*, b^*) = 0$, then the quadratic forms of $\left(\sqrt{p}S(\widehat{w}_p, \widehat{b}_p)\right)_{p=1}^{\infty}$ $\left(p(\widehat{w}_p, \widehat{b}_p)^{\mathsf{T}}S^{\mathsf{T}}(SC^*S^{\mathsf{T}})^{-1}S(\widehat{w}_p, \widehat{b}_p)\right)_{p=1}^{\infty}$

converge to the distribution χ_s^2 with s degrees of freedom

CLT for MLPs: estimated covariance

- $\bullet \ \, \text{ Define an estimate } \hat{\mathcal{C}}_p = \begin{cases} \hat{A}_p^{-1} \hat{B}_p \hat{A}_p^{-1} & \text{if } p \in \mathbb{N}, \hat{A}_p \text{ is regular} \\ \hat{B}_p & \text{if } p \in \mathbb{N}, \hat{A}_p \text{ is singular} \end{cases}$
- Then $\hat{C}_p \to C^*$ in probability $\left(\Longrightarrow \lim_{p \to \infty} \mu(\hat{C}_p \text{ is regular}) = 1 \right)$
- If $S(w^*, b^*) = 0$, then also the quadratic forms

$$\left(p(\widehat{w}_p,\widehat{b}_p)^{\mathsf{T}}S^{\mathsf{T}}(S\widehat{C}_pS^{\mathsf{T}})^{-1}S(\widehat{w}_p,\widehat{b}_p)\right)_{p=1}^{\infty}$$
 converge to the distribution χ_s^2

Test procedure for $S(w^*, b^*) = 0$

- 1. For given observations $(x_1, y_1), ..., (x_p, y_p)$, get [= compute] (\hat{w}_p, \hat{b}_p)
- 2. For i = 1,...,p, get $\nabla_{(w,b)} \mathcal{L}\left(F_{(\widehat{w}_n,\widehat{b}_n)}(x_i),y_i\right)$ and $\nabla^2_{(w,b)} \mathcal{L}\left(F_{(\widehat{w}_n,\widehat{b}_n)}(x_i),y_i\right)$
- 3. Get \hat{A}_p , \hat{B}_p and check whether any is singular
- 4. Then the test cannot proceed, else get \hat{C}_n
- 5. Get $p(\hat{w}_p, \hat{b}_p)^T S^T(S\hat{C}_p S^T)^{-1} S(\hat{w}_p, \hat{b}_p)$ and compare with the distribution χ_s^2 6. If \downarrow > the quantile $\chi_s^2(1-\alpha), a \in (0,1), reject S(w^*, b^*) = 0$