
Neural networks from the point of view of function
approximation theory



Neural net as a composition of simple functions

A complicated mapping can be expressed as composition of simple
mappings.

The idea of approximation of complicated functions using simple
functions was studied years ago by many mathematicians such as
Hilbert or Kolmogorov.

For neural nets, the most important employed simple functions are:

Logistic activation function on R, f (x) = 1
1+e−x

Radial basis function (RBF) on R|I |, fv (x) = exp
(
− 1

2x
TΣvx

)
RBF with Σv as identity matrix, fv (x) = e−

1
2 ||x||

2



Hilbert’s 13th problem (1900)

Introduced at the 2nd world mathematical congress in Paris as one of
23 most important open problems of mathematics.

Hilbert considered the seventh-degree equation:

x7 + ax3 + bx2 + cx + 1 = 0

and asked whether its solution, x, considered as a function of the
three variables a, b and c, can be expressed as the composition of a
finite number of arbitrary finite sums and, apart from them, only at
most two-variable functions.

His conjecture was that the answer is negative.



Kolmogorov-Arnold representation theorem (1957)

Showed that Hilbert’s conjecture was wrong and proved that the
composed functions, apart from sums, can be even of only 1 variable.

Let k ∈ N , k ≥ 2, and C (〈0, 1〉k) denotes class of continuous
functions on the k − dimensional unit cube 〈0, 1〉k . Then, there exist
k(2k + 1) continuous functions on 〈0, 1〉,
h1,1, ..., h1,2k+1, h2,1, ....hk,2k+1 such that

(∀f ∈ C(〈0, 1〉k))(∃g1, ..., g2k+1 – functions continuous

on a suitable subset of R)(∀x ∈ 〈0, 1〉k)

f (x) =
2k+1∑
j=1

gj(
k∑

i=1

hi ,j(xi ))



Vitushkin theorem (1954)

However, Kolmogorov theorem can not be generalized to continuously
differentiable functions.

This would contradict the Vitushkin theorem:

Let r , k ∈ N , k ≥ 2. Then there exist r-times continuously
differentiable functions of k variables, that can not be expressed as
the composition of a finite number of arbitrary finite sums and, apart
from them, only of function of at most k-1 variables.



Multilayer perceptron - function approximation

We will discuss MLP with the activations

zv = f

 ∑
u∈i(v)

w(u,v)zu + θv


For further analysis, we need the following notation:

Set of all linear functionals on Rk

Lk = {ϕ : Rk → R&(∃a ∈ Rk)(∃b ∈ R)(∀x ∈ Rk)ϕ(x) = aT x + b}

Linear span of a tuple of vectors (ξ1, ..., ξn).

[ξ1, ...ξn] = {ξ : (∃α1, ..., αn ∈ R)ξ =
n∑

k=1

αkξk}



Important sets of functions

For each k, n ∈ N and each function f : R → R

Λ
(n)
k (f ) =

⋃
ξ1∈Lk

...
⋃
ξn∈Lk

[f ◦ ξ1, ..., f ◦ ξn]λ

Λk(f ) =
∞⋃
n=1

Λ
(n)
k (f )

For each set of functions Φ on set X and for each subset Y ⊂ X the
symbol Φ|Y represents restriction of Φ to Y .

Φ|Y = {ψ : (∃ϕ ∈ Φ)ψ = ϕ|Y }



Important Banach spaces I

Banach space Lp(µ), p ≥ 1, µ is a finite measure on Rk

Lp(µ) = {ϕ : Rk → R&

∫
Rk

|ϕ|pdµ < +∞}

Banach space C (X ), where X ⊂ Rk is bounded closed (i.e., compact)

C (X ) = {ϕ : X → R&ϕ is a continuous function on X}



Important Banach spaces II

Let k ∈ N , f : Rk → R, x ∈ Rk and α = (α1, ..., αk) ∈ N k
0 . If the

partial derivative ∂α1+...+αk f
∂α1x1...∂

αk xk
exists, we will denote it as

Dαf =
∂α1+...+αk f

∂α1x1...∂αkxk

Let k ∈ N , µ be a non-negative measure on Rk and a set S ⊂ Rk

fulfills µ(Rk \ S) = 0, then S is called support of the measure µ.

Let k ∈ N , p ≥ 1,m ∈ N0. Define

Cm,p(µ) = {ϕ : Rk → R&(∀α ∈ N k
0 )||α|| ≤ m⇒

∫
Rk

|Dαϕ|pdµ < +∞}

This space, more precisely the space of disjoint classes of functions
that are equal almost surely with respect to µ, is called Sobolev space.



Important Banach spaces III

We can see that Lp(µ) is a special case of Cm,p(µ) for m = 0.

Let X ⊂ Rk be a compact set, then:

Cm(X ) = {ϕ : X → R&(∀α ∈ N k
0 )||α|| ≤ m⇒ Dαϕ is continuous on X}

is a Banach space.

We can see that C (X ) is a special case of Cm(X ) for m = 0.



Corresponding networks

From the definition of Λ
(n)
k (f ) follows that Λ

(n)
k (f ) is a set of all

mappings that can be computed by a MLP with k input neurons, one
hidden layer with n neurons and one output neuron.

We assume that the output neuron is linearly dependent on the
neurons in the hidden layer, i.e., the activation function is identity.

Let a function f : R → R be Borel measurable, non-constant and
bounded. Let k ∈ N , p ∈ 〈1,∞),X ⊂ Rk be a compact set and µ be a
finite Borel measure defined on Rk . Then:

1 Λk(f ) is dense in Lp(µ),

2 if f is continuous, Λk(f )|X is dense in C (X ).



Differentiability vs. approximation

We would like to see whether the differentiability of a function f can
be refelcted in its approximation by Λk(f ).

We can show that Lp(µ) and C (X ) can be replaced with analogous
spaces of differentiable functions.

Let m ∈ N and a function f ∈ Cm(R) be non-constant and bounded. Let
k ∈ N , p ∈ 〈1,∞),X ⊂ Rk be a compact set and µ be a finite Borel
measure defined on Rk . Then:

1 Λk(f )|X is dense in Cm(X ),

2 if all partial derivations are bounded up to a degree m, then Λk(f ) is
dense in Cm,p(µ),

3 if µ has a compact support, then Λk(f ) is dense in Cm,p(µ).



Approximation with sigmoid activation functions I

Commonly, as sigmoid function is known any function f such that:

f : R →< L,U > & f is non-decreasing Borel measureable &

L < U & lim
t→−∞

f (t) = L & lim
t→+∞

f (t) = U

logistic function

arctan function

f (x) =
1

π
arctan(x) +

1

2

Usually, it is also required that a sigmoid function is non-decreasing.

Any sigmoid function is borel measurable, non-constant and bounded.
Therefore, the theorems from the previous slides can be applied.
However, it allows and additional kind of aproximations, more similar
to Kolmogorov theorem.



Approximation with sigmoid activation functions II

Let k ∈ N , k ≥ 2 and f : R → 〈0, 1〉 be a sigmoid function. Let

Σ(f ) =

{
s : 〈0, 1〉k → R&(∃g , h1, ..., hk ∈ Λ1(f ))(∀x ∈ 〈0, 1〉k)

s(x) = g
( k∑

i=1

hi (xi )
)}

Then:
∞⋃
n=1

⋃
ξ1,...,ξn∈Σ(f )

[ξ1, ..., ξn]λ is dense in C (〈0, 1〉k).



Corresponding networks

We get a set of all mappings that can be computed by incompletely
connected MLPs with the following properties:

k input neurons,
1 output neuron,
each hidden neuron is connected with exactly one input neuron,
activation function f is assigned to hidden neurons.

As to Σ(f ):

1 layer of k hidden neurons,

As to
⋃∞

n=1

⋃
ξ1,...,ξn∈Σ(f )[ξ1, ..., ξn]λ:

2 layers of hidden neurons,
the 1st layer of hidden neurons contains k-times as many hidden
neurons as the 2nd layer.


