
Most common kinds of neural networks

Culloch & Pitts neuron

1940s

Binary-state elements with threshold s

y = Θ(
k∑

i=1

wixi − s)

Θ(x) =

{
1 if x ∈ R+

0

0 if x ∈ R−

It can express any logical function

Not yet a proper artificial neural network - does not include adaptive
dynamics.

Hebbian rule

Any two neurons that are repeatedly active at the same time will tend
to become ’associated’.

Change of weight of the connection between two neurons is
proportional to the correlation of their activities.

∆wi = εyxi , i = 1, ..., k

input signals x = (x1, ..., xk),
output signal y,
learning rate ε, possibly dependent on x (then denoted εx)

Perceptron

Rosenblatt - 1958

yr = Θ(
k∑

i=1

wixi)

Threshold from Culloch & Pitts neuron can be expressed with −w1

for x0 = 1

Perceptron learning

Learning is performed in epochs.

In each epoch:

A vector (learning sample) xr , r ∈ {1, ..., n} is introduced to the
perceptron and it reacts with output yr .
Weigths w = (w1, ...,wk) are adjusted unless yr fulfills:

yr =

{
1 if sample r is class of Cr

0 if sample r is not class of Cr

weight wi is changed by ∆w(i,r) = εx(δ(r , s)− yr)xi

δ(r , s) =

{
1 |r , s = 1, ..., n, r = s

0 |r , s = 1, ..., n, r 6= s.

The solution exists if the classes are linearly separable.

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning animation

Perceptron learning convergence

Perceptron Convergence Theorem I.

Assume set of learning samples X ⊂ Rk for which there exists system of
weights (w∗i)i=1,...k leading to their correct classification into two linearly
separable classes. Let X have the following properties:

1 (∃M ∈ R+)(∀x ∈ X) 0 <
k∑

i=1
x2
i < M

2 (∃δ ∈ R+)(∀x ∈ X)(∀r ∈ {1, ..., n})x ∈ Cr ⇒
k∑

i=1
w∗i xi > δ & x /∈

Cr ⇒
∑k

i=1 w ∗i xi < −δ

Perceptron learning convergence

Perceptron Convergence Theorem II.

Then the learning algorithm for which εx is given by the formula

εx =
1√∑k
i=1 x

2
i

finds the system of weights w∗i for any initial setting of weights wi and any
finite set of learning samples X in a finite number of iterations.

Associative memory - motivation

Aristotle observed that human memory connects items that are:

Similar
Contrary
Occur in close proximity (spatial)
Occur in close succession (temporal)

AM idea comes from the Hebbian rule

Cells that fire together wire together.

Associative memory

Layer of units defined by:

y = Θ(
k∑

i=1

wixi − s)

Information that should be stored is entered through pairs of binary
vectors (x , y)

x = (x1, ..., xk) - input pattern, y = (y1, ..., yn) - output pattern

To obtain a satisfactory behaviour of the network, we require k >> n.

Associative memory

Associative memory - training

Set all weights wi to 0

For each pair (x (j), y (j)) from a training set of p training samples:

change wi,r to 1 if xi = yr = 1

After p pairs were introduced:

(∀i ∈ {1, ..., k})(∀r ∈ {1, ..., n})wi ,r = max
j=1,...,p

x
(j)
i y

(j)
r

Associative memory - choosing a threshold

The threshold s is usually chosen s = l − 1
2 , where l is the number of

”1” in input patterns.

It can happen that the output yq, q = {1, ..., n} is 1 even if y
(i)
q was 0

0 for x (i) at the input.

With s = l − 1
2 , the network is intolerant to errors

With lowering s, we achieve better tolerance, but a wrong yq = 1
occurs more frequently.

Linear Associative memory

Absence of non-linear activation function

Units are simplified:

yr =
k∑

i=1

wi ,rxi

y = Wx

Superposition principle

x (j) ∈ R, y (j) ∈ Rn

Real-valued inputs might be very useful (e.g. colours of a picture)

Auto Associative memory

Linear Associative memory - learning weights

Optimizing weights W ∗ to minimize loss function γ

p∑
j=1

γ(y (j),W ∗x (j)) = min
W∈Rk,n

p∑
j=1

γ(y (j),Wx (j))

for the common loss function least squares this leads to quadratic
optimization

E (W ∗) = min
W∈Rk,n

E (W),where

E (W) =

p∑
j=1

n∑
r=1

(
y

(j)
r −

k∑
i=1

wi ,rx
j
i

)2|W ∈ Rk,n

Hopfield network

The output signal of each neuron is sent to the input of other neurons.

zi (t) = 2Θ
(k∑

j=1

w(j ,i)zj(t − 1)
)
− 1,wi ,i = 1

At each time t ∈ N , exactly one neuron i ∈ {1, ..., k} is changing its
activity value (asynchronous behavior).

Hopfield network - steady state

Hopfield network can be studied in terms of interacting particles
known from statistical physics.

Energy function:

H(z) = −1

2

k∑
j ,i=1

w(i ,j)zjzi |z ∈ {−1, 1}k

From the function H(z) we can see if the network is in steady state
(local minimum)

Every Hopfield network will get into steady state after few iterations.

Hopfield network - weights settings

Common setting for independent training samples:

w(i ,j) =
1

k

p∑
ν=1

x
(ν)
i y

(ν)
j

Works well for p << k.

Hopfield network - summary

Important for theoretical study of recurrent Neural nets properties

Does not work well if input vectors are correlated

Vector z(0) is not invariant to simple transformations (shift, rotation,
size change)

Multilayer perceptron

Topology organized in layers

Neurons within a layer are not connected

Signals are transferred only from input neurons to output neurons
(feed-forward neural network)

Multilayer perceptron - backpropagation algorithm I

We are trying to find a system of weights w∗ ∈ R|I×H∪H×O|
minimizing

E (w) =

p∑
j=1

γ(y (j),Fw (x (j)))

The most commonly used lost function is the sum of squares (SSE),
typically multiplied by 1

2 :

E (w) =
1

2

p∑
j=1

||y (j) − Fw (x (j))||2 =
1

2

p∑
j=1

|O|∑
i=1

(y
(j)
i − (Fw (x (j)))i)

2

Multilayer perceptron - backpropagation algorithm II.

The minimum of the function E is found iteratively:
w(u,v) = w(u,v) − α∆w(u,v), where

∆w(u,v) =
∂E

∂w(u,v)
(w)

The direction of weight change is opposite to the direction of the
gradient of E (the steepest descent of E)

Multilayer perceptron - backpropagation algorithm III.

Assume the SSE loss function and any differentiable activation
function f (logistic, arctan).

For links (u, v) ∈ H ×O :

∂E

∂w(u,v)
(w) = −

p∑
j=1

(y
(j)
v − z

(j)
v)f

′
(
∑
h∈H

w(h,v)z
(j)
h + Θv)z

(j)
u

For links (u, v) ∈ I ×H :

∂E

∂w(u,v)
= −

p∑
j=1

∑
o∈O

(y (j)
o − z (j)

o)f
′
(
∑
h∈H

w(h,o)z
(j)
h + Θo)w(v ,o)

∂z
(j)
v

∂w(u,v)
(w)

= −
p∑

j=1

∑
o∈O

(y (j)
o −z (j)

o)f
′
(
∑
h∈H

w(h,o)z
(j)
h +Θo)f

′
(
∑
i∈I

w(i,v)x
(j)
i +Θv)w(v ,o)x

(j)
u

Multilayer perceptron - backpropagation algorithm IV.

This algorithm often leads to a local minimum instead of a global
minimum

The function E has |H|(|I|+ |O|) variables and it is very complicated
with many local minima.

To overcome this issue, there are many approaches that help us to get
out of local minimum by changing α (cyclic learning rate, learning
rate annealing, ...)

Autoencoder I.

Autoencoder is is trained to attempt to copy its input to its output.

Hidden layer h that describes a code used to represent the input.

Consists of two parts:

encoder h = f (x)
decoder r = g(h)

The net aims to learn g(f (x)) = x as precisely as possible.

Autoencoder II.

Autoencoder may be thought of as a special case of feedforward
network

It is typically trained using minibatch back-propagation.

Typically used in unsupervised way.

Undercomplete autoencoder

We hope that training the autoencoder will result in h taking on
useful properties.

⇒ Constrain h to have a smaller dimension than input x .

With nonlinear encoder and decoder functions it can learn a more
powerful nonlinear generalization of PCA.

If the encoder and decoder are allowed too much capacity, the
autoencoder can learn to perform the copying task without extracting
useful information

Similar situation can happen with overcomplete autoencoders in
which the hidden code has dimension greater than the input.

Solution is to use regularization

PCA vs autoencoder

Figure: Dimensionality reduction of the MNIST dataset.

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. ”Reducing the dimensionality

of data with neural networks.” science 313.5786 (2006): 504-507.

Autoencoder regularization

Use a loss function that encourages the model to have other
properties besides the ability to copy its input to its output.

Regularization techniques:

sparsity of the representation,
small derivatives of the representation,
robustness to noise or to missing inputs.

A regularized autoencoder can be nonlinear and overcomplete but still
learn something useful about the data distribution.

Sparse autoencoder

An autoencoder whose training criterion involves a sparsity
penalty Ω(h) on the code layer h, in addition to the reconstruction
error:

L
(
x , g(f (x))

)
+ Ω(h),

where g(h) is the decoder output and h = f (x) is the encoder output.

For example:

Ω(h) = λ
∑
i

|hi |,

where λ is a hyperparameter.

Denoising autoencoder I.

Rather than adding a penalty Ω to the cost function, change the
reconstruction error term of the cost function.
A denoising autoencoder (DAE) minimizes

L
(
x , g(f (x̃))

)
,

where x̃ is a copy of x that has been corrupted by some form of noise.
Denoising training forces f and g to implicitly learn the structure of
pdata(x)

Denoising autoencoder II.

A corruption process C (x̃ |x) represents a conditional distribution over
corrupted samples x̃ given a training sample x .

The autoencoder learns a reconstruction distribution preconstruct(x |x̃)
estimated from training pairs (x , x̃) as follows:

1 Sample a training example x from the training data.
2 Sample a corrupted version x̃ from C (x̃ |x)
3 Use (x , x̃) as a training example for estimating the autoencoder

reconstruction distribution preconstruct(x |x̃) = pdecoder(x |h) with h the
output of encoder f (x̃) and pdecoder defined by a decoder g(h).

Contractive autoencoder

Another strategy for regularizing an autoencoder is to use a penalty
Ω, as in sparse autoencoders,

L
(
x , g(f (x))

)
+ Ω(h, x),

with Ω that penalizes derivatives:

Ω(h, x) = λ
∑
i

‖∇xhi‖2 .

This forces the model to learn a function that does not change much
when x changes slightly.

Convolutional neural network (CNN)

Specialized kind of neural network for processing data that has a
known grid-like topology.

E.g. time-series data (1D grid of values), image data (2D grid of
pixels).

CNNs are simply neural networks that use convolution in place of
matrix multiplication in at least one of their layers.

Convolution I.

One dimensional convolution:

s(t) = (x ∗ w)(t) =
∞∑
−∞

x(a)w(t − a),

where x is input, w denotes a kernel and the output s is sometimes
also called feature map.

Convolution for two-dimensional input X requires a 2D kernel K :

S(i , j) = (X ∗ K)(i , j) =
∑
m

∑
n

X (m, n)K (i −m, j − n)

or

S(i , j) = (K ∗ X)(i , j) =
∑
m

∑
n

X (i −m, j − n)K (m, n).

Convolution II.

The commutative property of convolution arises because of kernel flip.

The index into the input increases, but the index into the kernel
decreases.

In practice, cross-correlation is used instead, which is the same as
convolution but without flipping the kernel:

S(i , j) = (K ∗ X)(i , j) =
∑
m

∑
n

X (i + m, j + n)K (m, n).

Many machine learning libraries implement cross-correlation but call it
convolution.

Cross-correlation

CNNs motivation I.

Sparse interactions

Reduces the memory requirements.
Improves statistical efficiency.
Requires fewer operations.

CNN interactions

CNN receptive field

CNNs motivation II.

Parameter sharing

The same parameter is used for more than one function in a model.
Efficient in memory requirements.

Equivariance to translation

If the input changes, the output changes in the same way.
If we move the object in the input, its representation will move the
same amount in the output.
Convolution is not naturally equivariant to some other transformations,
such as changes in the scale or rotation of an image. Other
mechanisms are necessary for handling these kinds of transformations.

Convolutional layer

Each convolutional layer usually consists of three stages:
Convolution stage

It performs several convolutions in parallel to produce aset of linear
activations.

Detector stage

Each linear activation is run through a nonlinear activation function
(e.g. rectified linear activation function).

Pooling stage

Replaces the output of the net at a certain location with a summary
statistic of the nearby outputs (e.g. max pooling).
Makes the representation approximately invariant to small translations
of the input.
Improves the statistical efficiency and the computational efficiency and
reduces memory requirements.

Convolutional layer stages

Recurrent neural network (RNN)

Processing sequence of values x (1), ..., x (N)

RNNs can process sequences of variable length.

A network trained on short sequence is able to predict long sequence
and vice versa.

Going from multilayer networks to RNNs → parameters sharing.

Unfolding computational graph I.

Classical form of a dynamic system:

s(t) = f (s(t−1); θ)

Simple recurrent neural network:

h(t) = f (h(t−1), x (t), θ)

Unfolding computational graph II.

Typical RNN adds additional output layers.

h(t) is a kind of lossy summary of the task relevant aspects of the
past sequence inputs up to time t

The topologies of RNNs differ in their ability to hold information from
the past.

The unfolding process has two major advantages:

Regardless of the sequence length, the learned model always has the
same input size.
It is possible to use the same activation function f with the same
parameters at every time step.

RNN examples I.

RNNs differ in the unfolded graph topology.

Examples:

Networks that produce an output at each time step and have recurrent
connections between hidden units.

RNN examples II.

RNNs differ in the unfolded graph topology.

Examples:

Networks that produce an output at each time step and have recurrent
connections only from the output at one time step to the hidden units
at the next time step.

RNN examples III.

RNNs differ in the unfolded graph topology.

Examples:

Network with recurrent connections between hidden units that read an
entire sequence and then produce a signle output.

Recurrent neural networks - Forward propagation

a(t) =b + Wh(t−1) + Ux (t),

h(t) =tanh(a(t)),

o(t) =c + Vh(t),

ŷ (t) =softmax(ot)

b and c are biases

U,V and W are weight matrices (input-to-hidden, hiden-to-output
and hidden to hidden).

Recurrent neural network - Loss

Total loss is sum of the losses over all time steps:

L
(
{x (1), ..., x (τ)}, {y (1), ..., y (τ)} =

∑
t

L(t)
)

= −
∑
t

log pmodel

(
y (t)|{x (1), ..., x (t)}

)
Computing the gradient of this loss function is expensive .

Forward pass through unrolled graph followed by backward propagation
pass.
The runtime O(τ) can not be reduced by parallelization.
States computed in forward pass have to be stored. → memory cost is
O(τ).

Recurrent neural network - Back Propagation

Algorithm: Back propagation trough time (BPTT)

The network is unrolled and traditional back propagation is applied.

The Challenge of Long-Term Dependencies

Simple recurrent neural network recurrence relation:

h(t) = Wh(t−1)

might be simplified to:
h(t) = W th(0).

If W admits an eigendecomposition of the form:

W = QΛQT ,

with orthogonal Q, the recurrence may be simplified to:

h(t) = QΛtQTh(0).

Eigenvalues with magnitude less than one decays to zero and
eigenvalues with magnitude greater than one explodes.

Long-term dependencies

The gradient of a long-term interaction has exponentially smaller
magnitude than the gradient of a short-term interaction.

It might take a very long time to learn long-term
dependencies,because the signal about these dependencies will tend
to be hidden by the smallest fluctuations arising from short-term
dependencies

Learning long dependencies in traditional RNN via SGD is almost
impossible for sequences of only length 10 or 20.

Long-term dependencies - solutions

Design that operates at multiple time scales:

The part of the model that operate at fine-grained time scales can
handle small details
The part of the model that operate at coarse-grained time scales can
transfer information from the distant past.

Add skip connections trough time.

Have units with linear self-connections with the weight near one
(similar to running average). Such hidden units are called ”Leaky
units”.

Long Short Term Memory (LSTM)

Gated RNN.

Similar to leaky units but the connection weights may change at each
time step instead of using a manually chosen constant.

Can accumulate information and forget old states.

Instead of manually deciding when to forget the state, the network
learns it by itself.

Vanilla RNN vs LSTM RNN

(a) Vanilla RNN cell

(b) LSTM RNN cell

LSTM cell in detail I.

Cell state stores internal information that is used in output gate.

It is regulated by forget and input gates.

LSTM cell in detail II.

Forget gate is a sigmoid layer that decides what information will be
removed from the cell state.

LSTM cell in detail III.

Input gate is a sigmoid layer that decides which values will be
updated.

Another tanh layer creates a vector of new candidate values that
could be added to the cell state.

LSTM cell in detail IV.

The old cell state C(t−1) is updated.

LSTM cell in detail V.

The output (hidden state) combines the tanh of the cell state and a
sigmoid layer called output gate.

Extreme learning machine (ELM)

⧫ Feedforward ANN with 1 hidden layer, scalar product outputs

• layer sizes: input 𝑘, hidden 𝑙, output 𝑚

⧫ Activation function of the 𝑗th hidden neuron: 𝑎𝑗 ∙ 𝑤𝑗 , 𝑏𝑗 : ℝ
𝑘 → ℝ

with the weight 𝑤𝑗 and bias 𝑏𝑗, e.g. 𝑎𝑗 ∙ 𝑤𝑗 , 𝑏𝑗 =
1

1+𝑒
− 𝑥⊺𝑤𝑗+𝑏𝑗

⧫ ⇒ ELM output for 𝑥 ∈ ℝ𝑘 is σ𝑗=1
𝑙 𝛽𝑗𝑎𝑗 𝑥 𝑤𝑗 , 𝑏𝑗 , with 𝛽𝑗 ∈ ℝ

𝑚

⧫ Random: 𝑤𝑗 (~ synaptic operations), 𝑏𝑗 (in 𝑎𝑗 ~ somatic operations)

Notation for ELM training data

⧫ Input-target pairs 𝑥1, 𝑡1 , … , 𝑥𝑁, 𝑡𝑁 ∈ ℝ𝑘 × ℝ𝑚

⧫ Activities of the hidden neurons for 𝑥 ∈ ℝ𝑘:

ℎ 𝑥 = ℎ1 𝑥 ,… , ℎ𝑙 𝑥 = 𝑎1 𝑥 𝑤1, 𝑏1 , … , 𝑎𝑙 𝑥 𝑤𝑙 , 𝑏𝑙

• allow to define a random kernel 𝐾 𝑥, 𝑦 = ℎ 𝑥 ℎ 𝑦 ⊺

⧫ Matrix notation: 𝑇 =
𝑡1
⊺

⋮
𝑡𝑁
⊺
, 𝐻 =

ℎ 𝑥1
⋮

ℎ 𝑥𝑁

, thus 𝐻 is random

ELM learning

⧫ What is learnt? The non-random weigths: 𝛽 = 𝛽1, … , 𝛽𝑙
⊺ ∈ ℝ𝑙×𝑚

⧫ 𝛽 is learnt through minimizing 𝛽 1
𝜎1 + 𝐶 𝐻𝛽 − 𝑇 2

𝜎2

• 1, 2 − matrix norms, 𝜎1, 𝜎1 > 0, 𝐶 ∈ (0,+∞]

• 𝛽 1
𝜎1 − regularization term, 𝐻𝛽 − 𝑇 2

𝜎2 − error term

⧫ If no regularization ~𝐶 = +∞ , then argmin 𝐻𝛽 − 𝑇 2
𝜎2 =𝐻+𝑇

• 𝐻+ −Moore-Penrose generalized inverse: 𝐻𝐻+𝐻 = 𝐻,𝐻+𝐻𝐻+ = 𝐻+

Randomized convolutional ANN

⧫ Convolutional neural network (CNN) in which the

weights from inputs to receptive fields (kernels)

i.e., input layer ⟶ convolutional layer are random

⧫ Further supposed layers: combinatorial, fully connected

• combinatorial performs pooling ⟹ has no weights

⧫ Learned weights: combinatorial ⟶ output layer (fully connected)

Properties of a randomized CNN

⧫ If the receptive field size is 𝑟 × 𝑟 and

the input dimension is 𝑑, then each

convolutional layer map has the size 𝑑 − 𝑟 + 1 × 𝑑 − 𝑟 + 1

⧫ The matrix 𝐴𝑚
ic of random weights between

the input and convolutional layer is identical

for any convolutional layer map 𝑚

Echo state network (ESN)

⧫ Recurrent neural network with random weights

⧫ Random are all weights to the hidden layer

• connections from the input layer

+ recurrent connection from itself + the output layer

⧫ Weights hidden layer → output layer are learned

⧫ ESN terminology: hidden layer − reservoir, output layer − readout

Activity evolution in an ESN

⧫ Dimensions: input 𝑥 ∈ ℝ𝑑, hidden layer ℎ ∈ ℝ𝑟, output 𝑦 ∈ ℝ

⧫ Activity of the hidden layer for 𝑡 ∈ ℕ:

ℎ 𝑡 = 𝛼ℎ 𝑡 − 1 + 1 − 𝛼 𝜎 𝑊ir𝑥 𝑡 +𝑊rrℎ 𝑡 − 1 + 𝑤ro𝑦 𝑡 − 1

with 𝑊ir ∈ ℝ
𝑑×𝑟 ,𝑊rr ∈ ℝ

𝑟×𝑟 , 𝑤ro ∈ ℝ
𝑟 , 𝛼 ∈ ℝ,𝜎 − a nonlinearity

• if no nomentum (𝛼 = 0): ℎ 𝑡 = 𝜎 𝑊ir𝑥 𝑡 +𝑊rrℎ 𝑡−1 +𝑤ro𝑦 𝑡−1

⧫ Activity of the output: 𝑦 𝑡 = 𝑤io
⊺ 𝑥 𝑡 +𝑤ro

⊺ ℎ 𝑡 ,𝑤io ∈ ℝ
𝑑,𝑤ro ∈ ℝ

𝑟

Bayesian neural network (BNN)

⧫ Stochastic neural network trained using the Bayesian approach

⧫ Parameters 𝜃 determining the function 𝑦 = 𝐹 𝑥 = 𝐹𝜃 𝑥 that

the network learns, are viewed as random variables

• prior distribution 𝑝 𝜃 , posterior 𝑝 𝜃 𝐷 conditioned on data 𝐷

• data are 𝐷= 𝑥1,𝑦1 ,…, 𝑥𝑝,𝑦𝑝 , denote𝐷𝑥 = 𝑥1,…,𝑥𝑝 , 𝐷𝑦 = 𝑦1,…,𝑦𝑝

⧫ Often with superposed random noise 𝜖: 𝑦 = 𝐹 𝑥 + 𝜖

BNNs with restricted stochasticity

⧫ Only parameters of 1/several last layer(s) are random

⧫ Suitable representation for them: probabilistic graphical model

Computing a BBN prediction

⧫ BBN prediction: a random variable with a distribution 𝑝 𝑦 𝑥, 𝐷

• a stochastic approximation of 𝐹 𝑥 for an input 𝑥

• computed using the posterior 𝑝 𝜃 𝐷 : 𝑝 𝑦 𝑥,𝐷 = 𝑝 𝑦 𝑥,𝜃´ 𝑝 𝜃´ 𝐷 𝑑𝜃´

⧫ Provided the inputs 𝐷 are independent of model parameters 𝜃,

the posterior fulfills the Bayes theorem 𝑝 𝜃 𝐷 =
𝑝 𝐷𝑦|𝐷𝑥,𝜃 𝑝 𝜃

 𝑝 𝐷𝑦|𝐷𝑥,𝜃´ 𝑝 𝜃´ 𝑑𝜃´

BNN distributional assumptions

⧫ The distribution of 𝜃 is usually assumed Gaussian: 𝜃~𝑁 𝜇, Σ

⧫ For BNNs performing regression, the predictive distribution of 𝑦

𝑝 𝑦 𝑥,𝐷 is assumed Gaussian with same variance: 𝑦~𝑁 𝐹𝜃 , Σ

⧫ For BNNs performing classification, 𝑝 𝑦 𝑥,𝐷 is categorical with

the set of categories given by 𝐹𝜃 𝑥 : 𝑦~Cat 𝐹𝜃 𝑥

⧫ In any case, for the whole dataset 𝑝 𝐷𝑦 𝐷𝑥, 𝜃 = ς 𝑥,𝑦 ∈𝐷𝑝 𝑦 𝑥,𝜃

BBN estimate of the output

⧫ An estimate ො𝑦 of 𝑦 relies on sampling 𝜃 from data 𝐷

• a set Θ is sampled from the distribution of 𝜃

⧫ If the network performs regression: ො𝑦 𝑥 =
1

Θ
σ𝜃∈Θ𝐹𝜃 𝑥

• it has the covariance cov Ƹ𝑦 𝑥,𝐷 =
1

Θ −1
σ𝜃∈Θ 𝐹𝜃 𝑥 − Ƹ𝑦 𝐹𝜃 𝑥 − Ƹ𝑦 ⊺

⧫ If it classifies into classes 𝑐 = 1,… , 𝐶: ො𝑦 𝑥 = argmax
𝑐

Ƹ𝑝𝑐

• Ƹ𝑝𝑐 is the estimated probability of 𝑐: Ƹ𝑝𝑐 =
1

Θ
𝜃 ∈ Θ 𝐹𝜃 𝑥 = 𝑐

BNNs with stochastic activation

⧫ Random are not parameters, but activation function inputs

• their distributions depend on outputs from previous layers

⧫ For a BNN with layers 𝐿0, … , 𝐿𝑛, activation function 𝑎:

𝐿0 𝑥 = 𝑥, inter-layer step 𝐿𝑘 𝑥 = 𝑎 𝜃𝑘 𝑥 , and 𝐿𝑛 𝑥 = 𝑦

• random is 𝜃𝑘 𝑥 ~𝑁 𝑊𝑘𝐿𝑘−1 𝑥 + 𝑏𝑘, Σ with 𝑊𝑘 − matrix, 𝑏𝑘 − vector

𝑝 𝐷𝑦 , 𝐿1 𝑥 ,… , 𝐿𝑛−1 𝑥 𝐷𝑥 = ෑ

𝑥,𝑦 ∈𝐷

ෑ
𝑘=1

𝑛

𝑝 𝐿𝑘 𝑥 𝐿𝑘−1 𝑥

Activation ⋈ parameter stochaticity

⧫ Consider a BNN with layers 𝐿0, … , 𝐿𝑛, activation function 𝑎

and a step 𝐿𝑘 𝑥 = 𝑎 𝑊𝐿𝑘−1 𝑥 +𝑏 with 𝑊~𝑁 𝜇𝑊,Σ𝑊 ,𝑏~𝑁 𝜇𝑏,Σ𝑏

⧫ It can be shown equivalent to stochastic activation

𝐿𝑘 𝑥 = 𝑎 𝜃 𝑥 , 𝜃 𝑥 ~𝑁 𝜇𝑊𝐿𝑘−1 𝑥 + 𝜇𝑏, ⊗𝑘−1
⊺Σ𝑊⊗𝑘−1 +Σ𝑏

where ⊗𝑘−1=
𝐿𝑘−1 𝑥 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐿𝑘−1 𝑥

Setting BNN priors

⧫ Choosing the parameter prior 𝑝 𝜃 − often not intuitive

⧫ Frequently used default is uncorrelated normal prior : 𝜃~𝑁 𝜎𝐼

• however, it is not supported by theoretical arguments

⧫ Connection of priors with BNN learning:

• parameter learning from the loss yields 𝜃 = argmax
𝜃

𝑝 𝐷𝑦 𝐷𝑥 , 𝜃

• Using the prior ⟹ posterior learning 𝜃 = argmax
𝜃

𝑝 𝐷𝑦 𝐷𝑥 , 𝜃 𝑝 𝜃

Noise in BNNs

⧫ 3 noise models: noise completely at random (a),

noise at random (b), noise not at random (c)

• they can be represented as probabilistic graphical models:

𝑦 + noise = ො𝑦, dependences are represented with directed edges

Data augmentation for BNNs

⧫ Data augmentation in general complements the collected data

with results of transforming them with a transformation

entailing no or only predictable label change.

⧫ For a BNN, it entails changing the posterior :

𝑝 𝜃 𝐷 ⟶ 𝑝 𝜃 𝐷,Augmen𝑡 ∝ 𝑝 𝜃 න𝑝 𝑦 𝑥′, 𝜃 𝑝 𝑥′ 𝑥,Augmen𝑡 𝑑𝑥′

• Augment = distribution of the augmentation results

BNNs and back-propagation

⧫ For a BNN loss function 𝐿, back-propagating 𝛻𝜃𝐿

is not possible due to the stochasticity of 𝜃

⧫ Getting around this problem is called reparametrization trick:

𝜃 = 𝑡 𝜀, 𝜙 , 𝜀~𝑄, with a parameter 𝜙𝜖ℝ and a fixed 𝑄

• the non-stochasticity of 𝜙 allows back-propagating 𝛻𝜙𝐿

Hierarchical BNNs

⧫ Several parameters 𝜃1, … , 𝜃𝐼 depend on another common

parameter 𝜉 ⟹ the joint probability of 𝜃1, … , 𝜃𝐼 , 𝜉 is

𝑝 𝜃1, … , 𝜃𝐼 , 𝜉 𝐷1, … , 𝐷𝐼 ∝ 𝑝 𝜉 ෑ

𝑖=1

𝐼

𝑝 𝜃𝑖 𝜉 𝑝 𝐷𝑖,𝑦 𝐷𝑖,𝑥 , 𝜃𝑖

⧫ Can be used for metalearning of BNNs:

• the parameters 𝜃1, … , 𝜃𝐼 correspond to features of 𝐼 BNNs

• the parameter 𝜉 corresponds to their common metafeatures

Advantages of BNNs

1. They are a natural approach to quantify uncertainty.

2. Points out of the training distribution are predicted

with high 𝑝 𝜃 𝐷 (called high epistemic uncertainty)

• instead of blindly giving a wrong prediction

• allows inference: draw 𝜃𝑖~𝑝 𝜃 𝐷 and infer 𝑦𝑖 = 𝐹𝜃𝑖 𝑥 , 𝑖 = 1,… ,𝑁

3. The prior distribution of 𝜃 is made explicit

BNNs in active learning

⧫ Based on estimating the uncertainty of ො𝑦 𝑥 :

1. A set of samples is drawn, defined Θ = 𝜃𝑖|𝑖 = 1,… ,𝑁, 𝜃𝑖~𝑝 𝜃 𝐷

2. The uncertainty is estimated with Σ𝑥 =
σ𝜃∈Θ 𝐹𝜃 𝑥 −ො𝑦 𝑥 𝐹𝜃 𝑥 −ො𝑦 𝑥

⊺

Θ −1

⧫ Among the unevaluated points 𝑥 available for evaluation

is evaluated the one maximizing the uncertainty Σ𝑥

• evaluation – regression: obtaining the value, classification: labelling

	randomization.pdf
	Randomized ANN learning
	Extreme learning machine (ELM)
	Snímek číslo 3
	ELM and random projection
	Notation for ELM training data
	ELM learning
	Optimization task for ELM learning
	ELM optimization solution
	ELM solution if 𝑁>𝑙
	ELM solution if 𝑁≤𝑙
	Randomized convolutional ANNs
	Snímek číslo 12
	Properties of randomized CNNs
	Echo state network (ESN)
	Snímek číslo 15
	Activity evolution in an ESN
	ESN with inhibit connections

	nmr2.pdf
	Folie 1
	Folie 2: What will it be about?
	Folie 3: Extreme learning machine (ELM)
	Folie 4
	Folie 5: Notation for ELM training data
	Folie 6: ELM learning
	Folie 7: Randomized convolutional ANN
	Folie 8
	Folie 9: Properties of a randomized CNN
	Folie 10: Echo state network (ESN)
	Folie 11
	Folie 12: Activity evolution in an ESN
	Folie 13: Bayesian neural network (BNN)
	Folie 14: BNNs with restricted stochasticity
	Folie 15: Computing a BBN prediction
	Folie 16: BNN distributional assumptions
	Folie 17: BBN estimate of the output
	Folie 18: BNNs with stochastic activation
	Folie 19: Activation Schleife parameter stochaticity
	Folie 20: Setting BNN priors
	Folie 21: Noise in BNNs
	Folie 22: Data augmentation for BNNs
	Folie 23: BNNs and back-propagation
	Folie 24: Hierarchical BNNs
	Folie 25: Advantages of BNNs
	Folie 26: BNNs in active learning

