Most common kinds of neural networks

• 1940s

• Binary-state elements with threshold *s*

$$y = \Theta(\sum_{i=1}^k w_i x_i - s)$$

$$\Theta(x) = egin{cases} 1 & ext{if } x \in \mathcal{R}_0^+ \ 0 & ext{if } x \in \mathcal{R}^- \end{cases}$$

- It can express any logical function
- Not yet a proper artificial neural network does not include adaptive dynamics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Any two neurons that are repeatedly active at the same time will tend to become 'associated'.
- Change of weight of the connection between two neurons is proportional to the correlation of their activities.

$$\Delta w_i = \epsilon y x_i, i = 1, ..., k$$

- input signals $x = (x_1, ..., x_k)$,
- output signal y,
- learning rate ε , possibly dependent on x (then denoted ε_x)

Perceptron

• Rosenblatt - 1958

$$y_r = \Theta(\sum_{i=1}^k w_i x_i)$$

• Threshold from Culloch & Pitts neuron can be expressed with $-w_1$ for $x_0 = 1$

- Learning is performed in epochs.
- In each epoch:
 - A vector (learning sample) x_r , $r \in \{1, ..., n\}$ is introduced to the perceptron and it reacts with output y_r .
 - Weigths $w = (w_1, ..., w_k)$ are adjusted unless y_r fulfills:

$$y_r = \begin{cases} 1 & \text{if sample } r \text{ is class of } C_r \\ 0 & \text{if sample } r \text{ is not class of } C_r \end{cases}$$

• weight w_i is changed by $\Delta w_{(i,r)} = \varepsilon_x (\delta(r,s) - y_r) x_i$

$$\delta(r,s) = \begin{cases} 1 & |r,s=1,...,n,r=s \\ 0 & |r,s=1,...,n,r \neq s. \end{cases}$$

• The solution exists if the classes are linearly separable.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

▲□▶ ▲圖▶ ▲目▶ ▲目▶ ▲目 ののの

Perceptron Convergence Theorem I.

Assume set of learning samples $X \subset \mathcal{R}^k$ for which there exists system of weights $(w_i^*)_{i=1,...k}$ leading to their correct classification into two linearly separable classes. Let X have the following properties:

Perceptron Convergence Theorem II.

Then the learning algorithm for which ε_x is given by the formula

$$\varepsilon_x = \frac{1}{\sqrt{\sum_{i=1}^k x_i^2}}$$

finds the system of weights w_i^* for any initial setting of weights w_i and any finite set of learning samples X in a finite number of iterations.

• Aristotle observed that human memory connects items that are:

- Similar
- Contrary
- Occur in close proximity (spatial)
- Occur in close succession (temporal)
- AM idea comes from the Hebbian rule
 - Cells that fire together wire together.

• Layer of units defined by:

$$y = \Theta(\sum_{i=1}^k w_i x_i - s)$$

- Information that should be stored is entered through pairs of binary vectors (x, y)
- $x = (x_1, ..., x_k)$ input pattern, $y = (y_1, ..., y_n)$ output pattern
- To obtain a satisfactory behaviour of the network, we require k >> n.

Associative memory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

- Set all weights w_i to 0
- For each pair $(x^{(j)}, y^{(j)})$ from a training set of p training samples:
 - change $w_{i,r}$ to 1 if $x_i = y_r = 1$
- After *p* pairs were introduced:

$$(\forall i \in \{1, ..., k\})(\forall r \in \{1, ..., n\})w_{i,r} = \max_{j=1,...,p} x_i^{(j)} y_r^{(j)}$$

- The threshold s is usually chosen $s = l \frac{1}{2}$, where l is the number of "1" in input patterns.
- It can happen that the output $y_q, q = \{1, ..., n\}$ is 1 even if $y_q^{(i)}$ was 0 0 for $x^{(i)}$ at the input.
- With $s = l \frac{1}{2}$, the network is intolerant to errors
- With lowering *s*, we achieve better tolerance, but a wrong *y*_{*q*} = 1 occurs more frequently.

- Absence of non-linear activation function
- Units are simplified:

$$y_r = \sum_{i=1}^k w_{i,r} x_i$$
$$y = W x$$

- Superposition principle
- $x^{(j)} \in \mathcal{R}, y^{(j)} \in \mathcal{R}^n$
- Real-valued inputs might be very useful (e.g. colours of a picture)

Auto Associative memory

Original

Degraded

Reconstruction

<ロ> (四) (四) (三) (三) (三) (三)

 \bullet Optimizing weights ${\it W}^*$ to minimize loss function γ

$$\sum_{j=1}^{p} \gamma(y^{(j)}, W^* x^{(j)}) = \min_{W \in \mathcal{R}^{k,n}} \sum_{j=1}^{p} \gamma(y^{(j)}, W x^{(j)})$$

for the common loss function least squares this leads to quadratic optimization

$$E(W^*) = \min_{W \in \mathcal{R}^{k,n}} E(W), \text{ where}$$
$$E(W) = \sum_{j=1}^{p} \sum_{r=1}^{n} (y_r^{(j)} - \sum_{i=1}^{k} w_{i,r} x_i^j)^2 | W \in \mathcal{R}^{k,n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hopfield network

• The output signal of each neuron is sent to the input of other neurons.

$$z_i(t) = 2\Theta\Big(\sum_{j=1}^k w_{(j,i)} z_j(t-1)\Big) - 1, w_{i,i} = 1$$

At each time t ∈ N, exactly one neuron i ∈ {1,..., k} is changing its activity value (asynchronous behavior).

- Hopfield network can be studied in terms of interacting particles known from statistical physics.
- Energy function:

$$H(z) = -\frac{1}{2}\sum_{j,i=1}^{k} w_{(i,j)}z_jz_i|z \in \{-1,1\}^k$$

- From the function H(z) we can see if the network is in *steady state* (local minimum)
- Every Hopfield network will get into steady state after few iterations.

• Common setting for independent training samples:

$$w_{(i,j)} = \frac{1}{k} \sum_{\nu=1}^{p} x_i^{(\nu)} y_j^{(\nu)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Works well for $p \ll k$.

- Important for theoretical study of recurrent Neural nets properties
- Does not work well if input vectors are correlated
- Vector z(0) is not invariant to simple transformations (shift, rotation, size change)

Multilayer perceptron

- Topology organized in layers
- Neurons within a layer are not connected
- Signals are transferred only from input neurons to output neurons (feed-forward neural network)

Multilayer perceptron - backpropagation algorithm I

 We are trying to find a system of weights w^{*} ∈ R^{|I×H∪H×O|} minimizing

$$E(w) = \sum_{j=1}^{p} \gamma(y^{(j)}, F_w(x^{(j)}))$$

• The most commonly used lost function is the *sum of squares (SSE)*, typically multiplied by $\frac{1}{2}$:

$$E(w) = \frac{1}{2} \sum_{j=1}^{p} ||y^{(j)} - F_w(x^{(j)})||^2 = \frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{|\mathcal{O}|} (y_i^{(j)} - (F_w(x^{(j)}))_i)^2$$

• The minimum of the function E is found iteratively: $w_{(u,v)} = w_{(u,v)} - \alpha \Delta w_{(u,v)}$, where

$$\Delta w_{(u,v)} = \frac{\partial E}{\partial w_{(u,v)}}(w)$$

• The direction of weight change is opposite to the direction of the gradient of *E* (the steepest descent of *E*)

Multilayer perceptron - backpropagation algorithm III.

- Assume the SSE loss function and any differentiable activation function f (logistic, arctan).
- For links $(u, v) \in \mathcal{H} \times \mathcal{O}$:

$$\frac{\partial E}{\partial w_{(u,v)}}(w) = -\sum_{j=1}^{p} (y_{v}^{(j)} - z_{v}^{(j)}) f'(\sum_{h \in \mathcal{H}} w_{(h,v)} z_{h}^{(j)} + \Theta_{v}) z_{u}^{(j)}$$

• For links $(u, v) \in \mathcal{I} \times \mathcal{H}$:

$$\frac{\partial E}{\partial w_{(u,v)}} = -\sum_{j=1}^{p} \sum_{o \in \mathcal{O}} (y_{o}^{(j)} - z_{o}^{(j)}) f'(\sum_{h \in \mathcal{H}} w_{(h,o)} z_{h}^{(j)} + \Theta_{o}) w_{(v,o)} \frac{\partial z_{v}^{(j)}}{\partial w_{(u,v)}} (w)$$
$$= -\sum_{j=1}^{p} \sum_{o \in \mathcal{O}} (y_{o}^{(j)} - z_{o}^{(j)}) f'(\sum_{h \in \mathcal{H}} w_{(h,o)} z_{h}^{(j)} + \Theta_{o}) f'(\sum_{i \in \mathcal{I}} w_{(i,v)} x_{i}^{(j)} + \Theta_{v}) w_{(v,o)} x_{u}^{(j)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- This algorithm often leads to a local minimum instead of a global minimum
- The function E has $|\mathcal{H}|(|\mathcal{I}| + |\mathcal{O}|)$ variables and it is very complicated with many local minima.
- To overcome this issue, there are many approaches that help us to get out of local minimum by changing α (cyclic learning rate, learning rate annealing, ...)

Autoencoder I.

- Autoencoder is is trained to attempt to copy its input to its output.
- Hidden layer *h* that describes a *code* used to represent the input.
- Consists of two parts:
 - encoder h = f(x)
 - decoder r = g(h)
- The net aims to learn g(f(x)) = x as precisely as possible.

Autoencoder II.

- Autoencoder may be thought of as a special case of feedforward network
- It is typically trained using minibatch back-propagation.
- Typically used in unsupervised way.

- We hope that training the autoencoder will result in *h* taking on useful properties.
- \Rightarrow Constrain *h* to have a smaller dimension than input *x*.
- With nonlinear encoder and decoder functions it can learn a more powerful nonlinear generalization of PCA.
- If the encoder and decoder are allowed too much capacity, the autoencoder can learn to perform the copying task without extracting useful information
- Similar situation can happen with *overcomplete autoencoders* in which the hidden code has dimension greater than the input.
- Solution is to use regularization

PCA vs autoencoder

Figure: Dimensionality reduction of the MNIST dataset.

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." science 313.5786 (2006): 504-507.

- Use a loss function that encourages the model to have other properties besides the ability to copy its input to its output.
- Regularization techniques:
 - sparsity of the representation,
 - small derivatives of the representation,
 - robustness to noise or to missing inputs.
- A regularized autoencoder can be nonlinear and overcomplete but still learn something useful about the data distribution.

 An autoencoder whose training criterion involves a sparsity penalty Ω(h) on the code layer h, in addition to the reconstruction error:

$$L(x,g(f(x))) + \Omega(h),$$

where g(h) is the decoder output and h = f(x) is the encoder output. • For example:

$$\Omega(h) = \lambda \sum_i |h_i|,$$

where λ is a hyperparameter.

Denoising autoencoder I.

- Rather than adding a penalty Ω to the cost function, change the reconstruction error term of the cost function.
- A denoising autoencoder (DAE) minimizes

 $L(x,g(f(\tilde{x}))),$

where \tilde{x} is a copy of x that has been corrupted by some form of noise. Denoising training forces f and g to implicitly learn the structure of $p_{data}(x)$

- A corruption process C(x̃|x) represents a conditional distribution over corrupted samples x̃ given a training sample x.
- The autoencoder learns a reconstruction distribution $p_{\text{reconstruct}}(x|\tilde{x})$ estimated from training pairs (x, \tilde{x}) as follows:
 - Sample a training example x from the training data.
 - **2** Sample a corrupted version \tilde{x} from $C(\tilde{x}|x)$
 - Use (x, x̃) as a training example for estimating the autoencoder reconstruction distribution p_{reconstruct}(x|x̃) = p_{decoder}(x|h) with h the output of encoder f(x̃) and p_{decoder} defined by a decoder g(h).

• Another strategy for regularizing an autoencoder is to use a penalty Ω , as in sparse autoencoders,

$$L(x,g(f(x))) + \Omega(h,x),$$

with Ω that penalizes derivatives:

$$\Omega(h,x) = \lambda \sum_{i} \|\nabla_{x} h_{i}\|^{2}.$$

• This forces the model to learn a function that does not change much when x changes slightly.

- Specialized kind of neural network for processing data that has a known grid-like topology.
- E.g. time-series data (1D grid of values), image data (2D grid of pixels).
- CNNs are simply neural networks that use convolution in place of matrix multiplication in at least one of their layers.

• One dimensional convolution:

$$s(t) = (x * w)(t) = \sum_{-\infty}^{\infty} x(a)w(t-a),$$

where x is input, w denotes a kernel and the output s is sometimes also called feature map.

• Convolution for two-dimensional input X requires a 2D kernel K:

$$S(i,j) = (X * K)(i,j) = \sum_{m} \sum_{n} X(m,n)K(i-m,j-n)$$

or

$$S(i,j) = (K * X)(i,j) = \sum_{m} \sum_{n} X(i-m,j-n)K(m,n).$$

- The commutative property of convolution arises because of kernel flip.
 - The index into the input increases, but the index into the kernel decreases.
- In practice, **cross-correlation** is used instead, which is the same as convolution but without flipping the kernel:

$$S(i,j) = (K * X)(i,j) = \sum_{m} \sum_{n} X(i+m,j+n)K(m,n).$$

• Many machine learning libraries implement cross-correlation but call it convolution.

Cross-correlation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

- Sparse interactions
 - Reduces the memory requirements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Improves statistical efficiency.
- Requires fewer operations.

CNN interactions

CNN receptive field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Parameter sharing

- The same parameter is used for more than one function in a model.
- Efficient in memory requirements.

• Equivariance to translation

- If the input changes, the output changes in the same way.
- If we move the object in the input, its representation will move the same amount in the output.
- Convolution is not naturally equivariant to some other transformations, such as changes in the scale or rotation of an image. Other mechanisms are necessary for handling these kinds of transformations.

• Each convolutional layer usually consists of three stages:

- Convolution stage
 - It performs several convolutions in parallel to produce aset of linear activations.
- Detector stage
 - Each linear activation is run through a nonlinear activation function (e.g. rectified linear activation function).
- Pooling stage
 - Replaces the output of the net at a certain location with a summary statistic of the nearby outputs (e.g. max pooling).
 - Makes the representation approximately invariant to small translations of the input.
 - Improves the statistical efficiency and the computational efficiency and reduces memory requirements.

Convolutional layer stages

- Processing sequence of values $x^{(1)}, ..., x^{(N)}$
- RNNs can process sequences of variable length.
 - A network trained on short sequence is able to predict long sequence and vice versa.

• Going from multilayer networks to RNNs \rightarrow parameters sharing.

Unfolding computational graph I.

• Classical form of a dynamic system:

$$s^{(t)} = f(s^{(t-1)}; \theta)$$

• Simple recurrent neural network:

$$h^{(t)} = f(h^{(t-1)}, x^{(t)}, \theta)$$

- Typical RNN adds additional output layers.
- $h^{(t)}$ is a kind of lossy summary of the task relevant aspects of the past sequence inputs up to time t
- The topologies of RNNs differ in their ability to hold information from the past.
- The unfolding process has two major advantages:
 - Regardless of the sequence length, the learned model always has the same input size.

• It is possible to use the same activation function f with the same parameters at every time step.

RNN examples I.

- RNNs differ in the unfolded graph topology.
- Examples:
 - Networks that produce an output at each time step and have recurrent connections between hidden units.

RNN examples II.

- RNNs differ in the unfolded graph topology.
- Examples:
 - Networks that produce an output at each time step and have recurrent connections only from the output at one time step to the hidden units at the next time step.

RNN examples III.

- RNNs differ in the unfolded graph topology.
- Examples:
 - Network with recurrent connections between hidden units that read an entire sequence and then produce a signle output.

Recurrent neural networks - Forward propagation

$$a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)},$$

 $h^{(t)} = \tanh(a^{(t)}),$
 $o^{(t)} = c + Vh^{(t)},$
 $\hat{y}^{(t)} = \operatorname{softmax}(o^{t})$

- b and c are biases
- *U*, *V* and *W* are weight matrices (input-to-hidden, hiden-to-output and hidden to hidden).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Total loss is sum of the losses over all time steps:

$$L(\{x^{(1)}, ..., x^{(\tau)}\}, \{y^{(1)}, ..., y^{(\tau)}\} = \sum_{t} L^{(t)})$$
$$= -\sum_{t} \log p_{\text{model}}(y^{(t)} | \{x^{(1)}, ..., x^{(t)}\})$$

- Computing the gradient of this loss function is expensive .
 - Forward pass through unrolled graph followed by backward propagation pass.
 - The runtime $O(\tau)$ can not be reduced by parallelization.
 - States computed in forward pass have to be stored. \rightarrow memory cost is $O(\tau)$.

- Algorithm: Back propagation trough time (BPTT)
- The network is unrolled and traditional back propagation is applied.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Challenge of Long-Term Dependencies

• Simple recurrent neural network recurrence relation:

 $h^{(t)} = W h^{(t-1)}$

might be simplified to:

$$h^{(t)} = W^t h^{(0)}.$$

If W admits an eigendecomposition of the form:

$$W = Q \Lambda Q^T$$
,

with orthogonal Q, the recurrence may be simplified to:

$$h^{(t)} = Q \Lambda^t Q^T h^{(0)}.$$

• Eigenvalues with magnitude less than one decays to zero and eigenvalues with magnitude greater than one explodes.

- The gradient of a long-term interaction has exponentially smaller magnitude than the gradient of a short-term interaction.
- It might take a very long time to learn long-term dependencies, because the signal about these dependencies will tend to be hidden by the smallest fluctuations arising from short-term dependencies
- Learning long dependencies in traditional RNN via SGD is almost impossible for sequences of only length 10 or 20.

• Design that operates at multiple time scales:

- The part of the model that operate at fine-grained time scales can handle small details
- The part of the model that operate at coarse-grained time scales can transfer information from the distant past.

- Add skip connections trough time.
- Have units with linear self-connections with the weight near one (similar to running average). Such hidden units are called "Leaky units".

- Gated RNN.
- Similar to leaky units but the connection weights may change at each time step instead of using a manually chosen constant.
- Can accumulate information and forget old states.
- Instead of manually deciding when to forget the state, the network learns it by itself.

Vanilla RNN vs LSTM RNN

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

- Cell state stores internal information that is used in output gate.
- It is regulated by forget and input gates.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Forget gate is a sigmoid layer that decides what information will be removed from the cell state.

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Input gate is a sigmoid layer that decides which values will be updated.
- Another tanh layer creates a vector of new candidate values that could be added to the cell state.

$$\begin{split} i_t &= \sigma \left(W_i {\cdot} [h_{t-1}, x_t] \ + \ b_i \right) \\ \tilde{C}_t &= \tanh(W_C {\cdot} [h_{t-1}, x_t] \ + \ b_C) \end{split}$$

• The old cell state $C_{(t-1)}$ is updated.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

• The output (hidden state) combines the tanh of the cell state and a sigmoid layer called output gate.

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

(日)、

æ

Extreme learning machine (ELM)

- Feedforward ANN with 1 hidden layer, scalar product outputs
 - layer sizes: input k, hidden l, output m
- Activation function of the j^{th} hidden neuron: $a_j(\cdot | w_j, b_j) : \mathbb{R}^k \to \mathbb{R}$

with the weight w_j and bias b_j , e.g. $a_j(\cdot | w_j, b_j) = \frac{1}{1+e^{-(x^{T}w_j+b_j)}}$

- \Rightarrow ELM output for $x \in \mathbb{R}^k$ is $\sum_{j=1}^l \beta_j a_j(x|w_j, b_j)$, with $\beta_j \in \mathbb{R}^m$
- Random: w_j (~ synaptic operations), b_j (in a_j ~ somatic operations)

Notation for ELM training data

- Input-target pairs $(x_1, t_1), \dots, (x_N, t_N) \in \mathbb{R}^k \times \mathbb{R}^m$
- Activities of the hidden neurons for $x \in \mathbb{R}^k$:

 $h(x) = (h_1(x), \dots, h_l(x)) = (a_1(x|w_1, b_1), \dots, a_l(x|w_l, b_l))$

• allow to define a random kernel $K(x, y) = h(x)h(y)^{\mathsf{T}}$

• Matrix notation: $T = \begin{bmatrix} t_1^T \\ \vdots \\ t_N^T \end{bmatrix}$, $H = \begin{bmatrix} h(x_1) \\ \vdots \\ h(x_N) \end{bmatrix}$, thus *H* is random

ELM learning

- What is learnt? The *non-random* weigths: $\beta = [\beta_1, ..., \beta_l]^{\mathsf{T}} \in \mathbb{R}^{l \times m}$
- β is learnt through *minimizing* $\|\beta\|_1^{\sigma_1} + C\|H\beta T\|_2^{\sigma_2}$
 - $\| \|_1, \| \|_2$ matrix norms, $\sigma_1, \sigma_1 > 0, C \in (0, +\infty)$
 - $\|\beta\|_1^{\sigma_1}$ regularization term, $\|H\beta T\|_2^{\sigma_2}$ error term
- If no regularization (~ $C = +\infty$), then $\arg \min ||H\beta T||_2^{\sigma_2} = H^+T$
 - H^+ Moore-Penrose generalized inverse: $HH^+H = H, H^+HH^+ = H^+$

• • • • •

Randomized convolutional ANN

Convolutional neural network (CNN) in which the

weights from inputs to receptive fields (kernels)

i.e., input layer \rightarrow convolutional layer are random

- Further supposed layers: combinatorial, fully connected
 - combinatorial performs pooling \Rightarrow has no weights
- ◆ Learned weights: combinatorial → output layer (fully connected)

Properties of a randomized CNN

• If the receptive field size is $r \times r$ and

the input dimension is d, then each

convolutional layer map has the size $(d - r + 1) \times (d - r + 1)$

• The matrix A_m^{ic} of random weights between

the input and convolutional layer is identical

for any convolutional layer map m

Echo state network (ESN)

- Recurrent neural network with random weights
- Random are all weights to the hidden layer
 - connections from the input layer

+ recurrent connection from itself + the output layer

- Weights hidden layer \rightarrow output layer are learned
- ESN terminology: hidden layer reservoir, output layer readout

Activity evolution in an ESN

- Dimensions: input $x \in \mathbb{R}^d$, hidden layer $h \in \mathbb{R}^r$, output $y \in \mathbb{R}$
- Activity of the hidden layer for $t \in \mathbb{N}$:

 $h[t] = \alpha h[t-1] + (1-\alpha)\sigma (W_{ir}x[t] + W_{rr}h[t-1] + w_{ro}y[t-1])$

with $W_{ir} \in \mathbb{R}^{d \times r}$, $W_{rr} \in \mathbb{R}^{r \times r}$, $w_{ro} \in \mathbb{R}^{r}$, $\alpha \in \mathbb{R}$, $\sigma - a$ nonlinearity

- if no nomentum ($\alpha = 0$): $h[t] = \sigma (W_{ir}x[t] + W_{rr}h[t-1] + w_{ro}y[t-1])$
- Activity of the output: $y[t] = w_{io}^{T} x[t] + w_{ro}^{T} h[t], w_{io} \in \mathbb{R}^{d}, w_{ro} \in \mathbb{R}^{r}$

Bayesian neural network (BNN)

- Stochastic neural network trained using the Bayesian approach
- Parameters θ determining the function $y = F(x) = F_{\theta}(x)$ that

the network learns, are viewed as *random variables*

- prior distribution $p(\theta)$, posterior $p(\theta|D)$ conditioned on data D
- data are $D = \{(x_1, y_1), ..., (x_p, y_p)\}$, denote $D_x = \{x_1, ..., x_p\}, D_y = \{y_1, ..., y_p\}$
- Often with superposed random noise ϵ : $y = F(x) + \epsilon$

BNNs with restricted stochasticity

- Only parameters of 1/several last layer(s) are random
- Suitable representation for them: probabilistic graphical model

Computing a BBN prediction

- BBN prediction: a *random variable* with a *distribution* p(y|x, D)
 - a stochastic approximation of F(x) for an input x
 - computed using the posterior $p(\theta|D)$: $p(y|x, D) = \int p(y|x, \theta') p(\theta'|D) d\theta'$
- Provided the inputs D are independent of model parameters θ ,

the posterior fulfills the Bayes theorem $p(\theta|D) = \frac{p(D_y|D_x,\theta)p(\theta)}{\int p(D_y|D_y,\theta')p(\theta')d\theta'}$

BNN distributional assumptions

- The distribution of θ is usually assumed Gaussian: $\theta \sim N(\mu, \Sigma)$
- For BNNs performing *regression*, the predictive distribution of yp(y|x,D) is assumed Gaussian with same variance: $y \sim N(F_{\theta}, \Sigma)$
- For BNNs performing *classification*, p(y|x,D) is categorical with the set of categories given by $F_{\theta}(x)$: $y \sim Cat(F_{\theta}(x))$
- In any case, for the whole dataset $p(D_y | D_x, \theta) = \prod_{(x,y) \in D} p(y | x, \theta)$

BBN estimate of the output

- An estimate \hat{y} of y relies on sampling θ from data D
 - a set Θ is sampled from the distribution of θ
- If the network performs *regression:* $\hat{y}(x) = \frac{1}{|\Theta|} \sum_{\theta \in \Theta} F_{\theta}(x)$
 - it has the covariance $\operatorname{cov}(\hat{y}|x, D) = \frac{1}{|\Theta|-1} \sum_{\theta \in \Theta} (F_{\theta}(x) \hat{y}) (F_{\theta}(x) \hat{y})^{\mathsf{T}}$
- If it *classifies* into classes $c = 1, ..., C: \hat{y}(x) = \arg \max_{c} \hat{p}_{c}$
 - \hat{p}_c is the estimated probability of c: $\hat{p}_c = \frac{1}{|\Theta|} |\{\theta \in \Theta | F_{\theta}(x) = c\}|$

BNNs with stochastic activation

- Random are not parameters, but activation function inputs
 - their distributions depend on outputs from previous layers
- For a BNN with *layers* $L_0, ..., L_n$, *activation function* a:

 $L_0(x) = x$, inter-layer step $L_k(x) = a(\theta_k(x))$, and $L_n(x) = y$

• random is $\theta_k(x) \sim N(W_k L_{k-1}(x) + b_k, \Sigma)$ with W_k – matrix, b_k – vector

$$p(D_y, L_1(x), \dots, L_{n-1}(x) | D_x) = \prod_{(x,y) \in D} \prod_{k=1}^n p(L_k(x) | L_{k-1}(x))$$

Activation \bowtie parameter stochaticity

• Consider a BNN with layers L_0, \dots, L_n , activation function a

and a step $L_k(x) = a(WL_{k-1}(x) + b)$ with $W \sim N(\mu_W, \Sigma_W), b \sim N(\mu_b, \Sigma_b)$

• It can be shown *equivalent to* stochastic activation

 $L_{k}(x) = a(\theta(x)), \ \theta(x) \sim N(\mu_{W}L_{k-1}(x) + \mu_{b}, (\bigotimes_{k-1})^{\mathsf{T}}\Sigma_{W} \bigotimes_{k-1} + \Sigma_{b})$ where $\bigotimes_{k-1} = \begin{pmatrix} L_{k-1}(x) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & L_{k-1}(x) \end{pmatrix}$

• • • • •

Setting BNN priors

- Choosing the parameter prior $p(\theta)$ often not intuitive
- Frequently used default is uncorrelated normal prior: $\theta \sim N(\sigma I)$
 - however, it is not supported by theoretical arguments
- Connection of priors with BNN learning:
 - parameter learning from the loss yields $\hat{\theta} = \arg \max_{\theta} p(D_y | D_x, \theta)$
 - Using the prior \Rightarrow posterior learning $\hat{\theta} = \arg \max_{\rho} p(D_y | D_x, \theta) p(\theta)$

Noise in **BNNs**

• 3 noise models: noise completely at random (a),

noise at random (b), noise not at random (c)

• they can be represented as *probabilistic graphical models*:

Data augmentation for BNNs

- Data augmentation in general complements the collected data with results of transforming them with a transformation entailing no or only predictable label change.
- For a BNN, it *entails changing the posterior*:

 $p(\theta|D) \rightarrow p(\theta|D, Augment) \propto p(\theta) \int p(y|x', \theta)p(x'|x, Augment)dx'$

Augment = distribution of the augmentation results

BNNs and back-propagation

• For a BNN loss function *L*, back-propagating $\nabla_{\theta} L$

is not possible due to the stochasticity of θ

• Getting around this problem is called *reparametrization trick*:

 $\theta = t(\varepsilon, \phi), \varepsilon \sim Q$, with a parameter $\phi \in \mathbb{R}$ and a fixed Q

• the non-stochasticity of ϕ allows *back-propagating* $\nabla_{\phi} L$

Hierarchical BNNs

• Several *parameters* $\theta_1, \dots, \theta_I$ *depend on* another common

parameter
$$\xi \Rightarrow$$
 the joint probability of $\theta_1, \dots, \theta_I, \xi$ is
 $p(\theta_1, \dots, \theta_I, \xi | D_1, \dots, D_I) \propto p(\xi) \prod_{i=1}^I p(\theta_i | \xi) p(D_{i,y} | D_{i,x}, \theta_i)$

- Can be used for *metalearning* of BNNs:
 - the parameters $\theta_1, \dots, \theta_I$ correspond to features of *I* BNNs
 - the parameter ξ corresponds to their common metafeatures

Advantages of BNNs

- 1. They are a natural approach to *quantify uncertainty*.
- 2. Points out of the training distribution are predicted with high $p(\theta|D)$ (called high *epistemic* uncertainty)
 - instead of blindly giving a wrong prediction
 - allows *inference*: draw $\theta_i \sim p(\theta|D)$ and infer $y_i = F_{\theta_i}(x), i = 1, ..., N$
- 3. The prior distribution of θ is made explicit

BNNs in active learning

- Based on estimating the *uncertainty of* $\hat{y}(x)$:
 - 1. A set of samples is drawn, defined $\Theta = \{\theta_i | i = 1, ..., N, \theta_i \sim p(\theta | D)\}$
 - 2. The uncertainty is estimated with $\Sigma_x = \frac{\sum_{\theta \in \Theta} (F_{\theta}(x) \hat{y}(x)) (F_{\theta}(x) \hat{y}(x))^{\mathsf{T}}}{|\Theta| 1}$
- Among the unevaluated points x available for evaluation

is evaluated the one maximizing the uncertainty Σ_{χ}

• evaluation - regression: obtaining the value, classification: labelling