
Basic concepts of artificial neural networks



Neural network inspiration

(a) Neuron in biological neural network

(b) Neuron in artificial neural network



Neural network inspiration

Biological Neural Network (BNN) Artificial Neural Network (ANN)

Soma (Neuron body) Node
Dendrites Input
Synapse Weights or Interconnections

Axon Output



Neural network as a graph

Neurons

Let u, v ∈ V are neurons represented as vertices of a graph.

Connection links

The tuples (u, v) or (v , u) are connection links represented as oriented
edges. C ⊂ V × V is the set of all edges.

Neural net

(V, C) is a graph representing a neural net.



Communication with environment

In our definition, the neurons can communicate with each other.

We need to communicate with an environment $.

Input and output connection links

ε ⊂ {$} × V ∪ V × {$}

Input node

If (($, u) ∈ ε, then the node u receives signals from the environment.

Output node

If ((v , $) ∈ ε, then the node v transfers signals to the environment.



Topology

The triplet (V ,C , ε) is called topology.



Input and output sets

Let us define:

input set of neuron v :

i(v) : {u : u ∈ V&(u, v) ∈ C}

output set of neuron v :

o(v) : {u : u ∈ V&(v , u) ∈ C}



Neuron types with respect to connections

Input nodes:

I = {v : v ∈ V&i(v) = ∅}

Output nodes:

O = {v : v ∈ V&o(v) = ∅}

Hidden nodes

H = V \ (I ∪ O)



Important neural net conditions

The graph (V, C) is non-redundant.

(∀v ∈ V)(∃u ∈ V){(u, v), (v , u)} ∩ C 6= ∅

A neuron can transfer a signal to other neurons only if it received a
signal from one or more neurons or from the environment.

A neuron that received a signal has to transfer a signal to other
neurons or to the environment.



Neuron types with respect to connections

Figure: Feed forward neural network organized in layers



Neuron activity

Time: T ⊂ R
T −t = T ∩ (−∞, t〉
We can define the activity of a neuron v :

zv : T → R

The activity can have range restrictions:

zv : T → 〈0, 1〉 - normalized activity
zv : T → 〈−1, 1〉

Network state: z(t) = (zv (t))v∈V



Global active dynamics

At each time t the network performs a mapping Ft of input neuron
activities to output neuron activities.

We define the set of all feasible mappings Ft

The system (Ft)t∈T is called active dynamics of the network

Requirements:

The same domain for all elements
A finite number of parameters

(∃k ∈ N )(∀t ∈ T )(∃Dt ⊂ {T −t → R|I|})(∃πt : Rk → {Dt → R|O|})
Ft = πt(Rk)

Restrictions on possible parameter values

(∃k ∈ N )(∀t ∈ T )(∃Wt ⊂ Rk)(∃Dt ⊂ {T −t → R|I|})
(∃πt :Wt → {Dt → R|O|})Ft = πt(Wt)



Local active dynamics

System of functions (ψv
t )t∈T ,v∈V\I with the following properties:

1 For each t ∈ T , each Ft can be expressed as a composition of
mappings ψv

t that transform the activities of the input neurons
i(v), v ∈ V \ I into the activity of the neuron v at the time t.

2 For each time t and each v ∈ V \ I, the function ψv
t is taken from a

set Ψv
t of possible functions.

3 For each time t and each v ∈ V \ I, all elements of Ψv
t have the same

domain.

(∀v ∈ V \ I)(∃kv ∈ N )(∀t ∈ T )(∃W v
t ⊂ Rkv )

(∃Dv
t ⊂ {T−t → R|i(v)|})(∃πvt : W v

t → {Dv
t → R})Ψv

t = πvt (W v
t )



Local active dynamics II.

We can assign each parameter to a neuron v ∈ V \ I or to a
connection (u, v) ∈ C.

An example neuron parameter: threshold θv .

A usual connection parameter: connection weight w(u,v).

The activity zv of a neuron v ∈ V \ I is often defined as:

zv (t) = f (
∑

u∈i(v)

w(u,v)(t)zu(t) + θ(t)),

where f is a function called activation function.

For output neurons, an identity activation function is often used.



Time-independent global active dynamics

Time independent version is very common in practical applications

Global active dynamics:

(∃D ⊂ R|I|)F = {F : D → R|O|, }

or with a parametrization:

(∃k ∈ N )(∃W ⊂ Rk)(∃D ⊂ R|I|)(∃π : W → {D → R|O|})
F = π(W ) (1)



Time-independent local active dynamics

Local active dynamics:

(∀v ∈ V \ I)(∃kv ∈ N )(∃Wv ⊂ Rkv )(∃Dv ⊂ R|i(v)|)

(∃πv : Wv → {Dv → R})Ψv = πv (Wv )

Time-independent neuron activity:

zv = f (
∑

u∈i(v)

w(u,v)zu + θv )



Adaptive dynamics

We have shown that the neuron activity can be time-dependent.

Global and local dynamics can be time-dependent as well:

(Fτ )τ∈T , or (ψv
τ )τ∈T

They depend on the following factors:

Previous evolution of Ft , (Fτ )τ∈T −t \{t}
Previous evolution and current value of neuron activities (zv |T −t )v∈V
Information from a supervisor:

correct (required) value that the network should output,
a non-negative value expressing dissimilarity of output and correct
value (loss function),
a non-negative value expressing supervisor’s satisfaction.



Loss function

Mapping γ : R|O| ×R|O| → R+
0 .

Function γ(d , a) is called error function or loss function, where d is
the correct value and a is output of the network.

Common loss functions:

Sum of least squares: γ(a, d) =
∑|O|

i=1 |ai − di |2

Cross entropy: γ(a, d) = −
∑|O|

i=1

(
di logai + (1− di )log(1− ai )

)
Logistic loss: γ(a, d) = −da + log(ea + e−a) = log ea+e−a

eda



Dropout

⧫ Temporarily removing (dropping out) some input

or hidden neurons during network training

⧫ Neurons are dropped out randomly,

according to a given distribution

⧫ Originally proposed for and most often used

during training of multilayer perceptrons





Bernoulli dropout

⧫ Bernoulli(𝑝) distribution: on 𝑎, 𝑏 with probabilities 1 − 𝑝, 𝑝

⧫ Assumptions about 𝑙-th hidden layer, 𝑙 = 1,… , 𝐿:

• vectorial input 𝑧 𝑙 , output 𝑦 𝑙 , weight 𝑤 𝑙 , scalar bias 𝑏 𝑙

• activation function 𝑓 does not depend on 𝑙, relates 𝑦 𝑙 = 𝑓 𝑧 𝑙

• in addition: set 𝑎 = 0, 𝑏 = 1, denote 𝑦 0 = 𝑥 – network input

⧫ Then 𝑧𝑖
𝑙
= 𝑤𝑖

𝑙
𝑟𝑖
𝑙
𝑦𝑖

𝑙−1
+ 𝑏 𝑙 , with random 𝑟𝑖

𝑙
~Bernoulli(𝑝)





Dropout and network training

⧫ Most often using stochastic gradient descent

⧫ Difference from standard MLP: for each training case, 

new values 𝑟𝑖
𝑙

are sampled ⟹ a new specific network

• forward- and backpropagation restricted to that individual network

⧫ Gradients are averaged over cases retaining the parameter

• cases with that parameter dopped out ⟹ gradient contribution = 0



Dropout and regularization

⧫ Dropout alone improves training, with regularization even more

⧫ Most often combined with max-norm regularization: 𝑤 ≤ 𝑐

• 𝑤 ‒ vector of all weights, ‒ some norm, 𝑐 ‒ hyperparameter

• ⟹ network learning is then constrained optimization

⧫ Main reason why max-norm regularization is useful: 

no weigths blowup through large learning rate ⟹ explorability



Some other properties of dropout

⧫ Sparse representation, even if no sparsity inducing regularizers

⧫ Influence of dataset size relatively to network size:

• very small datasets overfitting even after dropout ⟹ useless

• with increasing dataset size, its usefulness increases, then again

decreases ⟸ for very large datasets, no overfitting occurs

⧫ Training time: 2 − 3 × longer than without dropout



Advantages of dropout

1. After dropout, the network has less parameters ⟹

⟹ less prone to overfitting the training data

2. Breaking-up co-adaptations of different hidden neurons,

which impede generalization ⟹ improved generalization

3. Different dropout realizations ≈ different network topologies ⟹

⟹ dropout implies building network ensembles



Dropout ensembles

⧫ For an ensemble 𝑆 built through dropping out subsets

of the set 𝐻 of hidden neurons: 𝒮 ≤ 2 𝐻

⧫ If during training, ℎ ∈ 𝐻 survives dropout with probability 𝑝, then

during testing, weights outgoing from ℎ are multiplied by 𝑝

• ⇒ expected weights after training = used testing weights 

⧫ Alternative possibility: training weights multilplied by 
1

𝑝





More general dropouts

⧫ Used also with other models than multilayer perceptrons

• restricted Boltzmann machine (RBM, will be described later)

• linear regression (will be described later)

⧫ Used also with other distributions than Bernoulli

• Gaussian distribution (will be described later)



Introducing dropout into RBM

⧫ RBM with visible units 𝑣 ∈ 0,1 𝑑𝑣, hidden units ℎ ∈ 0,1 𝑑ℎ and

parameters 𝜃 = 𝑊, 𝑎, 𝑏 ,𝑊 ∈ ℝ𝑑𝑣×𝑑ℎ , 𝑎 ∈ ℝ𝑑ℎ , 𝑏 ∈ ℝ𝑑𝑣, which

define 𝑃 ℎ, 𝑣; 𝜃 =
exp 𝑣⊺𝑊ℎ+𝑎⊺ℎ+𝑏⊺𝑣

𝐶 𝜃
, 𝐶 𝜃 - normalizing constant

⧫ Dropout is introduced with a 0,1 𝑑ℎ-valued random vector r

with random components 𝑟𝑗~Bernoulli(p), 𝑟𝑗 = 1 ⟺ ℎ𝑗 = 1, 

• consequence: 𝑟𝑗 = 1 ⟹ ℎ𝑗 = 1, 𝑟𝑗 = 0 ⟹ ℎ𝑗 = 0



Dropout RBM probability distribution

⧫ Joint distribution of 𝑣 and ℎ, with a normalizing constant 𝐶 𝜃, 𝑟 :

𝑃 ℎ, 𝑣; 𝜃 =
exp 𝑣⊺𝑊ℎ+𝑎⊺ℎ+𝑏⊺𝑣

𝐶 𝜃,𝑟
ς𝑗=1
𝑑ℎ 𝕀 𝑟𝑗 = 1 + 𝕀 𝑟𝑗 = 0 𝕀 ℎ𝑗 = 0

⧫ Conditional distribution of ℎ conditioned on 𝑟 and 𝑣:

𝑃 ℎ|𝑟,𝑣 = ς𝑗=1
𝑑ℎ 𝑃 ℎ𝑗|𝑟𝑗,𝑣 ,𝑃 ℎ𝑗 = 1|𝑟𝑗,𝑣 = 𝕀 𝑟𝑗 = 1 𝜎 𝑏𝑗 +σ𝑖𝑊𝑖𝑗𝑣𝑖

⧫ Conditional distribution of 𝑣 on ℎ (same as without dropout):

𝑃 𝑣|ℎ = ς𝑖=1
𝑑𝑣 𝑃 𝑣𝑖|ℎ ,𝑃 𝑣𝑖 = 1|ℎ = 𝜎 𝑎𝑖 +σ𝑖𝑊𝑖𝑗ℎ𝑗



Dropout in linear regression

⧫ Dropped out are individual training pairs − rows of 𝑋, 𝑦

• 𝑋 ∈ ℝ𝑁×𝑑 − matrix of 𝑁 data points, 𝑦 ∈ ℝ𝑁− vector of targets

⧫ Dropout introduced through a component-wise product 𝑋⊙ 𝑅

• 𝑅 ∈ 0,1 𝑁×𝑑 is a 0,1 𝑁×𝑑-valued random matrix

• 𝑅 has all its components random 𝑅𝑖𝑗~Bernoulli(𝑝)



Learning dropout linear regression

⧫ Learning in traditional linear regression consists in finding

a weight vector 𝑤 ∈ ℝ𝑑 minimizing the error 𝑦 − 𝑋𝑤 2

⧫ For dropout linear regression learning, the minimized error

turns  to 𝔼𝑅~Bernoulli 𝑝 𝑦 − 𝑋 ⊙ 𝑅 𝑤 2 = (after computation)

= 𝑦 − 𝑝𝑋𝑤 2 + 𝑝 1 − 𝑝 diag 𝑋⊺𝑋
1
2𝑤

2

=

= 𝑦 − 𝑋𝑤 2 +
1−𝑝

𝑝
diag 𝑋⊺𝑋

1

2𝑤
2

, with 𝑤 = 𝑝𝑤



Gaussian dropout

⧫ Basic idea: activation ℎ𝑖 of the hidden neuron 𝑖 is 

perturbed to ℎ𝑖 1 + 𝑟 with 𝑟~𝑁 0,1 , more generally 𝑟~𝑁 0, σ2

⧫ Equivalently: activation ℎ𝑖 is perturbed to ℎ𝑖𝑟′

with 𝑟′ = 1 + 𝑟, hence 𝑟′~𝑁 1,1 , more generally 𝑟′~𝑁 1, 𝜎2

⧫ Hyperparameter 𝜎2, like 𝑝 in Bernoulli dropout



What does the Gaussian drop out?

⧫ Formally, Gaussian dropout drops no neurons out, 

only perturbs the activations of hidden neurons

⧫ However, for ℎ𝑖𝑟′ with 𝑟′~𝑁 1, 𝜎2 , where 𝜎2 =
1−𝑝

𝑝
:

the expectation  and variance of 𝑟′ are 𝔼𝑟′ = 1, Var 𝑟′ =
1−𝑝

𝑝

⧫ And the same 𝔼𝑟′ and Var 𝑟′ has 𝑟′~ Bernoulli(𝑝) on 0,
1

𝑝
,

which drops out the hidden neuron 𝑖



Stochastic gradient

⧫ Minimizing a loss function for data 𝑥 = 𝑥1, … , 𝑥𝑁 , parameters 𝜃,

summed over data: ℒ 𝜃 = ℒ 𝜃,𝑥 =
1

𝑁
σ𝑛∈ 𝑁ℓ𝑛 𝜃,𝑥𝑛 , 𝑁 = 1,…,𝑁

⧫ For 𝑠 ∈ ℕ, consider a random variable ℳ: 𝑆 ⊂ 𝑁|#𝑆 = 𝑠 -valued,

called minibatch, uniformly distributed: 𝑆 ⊂ 𝑁&#𝑆 = 𝑠 ⇒ 𝑃 𝑆 =
1
𝑁
𝑠

⧫ Define a random loss function: መℒ𝑠 𝜃 = መℒ𝑠 𝜃,𝑥 =
1

𝑠
σ𝑛∈ℳℓ𝑛 𝜃,𝑥𝑛

⧫ Its gradient ො𝑔𝑠 = 𝛻𝜃 መℒ𝑠 is called stochastic gradient



Example: quadratic loss

⧫ ℓ𝑛 𝜃, 𝑥𝑛 =
1

2
𝑥𝑛 − 𝜃 2, ℒ 𝜃 = ℒ 𝜃, 𝑥 =

1

2𝑁
σ𝑛=1
𝑁 𝑥𝑛 − 𝜃 2

⧫ 𝛻𝜃ℒ 𝜃, 𝑥 = ҧ𝑥 − 𝜃, with ҧ𝑥 = σ𝑛=1
𝑁 𝑥𝑛, thus argmin

𝜃
ℒ 𝜃,𝑥 = ҧ𝑥

• the reparametrization 𝜃new = 𝜃 − ҧ𝑥 leads  to arg min
𝜃new

ℒ 𝜃new,𝑥 = 0

⧫ መℒ𝑠 𝜃 =
1

2𝑠
σ𝑛∈ℳ 𝑥𝑛 − 𝜃 2, ො𝑔𝑠 𝜃 = 𝛻𝜃 መℒ𝑠 𝜃 =

1

𝑠
σ𝑛∈ℳ 𝑥𝑛 − 𝜃



Stochastic gradient descent (SGD)

⧫ Stochastic gradient descent is the application of

gradient descent with learning rate 𝜖 to stochastic gradient:

𝜃 𝑡 + 1 = 𝜃 𝑡 − 𝜖 ො𝑔𝑠 𝜃 𝑡 , 𝑥 = 𝜃 𝑡 − 𝜖 𝛻𝜃 መℒ𝑠 𝜃 𝑡 , 𝑥

• 𝜃 𝑡 ‒ value of the parameters in the iteration 𝑡

• ො𝑔𝑠 𝜃, 𝑥 = 𝛻𝜃 መℒ𝑠 𝜃, 𝑥 =
1

𝑠
σ𝑛∈ℳ𝛻𝜃ℓ𝑛 𝜃,𝑥𝑛

⧫ SGD is studied using 4 generally accepted assumptions



Assumption 1

⧫ Conditioned on 𝜃, 𝑥1, … , 𝑥𝑛 are conditionally independent

identically distributed and such that ො𝑔𝑠 𝜃, 𝑥 =

=
1

𝑠
σ𝑛∈ℳ 𝛻𝜃ℓ𝑛 𝜃, 𝑥𝑛 behaves like 𝛻𝜃ℓ𝑛 𝜃, 𝑥𝑛 were

normal random variables: 𝛻𝜃ℓ𝑛 𝜃, 𝑥𝑛 ~𝑁 𝑔 𝜃 , 𝐶 𝜃

⧫ ⟹ ො𝑔𝑠 𝜃, 𝑥 − 𝑔 𝜃 =
1

𝑠
σ𝑛∈ℳ 𝛻𝜃ℓ𝑛 𝜃, 𝑥𝑛 − 𝑔 𝜃 ~𝑁 0,

1

𝑠
𝐶 𝜃

⧫ ⟹ defining ∆𝑔 𝜃,𝑥 = 𝑠 Ƹ𝑔𝑠 𝜃,𝑥 −𝑔 𝜃 implies ∆𝑔 𝜃,𝑥 ~𝑁 0,𝐶 𝜃



Assumption 2

⧫ In a neighborhood Θ of an minimal ℒ 𝜃 is 𝐶 𝜃 constant 

and positive-definite: ∃ a positive-definite 𝐶 ∀𝜃 ∈ Θ: 𝐶 𝜃 = 𝐶

⧫ Positive definiteness of 𝐶 ⟹ ∃ a regular matrix 𝐵: 𝐶 = 𝐵𝐵⊺

⧫ Defining ∆𝜃 𝑡 = 𝜃 𝑡+1 −𝜃 𝑡 , ∆𝑤 𝜃,𝑥 = −𝐵−1∆𝑔 𝜃,𝑥 implies:

1. ∆𝜃 𝑡 = −𝜖𝑔 𝜃 𝑡 −
𝜖

𝑠
∆𝑔 𝜃 𝑡 ,𝑥 = −𝜖𝑔 𝜃 𝑡 +

𝜖

𝑠
𝐵∆𝑤 𝜃 𝑡 ,𝑥

2. ∆𝑤 𝜃,𝑥 ~𝑁 0,−𝐵−1𝐶 𝜃 −𝐵⊺ −1 = 𝑁 0, 𝐵−1𝐵𝐵⊺ 𝐵⊺ −1 = 𝑁 0, 𝐼



Assumption 3

⧫ The equation ∆𝜃 𝑡 =−𝜖𝑔 𝜃 𝑡 +
𝜖

𝑠
𝐵∆𝑤 𝜃 𝑡 ,𝑥 , ∆𝑤 𝜃,𝑥 ~𝑁 0,𝐼 ,

which is a finite-difference equation for  ∆𝜃 𝑡 = 𝜃 𝑡+1 −𝜃 𝑡 ,

is replaceable with a differential equation: 
𝑑𝜃

𝑑𝑡
=−𝜖𝑔 𝜃 +

𝜖

𝑠
𝐵
𝑑𝑤

𝑑𝑡

⧫ The equation is particularly simple for ℒ 𝜃 =
1

2
𝜃⊺𝐴𝜃

⟹ 𝑔 𝜃 = 𝐴𝜃⟹
𝑑𝜃

𝑑𝑡
= −𝜖𝐴𝜃 +

𝜖

𝑠
𝐵
𝑑𝑤

𝑑𝑡
− Ornstein-Uhlenbeck



Example: quadratic loss

⧫ ℓ𝑛 𝜃, 𝑥𝑛 =
1

2
𝑥𝑛 − 𝜃 2, ℒ 𝜃 = ℒ 𝜃, 𝑥 =

1

2𝑁
σ𝑛=1
𝑁 𝑥𝑛 − 𝜃 2

⧫ 𝛻𝜃ℒ 𝜃, 𝑥 = ҧ𝑥 − 𝜃, with ҧ𝑥 = σ𝑛=1
𝑁 𝑥𝑛, thus argmin

𝜃
ℒ 𝜃,𝑥 = ҧ𝑥

• the reparametrization 𝜃new = 𝜃 − ҧ𝑥 leads  to arg min
𝜃new

ℒ 𝜃new,𝑥 = 0

⧫ መℒ𝑠 𝜃 =
1

2𝑠
σ𝑛∈ℳ 𝑥𝑛 − 𝜃 2, ො𝑔𝑠 𝜃 = 𝛻𝜃 መℒ𝑠 𝜃 =

1

𝑠
σ𝑛∈ℳ 𝑥𝑛 − 𝜃

⧫ The covariance of 𝑥𝑛 is 
1

𝑠
𝐶 𝜃 =

1

𝑠
𝔼 𝑥𝑛 − ҧ𝑥 𝑥𝑛 − ҧ𝑥 ⊺

⧫ The Hessian of ℒ 𝜃 is the identity matrix, 𝐴 = 𝐼



Assumption 4

⧫ The loss function is on Θ quadratic

⧫ If for the original parameters ℒ 𝜃′ = 𝜃′⊺𝐴′𝜃′ + 𝑏𝜃′ + 𝑐′, then

the transformation 𝜃 = 𝜃′+
1

2
𝐴′−1𝑏,𝐴 = 2𝐴′, 𝑐 = 𝑐′ −

1

4
𝑏⊺𝐴′−1

⊺
𝐴′−1𝑏

yields ℒ 𝜃 =
1

2
𝜃⊺𝐴𝜃 + 𝑐 ⟹ 𝑔 𝜃 = 𝐴𝜃⟹

𝑑𝜃

𝑑𝑡
= −𝜖𝐴𝜃 +

𝜖

𝑠
𝐵
𝑑𝑤

𝑑𝑡

• the solution of this differential equation is 

a random process called Ornstein-Uhlenbeck process 


	nmr4.pdf
	Folie 1
	Folie 2: What will it be about?
	Folie 3: Dropout
	Folie 4
	Folie 5: Bernoulli dropout
	Folie 6
	Folie 7: Dropout and network training
	Folie 8: Dropout and regularization
	Folie 9: Some other properties of dropout
	Folie 10: Advantages of dropout
	Folie 11: Dropout ensembles
	Folie 12
	Folie 13: More general dropouts
	Folie 14: Introducing dropout into RBM
	Folie 15: Dropout RBM probability distribution
	Folie 16: Dropout in linear regression
	Folie 17: Learning dropout linear regression
	Folie 18: Gaussian dropout
	Folie 19: What does the Gaussian drop out?
	Folie 20: Stochastic gradient
	Folie 21: Example: quadratic loss
	Folie 22: Stochastic gradient descent (SGD)
	Folie 23: Assumption 1
	Folie 24: Assumption 2
	Folie 25: Assumption 3
	Folie 26: Example: quadratic loss
	Folie 27: Assumption 4


