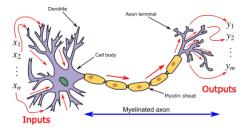
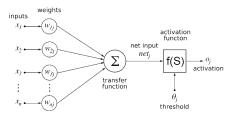
Basic concepts of artificial neural networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Neural network inspiration



(a) Neuron in biological neural network



(b) Neuron in artificial neural network

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Biological Neural Network (BNN)	Artificial Neural Network (ANN)
Soma (Neuron body)	Node
Dendrites	Input
Synapse	Weights or Interconnections
Axon	Output

Neurons

Let $u, v \in \mathcal{V}$ are neurons represented as vertices of a graph.

Connection links

The tuples (u, v) or (v, u) are connection links represented as oriented edges. $C \subset V \times V$ is the set of all edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Neural net

 $(\mathcal{V},\mathcal{C})$ is a graph representing a neural net.

- In our definition, the neurons can communicate with each other.
- We need to communicate with an environment ϖ .

Input and output connection links

 $\varepsilon \subset \{\varpi\} \times \mathcal{V} \cup \mathcal{V} \times \{\varpi\}$

Input node

If $((\varpi, u) \in \varepsilon$, then the node *u* receives signals from the environment.

Output node

If $((v, \varpi) \in \varepsilon$, then the node v transfers signals to the environment.

• The triplet (V, C, ε) is called topology.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let us define:

• input set of neuron v:

 $i(v): \{u: u \in \mathcal{V}\&(u, v) \in \mathcal{C}\}$

• output set of neuron *v*:

 $o(v): \{u: u \in \mathcal{V}\& (v, u) \in \mathcal{C}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Input nodes:

$$\mathcal{I} = \{ \mathbf{v} : \mathbf{v} \in \mathcal{V} \& i(\mathbf{v}) = \emptyset \}$$

• Output nodes:

$$\mathcal{O} = \{ v : v \in \mathcal{V} \& o(v) = \emptyset \}$$

• Hidden nodes

 $\mathcal{H} = \mathcal{V} \setminus (\mathcal{I} \cup \mathcal{O})$

• The graph (V, C) is non-redundant.

 $(\forall v \in \mathcal{V})(\exists u \in \mathcal{V})\{(u, v), (v, u)\} \cap \mathcal{C} \neq \emptyset$

• A neuron can transfer a signal to other neurons only if it received a signal from one or more neurons or from the environment.

• A neuron that received a signal has to transfer a signal to other neurons or to the environment.

Neuron types with respect to connections

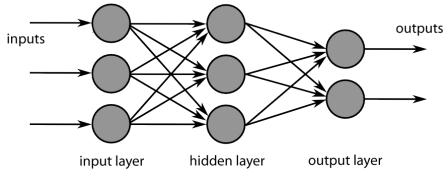


Figure: Feed forward neural network organized in layers

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Time: $\mathcal{T} \subset \mathcal{R}$
- $\mathcal{T}_t^- = \mathcal{T} \cap (-\infty, t)$
- We can define the activity of a neuron v:

$$z_v:\mathcal{T}\to\mathcal{R}$$

- The activity can have range restrictions:
 - $z_{m{v}}:\mathcal{T}
 ightarrow \langle 0,1
 angle$ normalized activity
 - $z_v: \mathcal{T} \to \langle -1, 1 \rangle$
- Network state: $z(t) = (z_v(t))_{v \in V}$

Global active dynamics

- At each time *t* the network performs a mapping *F_t* of input neuron activities to output neuron activities.
- We define the set of all feasible mappings \mathcal{F}_t
- The system $(F_t)_{t\in\mathcal{T}}$ is called *active dynamics of the network*
- Requirements:
 - The same domain for all elements
 - A finite number of parameters

$$egin{aligned} (\exists k \in \mathcal{N})(orall t \in \mathcal{T})(\exists D_t \subset \{\mathcal{T}_t^- o \mathcal{R}^{|\mathcal{I}|}\})(\exists \pi_t : \mathcal{R}^k o \{D_t o \mathcal{R}^{|\mathcal{O}|}\}) \ \mathcal{F}_t = \pi_t(\mathcal{R}^k) \end{aligned}$$

Restrictions on possible parameter values

$$\begin{aligned} (\exists k \in \mathcal{N})(\forall t \in \mathcal{T})(\exists W_t \subset \mathcal{R}^k)(\exists D_t \subset \{\mathcal{T}_t^- \to \mathcal{R}^{|\mathcal{I}|}\}) \\ (\exists \pi_t : \mathcal{W}_t \to \{D_t \to \mathcal{R}^{|\mathcal{O}|}\})\mathcal{F}_t = \pi_t(W_t) \end{aligned}$$

Local active dynamics

- System of functions $(\psi_t^v)_{t \in \mathcal{T}, v \in \mathcal{V} \setminus \mathcal{I}}$ with the following properties:
 - For each t ∈ T, each F_t can be expressed as a composition of mappings ψ^v_t that transform the activities of the input neurons i(v), v ∈ V \ I into the activity of the neuron v at the time t.
 - **②** For each time t and each $v \in \mathcal{V} \setminus \mathcal{I}$, the function ψ_t^v is taken from a set Ψ_t^v of possible functions.
 - Solution For each time t and each v ∈ V \ I, all elements of Ψ^v_t have the same domain.

$$(\forall v \in \mathcal{V} \setminus \mathcal{I})(\exists k_v \in \mathcal{N})(\forall t \in \mathcal{T})(\exists W_t^v \subset \mathcal{R}^{k_v})$$

 $(\exists D_t^v \subset \{T_t^- \to \mathcal{R}^{|i(v)|}\})(\exists \pi_t^v : W_t^v \to \{D_t^v \to \mathcal{R}\})\Psi_t^v = \pi_t^v(W_t^v)$

- We can assign each parameter to a neuron v ∈ V \ I or to a connection (u, v) ∈ C.
- An example neuron parameter: threshold θ_{v} .
- A usual connection parameter: connection weight $w_{(u,v)}$.
- The activity z_v of a neuron $v \in \mathcal{V} \setminus \mathcal{I}$ is often defined as:

$$z_{v}(t)=f(\sum_{u\in i(v)}w_{(u,v)}(t)z_{u}(t)+\theta(t)),$$

(日) (同) (三) (三) (三) (○) (○)

where f is a function called activation function.

• For output neurons, an identity activation function is often used.

- Time independent version is very common in practical applications
- Global active dynamics:

$$(\exists D \subset \mathcal{R}^{|\mathcal{I}|})\mathcal{F} = \{F : D \to \mathcal{R}^{|\mathcal{O}|}, \}$$

or with a parametrization:

$$(\exists k \in \mathcal{N})(\exists W \subset \mathcal{R}^{k})(\exists D \subset \mathcal{R}^{|\mathcal{I}|})(\exists \pi : W \to \{D \to \mathcal{R}^{|O|}\})$$
$$\mathcal{F} = \pi(W) \quad (1)$$

• Local active dynamics:

$$(\forall v \in \mathcal{V} \setminus \mathcal{I})(\exists k_v \in \mathcal{N})(\exists W_v \subset \mathcal{R}^{k_v})(\exists D_v \subset \mathcal{R}^{|i(v)|}) \ (\exists \pi_v : W_v \to \{D_v \to \mathcal{R}\})\Psi_v = \pi_v(W_v)$$

• Time-independent neuron activity:

$$z_{v} = f(\sum_{u \in i(v)} w_{(u,v)} z_{u} + \theta_{v})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We have shown that the neuron activity can be time-dependent.
- Global and local dynamics can be time-dependent as well:

$$(\mathit{F}_{ au})_{ au\in\mathcal{T}}$$
 , or $(\psi^{\mathsf{v}}_{ au})_{ au\in\mathcal{T}}$

- They depend on the following factors:
 - Previous evolution of F_t , $(F_{\tau})_{\tau \in \mathcal{T}_t^- \setminus \{t\}}$
 - Previous evolution and current value of neuron activities $(z_v | \mathcal{T}_t^-)_{v \in \mathcal{V}}$
 - Information from a supervisor:
 - correct (required) value that the network should output,
 - a non-negative value expressing dissimilarity of output and correct value (loss function),
 - a non-negative value expressing supervisor's satisfaction.

- Mapping $\gamma : \mathcal{R}^{|\mathcal{O}|} \times \mathcal{R}^{|\mathcal{O}|} \to \mathcal{R}_0^+$.
- Function γ(d, a) is called *error function* or *loss function*, where d is the correct value and a is output of the network.
- Common loss functions:
 - Sum of least squares: $\gamma(a,d) = \sum_{i=1}^{|\mathcal{O}|} |a_i d_i|^2$
 - Cross entropy: $\gamma(a, d) = -\sum_{i=1}^{|\mathcal{O}|} \left(d_i \log a_i + (1 d_i) \log(1 a_i) \right)$

• Logistic loss: $\gamma(a,d) = -da + \log(e^a + e^{-a}) = \log \frac{e^a + e^{-a}}{e^{da}}$

Dropout

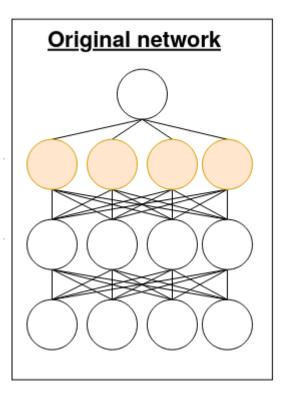
Temporarily *removing* (dropping out) *some* input

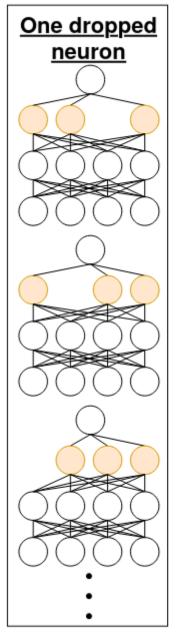
or hidden *neurons during* network *training*

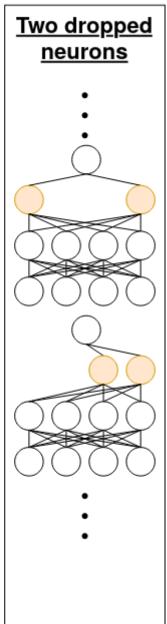
Neurons are dropped out *randomly*,

according to a given distribution

 Originally proposed for and most often used during training of multilayer perceptrons





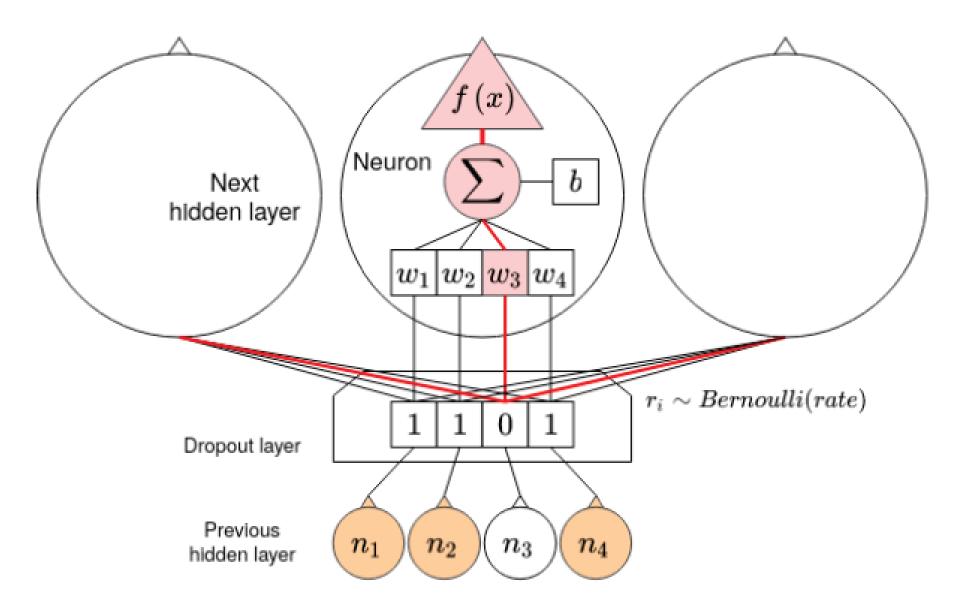


Bernoulli dropout

- Bernoulli(*p*) distribution: on $\{a, b\}$ with probabilities (1 p, p)
- Assumptions about *l*-th *hidden layer*, l = 1, ..., L:
 - vectorial input $z^{(l)}$, output $y^{(l)}$, weight $w^{(l)}$, scalar bias $b^{(l)}$
 - activation function f does not depend on l, relates $y^{(l)} = f(z^{(l)})$
 - in addition: set a = 0, b = 1, denote $y^{(0)} = x$ network input

• Then $z_i^{(l)} = w_i^{(l)} r_i^{(l)} y_i^{(l-1)} + b^{(l)}$, with random $r_i^{(l)} \sim \text{Bernoulli}(p)$

• • • • •



Dropout and network training

- Most often using stochastic gradient descent
- Difference from standard MLP: for each *training case*,

new values $r_i^{(l)}$ are sampled \Rightarrow a new specific network

- forward- and backpropagation restricted to that individual network
- Gradients are averaged over cases retaining the parameter
 - cases with that parameter dopped out \Rightarrow gradient contribution = 0

Dropout and regularization

- Dropout alone improves training, with regularization even more
- Most often combined with *max-norm regularization:* $||w|| \le c$
 - w vector of all weights, $\| \| =$ some norm, c hyperparameter
 - \Rightarrow network learning is then constrained optimization
- Main reason why max-norm regularization is useful:

no weigths blowup through large learning rate \Rightarrow explorability

Some other properties of dropout

- Sparse representation, even if no sparsity inducing regularizers
- Influence of dataset size relatively to network size:
 - very small datasets overfitting even after dropout \Rightarrow useless
 - with increasing dataset size, its usefulness increases, then again

decreases \leftarrow for very large datasets, no overfitting occurs

• Training time: $2 - 3 \times$ longer than without dropout

Advantages of dropout

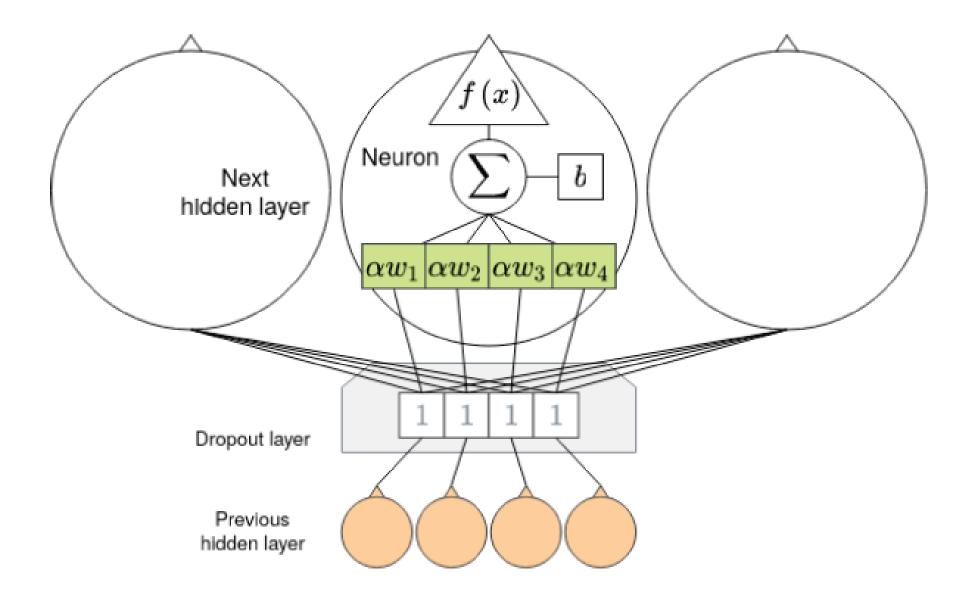
- 1. After dropout, the network has less parameters \Rightarrow
 - \Rightarrow less prone to overfitting the training data
- 2. Breaking-up co-adaptations of different hidden neurons,

which impede generalization \Rightarrow improved *generalization*

- 3. Different dropout realizations \approx different network topologies \Rightarrow
 - \Rightarrow dropout implies building network ensembles

Dropout ensembles

- For an ensemble *S* built through dropping out subsets of the set *H* of hidden neurons: $|S| \le 2^{|H|}$
- If during training, $h \in H$ survives dropout with probability p, then during testing, weights outgoing from h are multiplied by p
 - ⇒ expected weights after training = used testing weights
- Alternative possibility: training weights multilplied by $\frac{1}{p}$



More general dropouts

- Used also with other models than multilayer perceptrons
 - *restricted Boltzmann* machine (RBM, will be described later)
 - *linear regression* (will be described later)
- Used also with other distributions than Bernoulli
 - Gaussian distribution (will be described later)

Introducing dropout into RBM

♦ RBM with visible units $v \in \{0,1\}^{d_v}$, hidden units $h \in \{0,1\}^{d_h}$ and

parameters $\theta = (W, a, b), W \in \mathbb{R}^{d_v \times d_h}, a \in \mathbb{R}^{d_h}, b \in \mathbb{R}^{d_v}$, which

define $P(h, v; \theta) = \frac{\exp(v^{\mathsf{T}}Wh + a^{\mathsf{T}}h + b^{\mathsf{T}}v)}{C(\theta)}$, $C(\theta)$ - normalizing constant

Dropout is introduced with a $\{0,1\}^{d_h}$ -valued random vector r

with random components $r_j \sim Bernoulli(p)$, $r_j = 1 \Leftrightarrow h_j = 1$,

• consequence:
$$r_j = 1 \Longrightarrow h_j = 1$$
, $r_j = 0 \Longrightarrow h_j = 0$

Dropout RBM probability distribution

• Joint distribution of v and h, with a normalizing constant $C(\theta, r)$:

$$P(h,v;\theta) = \frac{\exp(v^{\mathsf{T}}Wh + a^{\mathsf{T}}h + b^{\mathsf{T}}v)}{C(\theta,r)} \prod_{j=1}^{d_h} \left(\mathbb{I}(r_j = 1) + \mathbb{I}(r_j = 0) \mathbb{I}(h_j = 0) \right)$$

Conditional distribution of h conditioned on r and v:

$$P(h|r,v) = \prod_{j=1}^{d_h} P(h_j|r_j,v), P(h_j = 1|r_j,v) = \mathbb{I}(r_j = 1)\sigma(b_j + \sum_i W_{ij}v_i)$$

Conditional distribution of v on h (same as without dropout):

$$P(v|h) = \prod_{i=1}^{d_{v}} P(v_{i}|h), P(v_{i} = 1|h) = \sigma(a_{i} + \sum_{i} W_{ij}h_{j})$$

Dropout in linear regression

- ♦ Dropped out are individual training pairs rows of (X, y)
 - $X \in \mathbb{R}^{N \times d}$ matrix of N data points, $y \in \mathbb{R}^{N}$ vector of targets
- Dropout introduced through a component-wise product $X \odot R$
 - $R \in \{0,1\}^{N \times d}$ is a $\{0,1\}^{N \times d}$ -valued random matrix
 - *R* has all its components random $R_{ij} \sim Bernoulli(p)$

Learning dropout linear regression

- Learning in traditional linear regression consists in finding a weight vector $w \in \mathbb{R}^d$ minimizing the error $||y - Xw||^2$
- For dropout linear regression learning, the *minimized error*

turns to $\mathbb{E}_{R \sim \text{Bernoulli}(p)} ||y - X \odot R w||^2 = (after computation)$

$$= \|y - pXw\|^{2} + p(1-p) \left\| \left(\operatorname{diag}(X^{\mathsf{T}}X) \right)^{\frac{1}{2}} w \right\|^{2} =$$
$$= \|y - X\widetilde{w}\|^{2} + \frac{1-p}{p} \left\| \left(\operatorname{diag}(X^{\mathsf{T}}X) \right)^{\frac{1}{2}} \widetilde{w} \right\|^{2}, \text{ with } \widetilde{w} = pw$$

Gaussian dropout

• Basic idea: *activation* h_i of the hidden neuron *i* is

perturbed to $h_i(1+r)$ with $r \sim N(0,1)$, more generally $r \sim N(0,\sigma^2)$

• Equivalently: activation h_i is *perturbed to* $h_i r'$

with r' = 1 + r, hence $r' \sim N(1,1)$, more generally $r' \sim N(1,\sigma^2)$

• Hyperparameter σ^2 , like p in Bernoulli dropout

What does the Gaussian drop out?

• Formally, Gaussian dropout drops no neurons out,

only perturbs the activations of hidden neurons

• However, for $h_i r'$ with $r' \sim N(1, \sigma^2)$, where $\sigma^2 = \frac{1-p}{p}$:

the expectation and variance of r' are $\mathbb{E}r' = 1$, $\operatorname{Var}r' = \frac{1-p}{n}$

• And the same $\mathbb{E}r'$ and $\operatorname{Var}r'$ has $r' \sim \operatorname{Bernoulli}(p)$ on $\left\{0, \frac{1}{p}\right\}$,

which drops out the hidden neuron *i*

Stochastic gradient

- Minimizing a loss function for data $x = (x_1, ..., x_N)$, parameters θ , summed over data: $\mathcal{L}(\theta) = \mathcal{L}(\theta, x) = \frac{1}{N} \sum_{n \in \hat{N}} \ell_n(\theta, x_n), \hat{N} = \{1, ..., N\}$
- For $s \in \mathbb{N}$, consider a random variable $\mathcal{M}: \{S \subset \widehat{N} | \#S = s\}$ -valued,

called minibatch, uniformly distributed: $S \subset \hat{N} \& \#S = s \Rightarrow P(S) = \frac{1}{\binom{N}{s}}$

• Define a random loss function: $\hat{\mathcal{L}}_{s}(\theta) = \hat{\mathcal{L}}_{s}(\theta, x) = \frac{1}{s} \sum_{n \in \mathcal{M}} \ell_{n}(\theta, x_{n})$

• • • •

• Its gradient $\hat{g}_s = \nabla_{\theta} \hat{\mathcal{L}}_s$ is called stochastic gradient

Example: quadratic loss

- $\ell_n(\theta, x_n) = \frac{1}{2} ||x_n \theta||^2, \mathcal{L}(\theta) = \mathcal{L}(\theta, x) = \frac{1}{2N} \sum_{n=1}^N ||x_n \theta||^2$
- $\nabla_{\theta} \mathcal{L}(\theta, x) = \bar{x} \theta$, with $\bar{x} = \sum_{n=1}^{N} x_n$, thus $\arg\min_{\theta} \mathcal{L}(\theta, x) = \bar{x}$

• the reparametrization $\theta_{\text{new}} = \theta - \bar{x}$ leads to $\arg\min_{\theta_{\text{new}}} \mathcal{L}(\theta_{\text{new}}, x) = 0$

•
$$\hat{\mathcal{L}}_{s}(\theta) = \frac{1}{2s} \sum_{n \in \mathcal{M}} ||x_{n} - \theta||^{2}, \hat{g}_{s}(\theta) = \nabla_{\theta} \hat{\mathcal{L}}_{s}(\theta) = \frac{1}{s} \sum_{n \in \mathcal{M}} (x_{n} - \theta)$$

Stochastic gradient descent (SGD)

Stochastic gradient descent is the application of

gradient descent with learning rate ϵ to stochastic gradient:

 $\theta(t+1) = \theta(t) - \epsilon \hat{g}_s(\theta(t), x) = \theta(t) - \epsilon \nabla_{\theta} \hat{\mathcal{L}}_s(\theta(t), x)$

• $\theta(t)$ – value of the parameters in the iteration t

•
$$\hat{g}_s(\theta, x) = \nabla_{\theta} \hat{\mathcal{L}}_s(\theta, x) = \frac{1}{s} \sum_{n \in \mathcal{M}} \nabla_{\theta} \ell_n(\theta, x_n)$$

SGD is studied using 4 generally accepted assumptions

• Conditioned on θ, x_1, \dots, x_n are conditionally independent

identically distributed and such that $\hat{g}_s(\theta, x) =$

$$=\frac{1}{s}\sum_{n\in\mathcal{M}}\nabla_{\theta}\ell_{n}(\theta,x_{n})$$
 behaves like $\nabla_{\theta}\ell_{n}(\theta,x_{n})$ were

normal random variables: $\nabla_{\theta} \ell_n(\theta, x_n) \sim N(g(\theta), C(\theta))$

$$\Rightarrow \hat{g}_{s}(\theta, x) - g(\theta) = \frac{1}{s} \sum_{n \in \mathcal{M}} \left(\nabla_{\theta} \ell_{n}(\theta, x_{n}) - g(\theta) \right) \sim N \left(0, \frac{1}{s} C(\theta) \right)$$

• \Rightarrow defining $\Delta g(\theta, x) = \sqrt{s} (\hat{g}_s(\theta, x) - g(\theta))$ implies $\Delta g(\theta, x) \sim N(0, C(\theta))$

- In a *neighborhood* Θ of an *minimal* $\mathcal{L}(\theta)$ is $\mathcal{C}(\theta)$ constant and *positive-definite*: \exists a positive-definite $\mathcal{C} \forall \theta \in \Theta: \mathcal{C}(\theta) = \mathcal{C}$
- Positive definiteness of $C \implies \exists$ a regular matrix $B: C = BB^{\mathsf{T}}$
- Defining $\Delta \theta(t) = \theta(t+1) \theta(t)$, $\Delta w(\theta, x) = -B^{-1}\Delta g(\theta, x)$ implies:

1.
$$\Delta\theta(t) = -\epsilon g(\theta(t)) - \frac{\epsilon}{\sqrt{s}} \Delta g(\theta(t), x) = -\epsilon g(\theta(t)) + \frac{\epsilon}{\sqrt{s}} B \Delta w(\theta(t), x)$$

2. $\Delta w(\theta, x) \sim N(0, -B^{-1}C(\theta)(-B^{\mathsf{T}})^{-1}) = N(0, B^{-1}BB^{\mathsf{T}}(B^{\mathsf{T}})^{-1}) = N(0, I)$

• The equation $\Delta \theta(t) = -\epsilon g(\theta(t)) + \frac{\epsilon}{\sqrt{s}} B \Delta w(\theta(t), x), \Delta w(\theta, x) \sim N(0, I),$

which is a finite-difference equation for $\Delta\theta(t) = \theta(t+1) - \theta(t)$,

is replaceable with a differential equation: $\frac{d\theta}{dt} = -\epsilon g(\theta) + \frac{\epsilon}{\sqrt{s}} B \frac{dw}{dt}$

• The equation is particularly simple for $\mathcal{L}(\theta) = \frac{1}{2}\theta^{T}A\theta$

$$\Rightarrow g(\theta) = A\theta \Rightarrow \frac{d\theta}{dt} = -\epsilon A\theta + \frac{\epsilon}{\sqrt{s}}B\frac{dw}{dt} - \text{Ornstein-Uhlenbeck}$$

Example: quadratic loss

- $\ell_n(\theta, x_n) = \frac{1}{2} ||x_n \theta||^2, \mathcal{L}(\theta) = \mathcal{L}(\theta, x) = \frac{1}{2N} \sum_{n=1}^N ||x_n \theta||^2$
- $\nabla_{\theta} \mathcal{L}(\theta, x) = \bar{x} \theta$, with $\bar{x} = \sum_{n=1}^{N} x_n$, thus $\arg\min_{\theta} \mathcal{L}(\theta, x) = \bar{x}$

• the reparametrization $\theta_{\text{new}} = \theta - \bar{x}$ leads to $\arg \min_{\theta_{\text{new}}} \mathcal{L}(\theta_{\text{new}}, x) = 0$

•
$$\hat{\mathcal{L}}_{s}(\theta) = \frac{1}{2s} \sum_{n \in \mathcal{M}} ||x_{n} - \theta||^{2}, \hat{g}_{s}(\theta) = \nabla_{\theta} \hat{\mathcal{L}}_{s}(\theta) = \frac{1}{s} \sum_{n \in \mathcal{M}} (x_{n} - \theta)$$

- The covariance of x_n is $\frac{1}{s}C(\theta) = \frac{1}{s}\mathbb{E}[(x_n \bar{x})(x_n \bar{x})^{\mathsf{T}}]$
- The Hessian of $\mathcal{L}(\theta)$ is the identity matrix, A = I

- ♦ The loss function is on Θ quadratic
- If for the original parameters $\mathcal{L}(\theta') = \theta'^{\mathsf{T}} A' \theta' + b \theta' + c'$, then

the transformation
$$\theta = \theta' + \frac{1}{2}A'^{-1}b, A = 2A', c = c' - \frac{1}{4}b^{T}A'^{-1}A'^{-1}b$$

yields
$$\mathcal{L}(\theta) = \frac{1}{2}\theta^{\mathsf{T}}A\theta + c \Longrightarrow g(\theta) = A\theta \Longrightarrow \frac{d\theta}{dt} = -\epsilon A\theta + \frac{\epsilon}{\sqrt{s}}B\frac{dw}{dt}$$

• the solution of this differential equation is

a random process called Ornstein-Uhlenbeck process