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Abstract

The graph colouring problem is classical to combinatorics. Recently
many new concepts have been introduced relaxing this NP-complete
problem or generalising it even further. The most inclusive of them is
the question of existence of a homomorphism from one graph to another.
Existence of a graph homomorphism is also an NP-complete problem
and several relaxations, such as the concept of fractional graph homo-
morphism, try to introduce its polynomial approximations. This paper
attempts to show the different concepts in relationship to one another
and to give examples which emphasise their differences and similarities.
Particular attention is drawn to the relatively new concepts of fractional
colouring and fractional graph homomorphism.
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Chapter 1

Introduction

1.1 Aims

It is more than two years since I left MFF UK, and a little longer since I chose frac-
tional graph homomorphisms as the subject for my diploma thesis. Several things
have changed in my life since then. I graduated from the University of Cambridge
and began to work as a bond trader in London. One thing, however, did not change
and that is the fact that I have been thinking of myself more as a 'matfyzak’ than
anything else. There are a couple of reasons for this, one of which is that I have
always enjoyed maths and liked to twiddle with computers, but perhaps even more
importantly, 'matfyz’ helped to shape my thinking into the structure in which I
hope it still is and will remain for some time, and which I would describe as logical
and rational, but with an essential degree of curiosity and willingness to question
the existing and attempt to understand the new.

My work on this thesis suffered many forced breaks and I am glad that I reached this
stage eventually. My primary aim is naturally to present a paper worthy of being
accepted by the examination committee but I hope that there is going to be a little
more to it than that. Graph Theory and Combinatorics are parts of mathematics
I find immensely interesting and studying them can give one, such as me, enough
satisfaction on its own. By writing this paper I hope to share some of this with the
reader.

My particular focus is going to be on fractional graph colouring and fractional graph
homomorphism, concepts of Graph Theory that are relatively new and that are usu-
ally excluded from mainstream publications. But what are they? It is the nature
of Graph Theory that solutions of many of its puzzles lead to problems that are
NP-complete. However, it is often desirable to approximate some of these problems
in order to obtain the solutions faster. The fractional concepts provide such ap-
proximations for the more classical graph colouring and graph homomorphism. The
original problem specifications are slightly altered into forms compatible with linear
programming. Polynomial algorithms for finding the fractional graph colouring and
homomorphism are then provided by Linear Programming Theory.



Interesting questions arise. To what extent are these approximations accurate and
how do they relate to the original concepts? For what classes of instances do the
original and the fractional concepts turn out to be equivalent? Does the existence
of one imply the existence (or nonexistence) of the other? Do similar theorems hold
for the fractional concepts as well as for the original ones? Are their proofs similar?
What about alternative approximations? And many more.

1.2 Structure

The second chapter is devoted to graph colouring. Firstly, the paper introduces
traditional concepts such as chromatic and clique numbers and presents their alter-
native definitions. These then provide the link between the original concepts and
some of their relaxations (such as fractional chromatic and clique numbers) lead-
ing to problems with only polynomial complexity. Several generalisations of the
chromatic number (such as the star chromatic number) are also introduced in this
chapter together with connecting theorems and corollaries. The section on fractional
chromatic and clique numbers presents alternative definitions of the two concepts
which prove useful later in the paper. A subsection on perfect k,m-strings, with some
original ideas in derivations of their chromatic and fractional chromatic numbers,
is included among examples and it produces interesting limit results for fractional
chromatic and clique numbers. The chapter then proceeds with generalisations of
some of the concepts for weighted graphs. Finally it concludes with a section on
products of graphs showing some relationships between the characteristics of graphs
and their various products. Some of the proofs in that part are original to this
paper.

Chapter three is devoted to homomorphisms. It introduces graph homomorphism
together with a few elementary results and shows how it generalises the concept of
colouring. A large part of the chapter is concerned with fractional graph homomor-
phism and related topics. After some basic results are proved for fractional graph
homomorphism and a few related examples are presented the paper proceeds with
a section on duality centred around a theorem of Ba¢ik and Mahajan. This part
also includes some results original to this paper (such as the Weak Density Theo-
rem for — ). Then there follows an alternative polynomial relaxation of the graph
homomorphism problem - the pseudo graph homomorphism - and a theorem which
shows that this concept is both a relaxation of the original graph homomorpism and
a generalisation of the fractional graph homomorphism. The final segment presents
interesting results of Mycielski and Larsen, Propp and Ullman regarding Myciel-
ski’s Graphs and demonstrates the construction of fractional chromatic and clique
numbers on two well-known examples - Petersen’s and Grotzsch’s graphs.



1.3 Notation Used

Unless otherwise indicated, graphs in this paper will be simple, loopless and finite.
For a given graph G denote V(G) its vertex set and E(G) its edge set. For given
s,t € V(G) we denote s ~ t or s ~g t whenever (s,t) € E(G) and s ¢ t or s g t
otherwise. Unless specified otherwise, let K,,, C}, and P, denote a complete graph,
a cycle and a path on n vertices. The shorter u € G will sometimes be used instead
of u € V(G). The vector of all ones will be denoted simply by 1 in situations where
there is no confusion.



Chapter 2

Colouring

2.1 Chromatic Number

Definition 1 (Colouring) Let k be a positive integer. A k-colouring of a graph G
is a mapping ¢ : V(G) — {1,...,k} such that, Vu,v € V(G) : u ~ v = c(u) # c(v).
Denote the set of all k-colourings by Cy.

Definition 2 (Chromatic Number) The chromatic number x(G) of a graph G
15 defined as:
X(G) = min{k : G has a k-colouring}. (2.1)

Definition 3 (Clique Number) The clique number w(G) of a graph G is defined
as the mazximum size of a subset of V(G) such that the subset induces a complete
graph (i.e. a graph where each two vertices are adjacent) in G (such a subset is
called a clique).

Definition 4 (Independence Number) The independence number a(G) of a graph
G s defined as the maximum number of vertices in an independent set of G.

Definition 5 (Independence Ratio) The independence ratio of G, i(G), is de-
fined as i(G) = a(G)/|V(G)].

Theorem 1 (Alternative Specifications of x(G) and w(G)) .

x(G) = min{1"-y: ¢yTA>1}, (2.2)
w(@) = max{1”.z: Az <1}, (2.3)
where x,y are 0-1 column vectors and A is a matriz with rows indexed by maximal

independent sets of G and columns indexed by vertices of G such that A,; =1 if the
vertex © belongs to the mazimal independent set o and otherwise is 0.



Proof. Vector y defines a partitioning of V(&) into maximal independent sets such
that each vertex belongs to at least one such set. This is exactly the definition of
a colouring, where each independent set represents colouring by a different colour
(for vertices which are in more than one independent set we can choose the colour
arbitrarily). 17 -y is equivalent to the number of colours in such colouring. Hence
the minimization problems (2.1) and (2.2) are equivalent.

The set K = {u: x, = 1} is a clique, as for any independent set I in G there is at
most one vertex from K in /. On the other hand, for each clique K in G there is a
vector x such that K = {u:xz, =1} and Az < 1. The size of each such a clique
is then 17 - z. Therefore (2.3) defines the size of the maximal clique in G. O

2.1.1 Examples
w(C5) =2, x(C5) =3

2.2 Star Chromatic Number

Vince [28] introduced a generalization of the chromatic number, the star chromatic
number. The colours on adjacent vertices are not only required to be distinct but
also, in certain sense, as far apart as possible. Because Vince’s proofs of some basic
facts about the star chromatic number rely on continuous methods, we introduce an
alternative approach of Bondy and Hell [5] allowing purely combinatorial treatment.

Definition 6 (Circular Norm) Let k be a positive integer. For x € {—(k —
1),..,0,....k — 1} define |z|p = min{|z|, k — |z|}.

Definition 7 (k-chromatic number) Define the k-chromatic number x,(G) of a

graph G as
k

max min |c(u) — c(v)l

Xk(G) = (2.4)

Definition 8 ((k,d)-colouring) Let k and d be positive integers, k > d. A (k,d)-
colouring of a graph G is a mapping ¢ : V(G) — {1, ..., k} such that, Yu,v € V(G) :
u~v=|c(u) —cv) >d.

Corollary 1 (k,1)-colouring of a graph G is also a k-colouring of G.

Theorem 2 If G has a (k,d)-colouring and g < Z—: for some positive integers k' ,d ,
then G has a (k',d)-colouring.

Proof. Let ¢ : V(G) — {1,...,k} be a (k,d)-colouring of G. Define ¢ : V(G) —
{1,...,k} by

/

¢ (u) = {ZC(U)J for all u € G. (2.5)
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Consider u ~ v such that c¢(u) > ¢(v). Because ¢ defines a (k,d)-colouring of G,
d < c(u) — c¢(v) < k —d. Hence

) +d =) +d)] < [ Letw)| = ¢ w) < (2.6)
< |5 +h= )| < |Getw) + B —d| < @)+ K —d
(2.7)
Thus ¢ is a (k',d )-colouring of G. O

Corollary 2 If G has a (k,d)-colouring, then it also has a (k',d)-colouring where
k'/d = k/d and the greatest common denominator ged(k',d') is 1.

Lemma 1 Let G be a graph on n vertices that has a (k,d)-colouring with ged(k,d)=1
and k > n. Then G has a (k',d)-colouring with k' < k and k' /d < k/d.

Proof. The proof of this lemma is not included here, but it can be found in [5]. In
the context of this paper Lemma 1 serves only the purpose of helping to derive the
result of Lemma 2. O

Definition 9 (Star Chromatic Number) The star chromatic number of a graph
G, x*(G), is defined as:

X" (G) =inf{k/d : G has a (k,d)-colouring}. (2.8)

Definition 10 (t-circular colouring) Let t be a positive real number and let C
be a circle in the plane of length t. A t-circular colouring of a graph G is a maping
A which assigns an open arc of C of length 1 to each vertex of G in such a way that

if u~g v then A(u) N A(v) =10 (2.9)

Definition 11 (Circular Chromatic Number) The circular chromatic number,
X(G), of a graph G is defined as

Xc(G) = inf{t : there is a t-circular colouring of G'}. (2.10)
Lemma 2 Let G be a graph on n vertices, then

X" (G) = min{k/d : G has a (k,d)-colouring and k < n}. (2.11)

Proof. By Corollary 2 and Lemma 1, if G has a (k,d)-colouring then it has a
(k',d)-colouring with k' < n and k'/d < k/d. Therefore

X" (G) = inf{k/d : G has a (k,d)-colouring and k < n}. (2.12)

Because the set {k/d : G has a (k,d)-colouring and k < n} is finite, the infimum can
be replaced by minimum. O
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Theorem 3 (The Original Specification of x*(G) - Vince [28]) IfG is a con-
nected graph with n vertices,

X*(G) = min xx(G). (2.13)

1<k<n
Proof. Let k and d be positive integers such that a (k,d)-colouring of G (call it ¢)
exists. Then from the definition of (k,d)-colouring it follows that min,., |c(u) —
c¢(v)|r < d and therefore y,(G) < k/d. From Lemma 1 it follows that x*(G) >
minlSkSn Xk(G)

On the other hand, let xx(G) = k/d for some d = max cc, Minygp |c(u) — (V).
Let ¢ be the k-colouring for which the maximal value of d is attained. Then c is
clearly a (k,d)-colouring of G. Therefore x*(G) < minj<g<, xx(G). This concludes
the proof of x*(G) = minj<x<, xx(G). O

Theorem 4 (Another Specification of x*(G) - Zhu [31]) For any graph G

X(G) = x(G) (2.14)
Proof. Firstly, let ¢ be a (k,d)-colouring of G, for some k£ and d. Put k points,
D1, .., Pk, evenly spaced on a circle of length k. For all uw € V(G) let A(u) be the

interval of length d centred at p.). Then A is a k-circular colouring of G and
therefore x.(G) < x*(G). O

Theorem 5 Let G be a graph and let w € G be a vertex such that u is adjacent to
all but one vertex in G. Then

X(G) = x(G) (2.15)
Proof. Let A be a t-circular colouring of G for some t. Then A(u) is disjoint from
A(v) for all v € G but one and therefore one of the endpoints of A(u) is not covered

by any of the intervals A(v). Hence, we can construct a t-interval colouring of G by
cutting the circle at that end point. O

Corollary 3 If G has a universal vertex then x*(G) = x(G).

Corollary 4 Let x(G) = n for some n and let u € G be a vertex such that its
neighbours in G induce a subgraph G, with w(G,) =n — 1. Then x*(G) = x(G).

Theorem 6 Let G be a graph. Then

X(G) = X" (G)] (2.16)
Proof. x*(G) > x(G) — 1 since by Lemma 1, x*(G) < x(G) — 1 implies that
there is a (k,d)-colouring of G for any positive integers k, d such that % <x—1. By

Theorem 2.2 there exists also a (x(G) — 1, 1)-colouring of G which is a contradiction.
Corollary 1 implies x*(G) < x(G). O

Theorem 7 Let G be a graph and let H be its subgraph. Then
X" (H) < X(G) (2.17)

Proof. Let ¢ be a (k,d)-colouring of G for some integers k,d. Then ¢ (u) = c(u) for
all w € H is clearly a (k,d)-colouring of H. Therefore x*(H) < x*(G). O

11



2.3 Fractional Chromatic and Clique Numbers

Given the alternative specification of the chromatic number (2.2) the fractional
chromatic number represents a natural relaxation of the colouring concept. The
constraint on a colouring y to be strictly a vector of zeros and ones is replaced by
a weaker constraint y > 0. This enables the minimization problem in (2.18) to be
solvable in a polynomial time using linear programming. An equivalent treatment
of the clique number leads to a dual problem, and from the theory of linear pro-
gramming it follows that the two fractional concepts are equivalent as shown later
in this section.

Definition 12 (Fractional Chromatic Number) We define the fractional chro-
matic number of a given graph G, x(G) to be equal to:

x(G) =inf{1" -y :y"A > 1"y >0}, (2.18)

where y is a rational column vector and A is the matrix with rows indexed by mazximal
independent sets of G and columns indexed by vertices of G such that A,; =1 if the
vertex 1 belongs to the mazximal independent set o and otherwise s 0.

Definition 13 (Fractional Clique Number) We define the fractional clique num-
ber of a given graph G, wi(G) to be equal to:

wi(G) =sup{1” -z : Az < 1,2 > 0}, (2.19)
where T 15 a rational column vector and A is as above.

Call any vector y satisfying the feasibility conditions in (2.18) a fractional colour-
ing of G and similarly call any vector z satisfying the feasibility conditions in (2.19)
a fractional clique of G and call 17 - x its size. Also let us call an = for which the
optimum is attained a maximum fractional clique of G.

Theorem 8 (Duality Theorem of Linear Programming) Let A be a matriz
and let b and c be vectors. Then

max{c’ -z : Ar < b2 >0} =min{d’ -y:yTA>cy >0} (2.20)
provided that both sets in (2.20) are nonempty.

Proof. This theorem is a well-known result of the theory of linear programming.
Its proof can be found for example in [29]. O

Theorem 9 (Complementary Slackness) Consider the linear programming du-
ality

max{c’ -z : Ar < b,z > 0} = min{b” -y : yTA > " y >0} (2.21)

12



Assume that both optima are finite and let xoy and yo be feasible solutions. Then the
following are equivalent

(1)  xo and yo are optimum solutions in (2.21) (2.22)
(1) cTwo=ylb (2.23)
(iii) (ye A—coo=0 and yi(b— Axy) =0 (2.24)

Proof. The equivalence of (i) and (ii) follows directly from Theorem 8. The equiv-
alence of (ii) and (iii) follows from

{(yOTA—cT)xO =0 and yg(b—Axo) =0} & {ygA:cg =clzy and yOTb = ygAxo}
(2.25)
and the fact that ¢’'zq <yl Azg < ylb. O

Theorem 10 inf and sup in definitions of the fractional chromatic and clique num-
bers are attained, they are equal to rational numbers and x;(G) = w;(G) for all
graphs G.

Proof. © = 0 and y = 1 are feasible solutions of (2.19) and (2.18). Therefore by
Theorem 8 the inf and sup are attained and equal. Since A is an integer matrix,
the optimum is a rational number. O

Theorem 11 Let G be a graph and let H be its subgraph. Then

Xp(H) = wp(H) <ws(G) = x5(G). (2.26)

Proof. Let z* be a fractional clique in H. Then we can construct the following
fractional clique z in G

r,=z, YueV(H) and z,=0 YveV(G)\V(H). (2.27)
From the construction it follows that > cq 2, = Y ,cp 2 and therefore we(H) <

wf(G). O

The fractional chromatic number is also refered to as the set chromatic number or
the multicolouring number or the ultimate chromatic number or the fuzzy chromatic
number and it is useful to introduce its equivalent characterisations.

Definition 14 (a/b-colouring) Let a and b be positive integers. An a/b-colouring
of a graph G is a mapping from V(G) to b-element subsets of {1, ...,a} such that all
adjacent vertices are assigned disjoint subsets.

13



Definition 15 (Kneser graph) Let a and b be positive integers. The Kneser
graph K(a,b) is the graph whose vertices are the b-element subsets of {1,...,a}.
There is an edge between such two vertices iff they are disjoint sets.

Although graph homomorphism has not yet been defined (see Chapter 3), we
include the definition of Kneser colouring and related theorems here because they
naturally belong in this section.

Definition 16 (Kneser colouring) Let a and b be positive integers. A Kneser
a/b-colouring of a graph G is a homomorphism from G to the Kneser graph K(a,b).

Theorem 12 A graph G has an a/b-colouring iff it has a Kneser a/b-colouring.

Proof. A mapping from V(G) to b-subsets of {1,...,a} representing the a/b-
colouring defines a homomorphism from G to the Kneser graph K(a,b). On the
other hand, a homomorpism f : G — K(a,b) defines a mapping from G to b-subsets
of {1,...,a} satisfying the properties of an a/b-colouring.O

Theorem 13
X7(G) =1inf{a/b: G has an a/b-colouring} = sup{|H|/a(H) : H — G}. (2.28)

Proof. Firstly, we will show that x;(G) < inf{a/b : G has an a/b-colouring}. Let
G have an a/b-colouring for some a and b, let K (a,b) be the Kneser graph, and let
f: G — K(a,b) be a homomorphism. Construct a fractional colouring, y, of G

as follows: ya, = k%j, where A; is the j-th independent set and k,; is the number

of indices i € {1,...a} such that A; = {u € V(G) : i € f(u)}. This shows that

x7(G) <inf{a/b: G has an a/b-colouring}.

Secondly, we will show that x¢(G) > sup{|H|/a(H) : H — G}. Let f : V(H) —

V(G) be a homomorphism. Define a fractional clique z in G such that Yu € G :
= |{s € H|f(s) = u}|/a(H). It follows that

s € HIfs) = ul _ 1]
2 T2 Al a)

Let I be an independent set in G. Then the set {s € H : f(s) € I} must also be
independent because s ~g t = u ~g v. Therefore for any independent set [ in GG

{se HIf(s) e 1}] _ alt])
LT H) S el

uel

(2.29)

= 1. (2.30)

Hence z is a fractional clique in G of size |H|/a(H). This concludes the proof that
wi(G) = xf(G) > sup{|H|/a(H) : H — G}. It remains to show that

inf{a/b : G has an a/b-colouring} < sup{|H|/a(H) : H — G}. (2.31)

The proof of this last inequality is not included here. See for example [14] for further
references. O
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2.3.1 Examples
Perfect k,m-strings

Definition 17 (Almost Complete Graphs) An almost complete graph on n ver-
tices is K,, with one of its edges removed.

Definition 18 (Perfect k,m-string) Letk > 2 and m be positive integers. Define
a perfect k,m-string as a graph Sk, such that

(i) V(Skm) = U, V(H;), where H;’s are almost complete graphs on k
vertices;

(ii) Let z;,y; be such that x; oy, y;. Then xipq =y; fori=1,...,m—1
and no other vertices belong to more than one H;;

(111) E(Skm) = {(u,v) : Ji;u ~pg, v} U (21, Ym)

Theorem 14 Let k,m be positive integers. If k > 3 and m > 2 then

1
w(Skm) =k =1, Xf(Skm) =k —1+ — and X(Skm) =k (2.32)

Proof. Let Si,, be a perfect k,m-string where £ > 3 and m > 2 and let H;, ;
and y;, i = 1,...,m be as in the definition above. Define H; = H;\{z;,y;} and H=
Sem\(U™y H;) = {x1, ..., Tm, ym}. Note that each H; is a clique. Clearly 2 < k—1 <
w(H1) < w(Skm). Construct the following k-colouring of S,,. Use one colour for
{1, ...,y }, second colour for y,, and the same set of another (k — 2) colours for
each one of H;, i = 1,...,m. This is a k-colouring of S, and hence x(Sg,) < k.
Since w(Skm) < wi(Skm) = X5 (Skm) < x(Skm) and because the fractional and the
clique numbers are integers it will be enough to show that x;(Skm) =k — 1+ % to
conclude the proof.

Firstly, we will argue that each independent set in Sy, has at most m vertices.
Clearly, for any independent set I at most one of x; and y,, belongs to I.

Consider an independent set I such that y,, € I and let z;, ..., 2;, be the p vertices
from I that belong to H (2;, = x;, or z;, = y;, for each [). Then there are at most
m — p vertices from ", H; in I since all vertices from H; are adjacent to z; for
each j = iy, ...,4, and ]:Ij’s are complete graphs on k — 2 vertices. Therefore there
are at most (m —p) +p=min I.

Similarly, consider an independent set I such that z; ¢ I. The same arguments
apply, with the difference that all vertices from H ; are now adjacent to y; for certain
J’s.

Secondly, construct a fractional clique w in S ,, such that

1
wy, = —Yu € Sk.m (2.33)
m
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Therefore 3 e, , Wy = |V(i’;’m)| = m(k;ll)ﬂ = (k—1)+= and (k—1)+= < wy(Skm)-
It remains to show that ws(Sk,) < (k—1) 4+ -=. We will show that by constructing
a (m(k — 1) + 1)/m-colouring of Sk,,. Consider the mapping ¢ from V(Si,,) to

m-element subsets of {0, ...,m(k — 1)} which satisfies

c(ry) = {mk—-1)—m+1,...mk-1)} (2.34)
c(zg) = {mk—-1)—m+2,..,mk-1)}u{0} (2.35)
c(xg) = {mk—-1)—m+3,...,mk-1)}uU{0,1} (2.36)
c(zy) = {mEk-1)}U{0,1,....,m—2} (2.37)
c(ym) = {0,1,....,m — 1}, (2.38)

and where each H; is coloured by (m(k — 1) +1) —m — 1 = m(k — 2) colours
{0,....m(k — 1)}\(e(x;) U c(y:)). Note that ¢ was constructed in such a way that
c(z1) N c(ym) = 0. Since |V (H;)| = (k — 2) for each i = 1,...,m , ¢ is a proper
(m(k-1)+1)/m-colouring of S, and therefore wy(Skm) < (k—1) + +.

By showing that wg(Sy,») = (k — 1) + - we have concluded the proof of

1
W(Skm) =k =1, Xp(Sem) =k =1+ — and  x(Skm) =k (2.39)

O

The above theorem produces an interestiong corollary. There is a sequence of
graphs for which the fractional chromatic number converges to the clique number
while the chromatic number does not.

Corollary 5

. wi(Sk.m

RiLE J<(S:,Ln>) =1, Vk (2.40)
and

lim Xkl — 1 (2.41)

k—00 Xf(Sk,m)

Moreover, also
lim wy(Sgm) — w(Skm) =0, VEk (2.42)

m—00

2.4 Weighted Graphs

Some of the concepts introduced in this paper can be extended naturally to graphs
with defined assignment of nonnegative real weights to its vertices.

Definition 19 (Weighted Graph) A weighted graph is a pair (G,w) where G is
a graph and w : V(G) — [0,00) is a weight function.

16



Definition 20 (Clique Number of (G,w)) For a weighted graph (G, w) its clique
number w(G,w) is defined as the maximum weight of a clique in G (weight of a clique
is the sum of weights of vertices of that clique).

Definition 21 (t-interval colouring of (G,w)) Let I be an interval of length t.
A t-interval colouring of a weighted graph (G,w) is a mapping A which assigns to
each vertex of G an open sub-interval in I such that

(i) if u~g v then Alu) N A(v) =0 (2.43)
(11) Yu € V(G) : the length of A(u) is w(u) (2.44)

Definition 22 (Interval Chromatic Number of (G,w)) The interval chromatic
number x(G,w) of a weighted graph (G, w) is defined as

X(G,w) = min{t : there is a t-interval colouring of (G,w)}. (2.45)
Deuber and Zhu introduced a concept of circular colouring to weighted graphs.

Definition 23 (t-circular colouring of (G,w)) Let t be a positive real number
and let C' be a circle in the plane of length t. A t-circular colouring of a weighted
graph (G, w) is a mapping A which assigns an open arc of C' to each vertex of G in
such a way that

(i) if u~g v then A(u) N A(v) =0 (2.46)
(17) Yu € V(G) : the length of arc A(u) is at least w(u) (2.47)

Definition 24 (Circular Chromatic Number of (G,w)) The circular chromatic
number x.(G,w) of a weighted graph (G,w) is defined as

Xc(G,w) = inf{t : there is a t-circular colouring of (G,w)}. (2.48)

Definition 25 (Fractional Chromatic Number of (G, w)) The fractional chro-
matic number X ;(G,w) of a weighted graph (G,w) is defined as

Xf(Gw) =inf{1" - y| YueV(G): (y" A)u > w(u),y >0}, (2.49)

where y is a column vector and A is a matriz with rows indexed by maximal inde-
pendent sets of G and columns indexed by vertices of G such that A,; = 1 if the
vertex 1 belongs to the maximal independent set o and otherwise is 0.

A wector y satisfying the feasibility conditions in (2.49) is called a fractional
colouring of (G,w). Again, a fractional clique is a vector x satisfying the feasibility
conditions in a problem of linear programming dual to (2.49) and the fractional
clique number is equal to the fractional chromatic number as for ordinary graphs.
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Theorem 15 (Alternative Specification of x;(G,w)) Let (G,w) be a weighted
graph. A fractional colouring of size t of (G, w), where t is a positive number, exists
iff there exists a mapping A of V(G) to measurable subsets of I, where I is an
interval of length t, such that A(u) has measure w(u) for all uw € G and adjacent
vertices are mapped to disjoint subsets of I.

Proof. A detailed proof is not included here. Some details are discussed in [32]. O
Theorem 16
w(G,w) <wp(Gw) = x(G w) < xe(Gw) < x(Gw) (2.50)

Proof. A t-interval colouring of a weighted graph (G, w) can be interpreted as a
t-circular colouring where the end points of an interval are joined together. Hence
Xe(G,w) < x(G,w).

Let A be a t-circular colouring of (G, w) on a circle of length ¢ and let = be a point
on that circle. Construct a mapping A" by cutting the circle at = and stretching it
on an interval I of length t. A" clearly maps vertices of G' to measurable subsets of
I and by Theorem 15 there is a fractional colouring of (G, w) of size t. Therefore
Xf(G7 w) < Xc(G’ ’LU)

The equality follows again from the duality of linear programming. Finally, w(G,w) <
wr(G,w) follows from the fact that w(G,w) can be expressed through an equivalent
maximization problem as wy(G,w) only with an additional constraint (the control
variable being a 0-1 vector). O

Corollary 6
w(G) S wp(G) = x4(G) < x(G) < x(G) (2.51)

2.5 Products of Graphs

Theorem 17 (Characteristics of Disjoint Union of Graphs) Let G and H be
graphs and let F' be a disjoint union of G and H. Then

w(F) = max(w(G),w(H)) (2.52)
X'(F) = max(x"(G),x"(H)) (2.53)
Xr(F) = max(xs(G), xs(H)) (2.54)
X(F) = max(x(G),x(H)) (2.55)

Proof. The first and fourth equalities are trivial. The second and third equalities
clearly hold with > since both G and H are subgraphs of F'.

To prove the other side of the second equality, consider circular colourings A%, A"
of G and H with the lenghts of the circles t¢ and t7 and assume t¢ > 7. Then
construct a mapping A from V(F) to unit arcs of a circle with length ¢ = t¢ such
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that A(u) = A%(u) Vu € G, and the vertices of H are mapped onto unit arcs with
centres at the same angles as A(v)’s for v € H.

To prove the other side of the third equality, let 4,y be maximal fractional colour-
ings in G and H and let x;(G) = max{x;(G), xs(H)}. Each maximal independent
set in F' is of the form I U Iy where I, [ are maximal independent sets in G and
H. Construct the following fractional colouring y of F’

G y}q
= A 2.56
yIGr[H yIG Xf(H) ( )
y is a proper fractional colouring since Vu € G :
yr
Y= i, Z IH = >y > (2.57)
Isu Igou f Ig3u
and Yv € H :
H H
G Y1y Yiy Xf(G)
The size of y is equal to
yr
2y =2vic 3 A =2y = xs(G). (2:59)
e (H) IG

Therefore x¢(f) < max{x;(G),xs(H)}. O

Definition 26 (Sum of Graphs) Let G and H be graphs. Define the sum of G
and H as follows

V(G+H) = {s:seV(G)}U{u:ueV(H)} and (2.60)
E(G+H) = {st:s~gttU{uww:u~govtU{su:seGuecy)} (2.61)

Theorem 18 (Characteristics of the Sum of Graphs) Then

w(G+ H) w(G) +w(H) (2.62)
xf(G+H) = x(G)+xs(H) (2.63)
X' (G+ H) x(G) + x(H) (2.64)

X(G+H) x(G) + x(H) (2.65)

Proof. G + H contains all edges of G and H plus all edges between vertices from
G and H. Clearly, any two cliques in G and H form together a clique in G + H.
Similarly, any clique in G + H consists of two cliques from G and H and edges
between them. Hence the first equality is trivial.
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Each independent set in G + H contains only vertices from G or H. Thus for 2¢, 2
fractional cliques in G and H

z, =29 YueGandz, =2 YwecH (2.66)
is a fractional clique in G + H and for 4,y fractional colourings of G and H
zy=2% VICGand 2z, =2 VICH, (2.67)

where I denotes a maximal independent set, is a fractional colouring of G+ H. The
second equality therefore holds as well.

G and H have to be coloured by two distinct sets of colours since each vertex from
G is adjoint to each vertex from H. The last equality then follows.

Let A be a circular colouring of G + H of size t. Because each vertex s from G is
adjoint to each vertex u from H the arcs A(s) and A(u) must also be disjoint for
any such s and u. We can therefore separate and cut out the parts of the circle of
length ¢ which are covered by arcs A(s),s € G. Because we were allowed to cut
the circle into such pieces we can now glue them together in such an order as to
produce a t-interval colouring of G + H and moreover in such a way that all the
pieces A(s),s € G remain on the left of the pieces A(u),u € H. Thus we showed
that x*(G + H) > x(G) + x(H). The other side follows from equality four. O

Definition 27 (Graph Products) For graphs G and H we define the following
graph products. For all of them the vertex set of a product is V(GprodH) = {su :
s € G,u € H}. The corresponding edge sets are as follows

Wreath product: E(G[H]) = {su,tv: either s ~gt or (2.68)
s=tandu~pg v}

Categorical product: E(G x H) = {su,tv:s~gt andu~g v} (2.69)

Cartesian product: E(GOH) = {su,tv: either s =1 and u ~g v (2.70)

ors~gtandu=v}

Theorem 19 (Characteristics of the Wreath Product) Let G and H be graphs.

Then
w(G[H]) = w(G)w(H) (2.71)
xf(GH]) < xp(G)xs(H) (2.72)
X(GH]) < x*(G)x(H) (2.73)
x(G[H]) < x(G)x(H) (2.74)

Proof. Let K,, C G and K,, C G be cliques in G and H such that m = w(G) and
n = w(H). Clearly w(G[H]) > w(G)w(H) since Ky, = {su:s € Kp,u € K, } is
a clique in G[H]. On the other hand all maximal independent sets in G[H] are of
the form U)_{s;u : s; € K,,u € K,;} where p < m and ¢ <n foralli=1,..,p.

20



Therefore also w(G[H]) < w(G)w(H) and the first equality holds.

Let y“ and ™ be fractional colourings of G and H. Let I and Iy be independent
sets in G and H. Then clearly I ;, = {su:s € Ig,u € Iy} is an independent set
in G[H]. Construct a fractional colouring y of G[H| as follows

Yinry = Yis Yy (2.75)

and zero otherwise. Then for each su € G[H]

Sur=Yun > v = Yy =1 (2.76)

I3su Ig3s Ipou Ig3s

hence y is a proper fractional colouring. Clearly, the size of y is equal to

zj:yz = ;yg; ;yg{ = x;(H) Y g, = xs(H)xs(G). (2.77)

1g3s

Therefore x(G[H]) < x¢(G)xs(H) and the second inequality holds.

Suppose x(H) = n and x*(G) = k/d for some positive integers n, k,d. Let ¢ be an
n-colouring of H and ¢* be a (k, d)-colouring of G. We will show that the following
mapping ¢ : V(G[H]) — {1,...,n} is a (kn, d)-colouring of G[H]

c(gh) = c*(g9) + ¢ (h) - k. (2.78)

For g1,90 € G, g1 # go
lc(gih1) = c(g2h2)|kn = |c*(91) — ¢*(92) + Pk|kn > (2.79)
> |c*(g1) — ¢*(92) + Pkl = [ (1) — ¢*(g2) |k = d. (2.80)

On the other hand For gy = go = g € G and hy,hs € H, hy # ho
lc(ght) — c(gh2)lkn = [Pkl > k > d. (2.81)

Therefore x*(G[H]) < n% = x*(G)x(H).
Similar arguments can be used to prove the last inequality. Take ¢* to be a (k,1)-
colouring where k = x(G) and the same proof gives the result. O

Theorem 20 (Characteristics of the Categorical Product) Let G and H be
graphs. Then

w(G@x H) = min(w(G),w(H)) (2.82)
X (G x H) < min(x;(G), xs(H)) (2.83)
(G X H) < min('(G), x*(H)) (2.8
Y@ x H) < min(x(G),x(H)) (285)



Proof. Let w(G) = m < n = w(H) for some integers m,n. Take a clique of
size m in each G and H. Then a subset of G x H consisting of pairs of vertices
representing a one-to-one correspondence between these two sets is a clique in G x H.
On the other hand each clique in G x H must represent a one to one correspondence
between vertices in two cliques from G and H. Therefore it follows that w(G x H) =
min(w(G),w(H)) and the first equality holds.

Suppose x(G) =p < g = x;(H) and let y© be a fractional colouring of G of size p.
Let I be a maximal independent set in G. Then the set

Iiow={su:s€lguec H} (2.86)

is independent in G x H. Construct the following fractional colouring y of G x H

Yng.u = Yiy (2.87)

for all I and zero otherwise. For each su € G x H

Sur=> Unoa= 2 Ui, =1 (2.88)

I>su Ig>s Ia3s

hence y is a proper fractional colouring. Clearly, the size of y is equal to the size of
y“ and therefore x;(G x H) < min(x(G), x;(H)) and the second inequality holds.
Let ¢ be a (k,d)-colouring of G. Then ¢(gh) = ¢ (g) is clearly a (k,d)-colouring of
G x H since g1hy ~gxng g2hs = g1 ~¢c g2. Therefore the third inequality holds.
Similarly, let ¢ be a k-colouring of G. Then c¢(gh) = ¢ (g) is k-colouring of G' x H
since g1hy ~axu g2hs = g1 ~¢ g2 and the last inequality also holds. O

Theorem 21 (Characteristics of the Cartesian Product) Let G and H be graphs.

Then
w(GOH) = max(w(G),w(H)) (2.89)
xs(GBH) = max(x;(G), xs(H)) (2.90)
X(GBH) = max(x*(G),x"(H)) (2.91)
X(GOH) = max(x(G),x(H)) (2.92)
Proof. G and H are subgraphs of GOH. Therefore
w(GOH) > max(w(G),w(H)) (2.93)
Xf(GBH) = max(xs(G), xs(H)) (2.94)
X(GBH) = max(x"(G),x"(H)) (2.95)
X(GOH) > max(x(G),x(H)) (2.96)

Each clique in GOH must form a bunch {su:u € K,},n <w(H) or {su:s € K},
m < w(G). A size of a clique in GOH is therefore at most max(w(G),w(H)) and
the first equality holds.
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Let G have an a¢/bg-colouring and H has an @y /by-colouring such that ag/bg =
X/ (G) and ag /by = x;(H). Assume x;(G) < x;(H). Construct an ag/b-colouring
@ of G and an ap /b-colouring ¢ of H such that b = beby, ac = acby and
ay = aybg. Let g be a one to one mapping of b-element subsets of {1,...,ay} to

{1,....( agl )}. Construct the following ay /b-colouring ¢ of GOH

o) = (95160 4 o) o (1) 2.97)

It is a proper ag /b-colouring of GOH where ay /b = max{x¢(G), xs(H)}. Therefore
the second equality holds.

It remains to prove the last two equalities. Let ¢ and ¢ be (k,d)-colourings of G
and H for some positive integers k, d. Then

c(gh) = c%(g) + ¢ (h) (mod) k (2.98)

is a (k,d) colouring of GOH. This is so, because |c(gih1) — c(g2he)lx = |c(g1) —
c%(ga) + cf(hy) — cH(hy)|x which is equal to [¢%(g1) — c¢“(g2)|x > d when hy = hy
and g; ~g g2 and to |c? (hy) — cf(hy)|r > d when g; = ¢g» and hy ~p hy. Therefore
\*(GOH) < max(x*(G), x*(H)).
Because each k-colouring is also a (k,1)-colouring the above arguments hold also for
X(GOH) < max(x(G), x(H)). O
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Chapter 3

Homomorphisms

3.1 Graph Homomorphism

Definition 28 (Homomorphism) For given graphs G, H we say that G is homo-
morphic to H or that there is a homomorphism from G to H (we write G — H ) if
there is a function f: V(G) — V(H) satisfying Vs,u € V(G) : s ~g u = f(s) ~g
fuw).

Theorem 22 (Alternative Characterisation of Colouring) Let n be a posi-
tive integer. A graph G has a n-colouring iff G — K,, where K, is the complete
graph on n vertices.

Proof. Let f : G — K, be a homomorphism and let ¢ : V(G) — {1,...,n} be a
colouring such that for all u € V(G), ¢(u) = i < f(u) = v;, where v; is the i-th
vertex of K, in some canonical ordering. It is trivial to check that c is indeed a
colouring iff f is a homomorphism.O

Theorem 23 (Transitivity of =) G — H & H - H = G — H

Proof. Let f: V(G) — V(H) and g : V(H) — V(H') be the functions defining
G — H and H — H'. Construct a function f : V(G) — V(H') as go f. Then
Vs,u € V(GQ) : s ~gu= f(s) ~g f(u) and Vf(s), f(u) € V(H) : f(s) ~u f(u) =
9(f(s)) ~g 9(f(w) thus Vs, u € V(G) s ~g u= [ (s) ~y f'(u). O

Lemma 3 Let G be a graph with a (k,d)-colouring. Then G — K(k,d), where
K(k,d) is the Kneser graph.

Proof. Let ¢ : V(G) — {1,...,k} be a (k,d) colouring of G. Define a mapping

f:V(G) — K(k,d) such that f(u) = {c(u),c(u) +1,...,c(u) + d mod k} for u € G.
Clearly f(u)N f(v) =0 for u ~g v because |c(u) — c(v)|x > d. O
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Theorem 24 Let G and H be graphs such that G — H. Then

w(G) < w(H), (3.1)
xf(G) < xp(H), (3.2)
X'(G) < X'(H) and (3.3)
X(G) < x(H). (3.4)

Proof. Assume H — K,,. Then G — H and the transitivity of — imply G — K,,.
Similarly, assume K, — G. Then G — H and the transitivity of — imply K,, — H.
Thus the first and the last inequalities hold.

Suppose ¢ : V(H) — {1,...,k} is a (k,d)-colouring of H for some positive integers
k,d. Then by the proof of Lemma 3 there is a homomorphism g : V(H) — K(k,d)
such that g(v) = {c(v),c(v) + 1,...,c(v) + d mod k} for v € H. Construct f :
V(G) — K(k,d) such that f'(u) = g(f(u)) for u € G where f : V(G) — V(H) is
a homomorphism from G to H. Then construct a mapping ¢ : V(G) — {1, ..., k}
such that Vu € G : ¢ (u) = i where g(f(u)) = {i,i +1,...,i + d mod k}. Such i
clearly exists and it is unique. ¢ is a (k,d)-colouring because ¢ was assumed to be
a (k,d)-colouring. Thus the third inequality holds.

Let x¢(H) = a/b for some positive integers a,b. Then by Theorem 12 H — K(a,b)
where K (a,b) is the Kneser graph. Then G — H and the transitivity of — imply
G — K(a,b). By Theorem 12 G has an a/b-colouring and by Theorem 13 x¢(G) <
X7(H). Therefore the second inequality also holds. O

Definition 29 For given graphs G, H we denote by G o H the graph with vertices
V(GoH)={su:s€ G and ue€ H} and edges E(Go H) = {su ~ tw : s ~¢g
t=u~pgw and (ii)s#t}

Lemma 4 w(Go H) < |V(G)]

Proof. Assume w(G o H) > |V(G)|. Choose a clique, C, in G o H of size greater
than |V(G)|. Then there must exist su, sw € C such that v # w. However, u # w
contradicts su ~gog sw.O

Theorem 25 (Alternative Specification of —) G — H iff w(Go H) = |V(G)|

Proof. Let f : G — H be a homomorphism of G to H. Construct a set C' = {su :
u = f(s)}. |C] = |V(G)| and Vsu,tw € C : su ~goy tw from the definition of
f. Therefore C' is a clique in G o H of size |V(G)|. From Lemma 4 it follows that
w(Go H) =|V(Q).

On the other hand, let C' be a maximum clique in G o H of size w(G o H). Because
su fgom sw for u #w and w(Go H) = |V(G)|, C defines a homomorphism f : G —
H in the following way: f(s) = w iff su € C.O
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Theorem 26 (Graph Homomorphism Density - Welzl) Let G and H be graphs
such that
G—H and G+« H. (3.5)

Then there always exists a graph F such that
G—F—H and G+ F <4 H. (3.6)

Proof. This theorem is given without a proof. The original proof was published in
[30]. A shorter proof can be found in [14]. O

3.2 Fractional Graph Homomorphism

3.2.1 Definitions and Basic Results

Definition 30 (Fractional Homomorphism) For given graphs G, H we say that
G s fractionally homomorphic to H or that there is a fractional homomorphism from
G to H (we write G —¢ H) if wg(Go H) = |V(G)].

Lemma 5 Let G —¢ H and let x be a maximal fractional clique in G o H. Then
\VIS € V(G) . ZUEV(H) Loy = 1

Proof. From the definitions we have wi(G o H) = Y, Tsu = >s >ou Tsu = |V(G)].
It is therefore enough to show that Vs € G : 3 ,cy () sy < 1. Thisand 35,37, Te, =
[V(G)| then implies Vs € V(G) : X ev () Tsu = 1. Using the notation from Defi-
nition 3, it follows from the definitions that Y- , A, s - s < 1 and A, g, 25, > 0.
Together with the fact that each vertex belongs to at least one maximal independent
set this implies that Vs € G': X cy ) Teu < 1. O

Theorem 27 (Transitivity of —;) G - F 6§ FF -y H=G —y H

Proof. Let z and ' be maximal fractional cliques in graphs G o F' and F o
H respectively. Construct a fractional clique z in the graph G o H as follows:
Zgh = Prev(F) Tof ° x}h. We want to show that w¢(G o H) = |[V(G)|, i.e. that
>_ogheV (GoH) Zgh = [V(G)]. But D_gheV(GoH) Zgh = YgeV(G)heV (H) 2= feV (F) Lof * x/fh =
>_geV(G),feV (F) Tgf 2ogeV (H) x/fh. Now, applying the previous lemma on F' —; H we
know that the last sum is equal to 1 and > cv(q) revir) Tor = Xgrev(Gor) Tgr =
|V(G)| due to the assumption that G —; F. O

Lemma 6 G —; H = G* —; H, where G* is a subgraph of G.

Proof. Let z be a maximal fractional clique in G o H of the size |V (G)|. Construct
a fractional clique, z* in G* o H such that Yu € G* and Vv € H : z}, = x,,. Using
Lemma 5, we know that Vu € G* : 3 cga;, = 1 and therefore Y, cqron 25, =
|V(G*)| which means that G* —; H.O
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Lemma 7 G —; K,

Proof. Construct a fractional clique, z, in G o K, (g) such that Yuv € G o K g) :

Ty = ﬁ It is easy to verify that x is indeed a fractional clique and that it has

the size |V(G)].0
Lemma 8 G —¥ H= Kw(H)+1 7L> G

Proof. Assume K, g)+1 — G and that G —; H. We will show that such assump-
tions lead to a contradiction and therefore the original statement must hold.
Denote w(H)+1 by n, i.e. we have K,, — G which implies w(G) > n. Take a clique,
K&, of size n in G.

We will show that H —¢ K,,_;. Construct a fractional clique 2* in H o K,,_; in the

following way
xfn—1 1
Yue HVwe K, :xz, =—- = , 3.7
u , VU 10 Ty Wf(Kn—l) n—1 ( )

where z%»=1 is the maximal fractional clique in K,_; (it assigns weight 1 to each
vertex). Now recall that w(H) = n — 1 and therefore any clique K¥ in H has size
at most n — 1. The only maximal independent sets in H o K,,_; are of the following
two types

(1) Ipr, ={uv:u € Kf_l}, K% isacliquein G, ve K, 4 (3.8
(i) IL,={w:veK, 1}, ued (3.9)
Clearly, |I| < n — 1 for any such independent set I and therefore Y,,c; ziv = (n —
1) ﬁ < 1 and z* is indeed a fractional clique. Moreover, also Y ",cy > ek, _, TuV =

\V(H)|* (n—1) % -5 = |V(H)| which means that H —; K,_;.
Now using Theorem 27 we know that

G—>fH & H—>f K, = G—>f K, 1. (310)

We will show that G —; K,,_; leads to a contradiction. Lemma 6 implies that
Kf —¢ K,—1 Let = be a maximal fractional clique in KnG o K,,_1. All maximal
independent sets in K f o K,_1 are of the following form

I ={w:uec K%, wvek,, (3.11)

It must hold that }-,,c;, z,o < 1for all v € K,,—y. Clearly, Y ck, | Zucke Tuv <
(n—1) < |V(KY)| = n which contradicts that = defines a fractional homomorphism
Kg —f Kn—l- O
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3.2.2 Examples
Triangulated Graphs

Definition 31 (n-Triangulated Graph) (i) K, is an n-triangulated graph. (ii)
Let H = K, _1 be a subgraph of an n-triangulated graph G and let v be a new vertex.
Then a graph (V(G)U{v}, E(G) U{ww :u € H}) is also an n-triangulated graph.

For example, 1-triangulated graphs are discrete graphs and 2-triangulated graphs
are trees.

Lemma 9 Let G be an n-triangulated graph. Then G —; K, and G /5 K,_;.

Proof. Firstly, we will show that G /4, K,_;. By definition, any n-triangulated
graph contains K, or in other words K,, —» G. Put H = K,,_1, w(H)=n—1and
by Lemma 8 G /4 H or G /¢ K,,_1.
We will now construct a fractional clique in G o K,, in the following way:

xkn 1

Yu e V(G),Yv e V(K,) : x), = or (K = (3.12)

where 2" is the maximal fractional clique in K, (it assigns weight 1 to each vertex).

The only maximal independent sets in G o K, are of the following two types

(i) Igpy={w:uweV(H)}, HisaK,subgraphin G, v e V(K,[3.13)

(i1) L={w:veV(K,)}, ueV(G) (3.14)
Clearly, |I| = n for any such independent set I and therefore Y, c; xiv = n* % =1
*

and z* is indeed a fractional clique. Moreover, also 3 cv(q) Xvek, T3V = |V (G
n* + = |V(G)| which means that G —; K,.0

Fractional Homomorphisms to Cj
Lemma 10 G —; Cs iff G does not contain K3 as its subgraph.

Proof. Firstly, if G does not contain K3 we construct a fractional clique x in G o Cj
as follows: o

5 1/2 1
v 12 1 (3.15)
wr(Cs)  5/2 5
where ¢ is the maximal fractional clique in C5. Again, let us describe all possible
maximal independent sets in G o C'5. They are of the following three types

Vu € V(G),Yv € V(Cs) : Ty =

() Tuvprs = oty ) = 1,2}, (3.16)
where uy; ~gus and vy %, Vo
(11)  Tuyupwn ey = {uwivs 11 =1,2} U{wgv; : j = 1,2}, (3.17)
where wuy ~g u2, v %o, v3 and vy Ko, Us
(tii) I, ={uwv:veV(C;5)}, where ueV(G) (3.18)
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Because |I| < 5 for any such independent set I, 3,7 z,v < 1 and z is indeed a
fractional clique. Moreover, > ,cv (@) vecs Tu¥ = 5% £ |V (G)| = |V (G)| which means
that G — f 05.

Note that the fractional clique specified in 3.15 is not unique. [E;U = 1/4 for v # v,
and x,v; = 0 is also a fractional clique of size |V(G)).

Secondly, assume that G contains a triangle T, V/(T') = a, b, c. Then we can construct
the following independent sets in G o Cj

Ity ={uwv:ueV(T)}, veV(Cs) (3.19)

and a graph H such that V(H) = {Ir, : v € V(C5)}, E(H) = {(Irw, I1w,) :
v1,v2 € V(C5) and vy e, vo}. Graph H is isomorphic with C5 and therefore
wr(H) = 5/2. Also, two vertices Ir,,, IT,, constitute an independent set in H iff
V(Irw, ) UV (Ir,,) induces an independent set in G o Cs.

Let x be a fractional clique in G o C5. Then we can construct a fractional clique in
H, z*, such that

v, = Y . and (3.20)
ueV(T)
Z LTy = Z m?T,'u' (321)
ue€TweCs It ,€V(H)

This implies that wg(T o C5) < wy(H) = 5/2 < 3 = |V(T o Cs)| and therefore
T /¢ Cs. Because T is a subgraph of G o C5 it also implies that G /4 C5.0

3.2.3 Duality
Lemma 11 Let G and H be graphs. All independent sets in G o H are of the form

Iu (U I;), where (3.22)
C {su:se XCV(G),ueY CV(H)} (3.23)
I, € {sju:ueY; CV(H)}, (3.24)

X induces a clique in G of size n with vertices sq, ..., Sp, Y induces an independent
set in H and Y;’s are such that there are no edges in H between any two Y;,Y; where
i # j and for all i there are no edges between Y; and Y. Any two of the Y -sets have
no vertices in common.

Moreover, all sets of the form (3.22) are independent and for mazimal independent
sets in addition

I={su:s€e XCV(G),uecY CV(H)} (3.25)
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Proof. Firstly, we will show that the specified sets are independent.

(i) I={su:s€ X CV(G),ueY CV(H)} is independent:

Let su # tv be from I and su ~goy tv. Then s # t and s %g t or u ~y v by the
definition of G o H. This, however contradicts su,tv € I and therefore I must be
independent.

(i) I; = {s;u:ueY; CV(H)} is independent for all i:

Let s;u # s;v be from I; and s;u ~gog s;v. Then because u # v clearly s;u ~ s;v
clearly contradicts the definition of G o H.

(iii) There are no edges between I and I; for all i

Let su € I,t;v € I; and su ~gog tyv. If s =t; then the fact that u # v (IN I =0)
clearly contradicts su ~ t;v. If s # t; then s ~¢g t; by the definition of X. Also,
u g v by the definitions of Y and Y;. Now s ~g t; and u 4y v contradict
SU ~aqoH tiV.

(iv) There are no edges between I; and I; for i # j:

Let s;u € I;,s;v € I; and s;u ~gom Sjv. s; # S; by assumption and u g v by the
definitions of Y; and Y;. Moreover, s; ~¢ s; by the definition of Y. Again, s; ~¢ s
and u 4y v contradict su ~goy t;v.

Secondly, we will show that all maximal independent sets are in the specified form.
Let I be an independent set in G o H such that

A= {su:seGue H}, where Vsu,tve A: (3.26)
s=t and uz#wv or

s~gt and wutgo

and define X = {s:su € A} and Y = {u: su € A}.

(i) X induces a clique in G:

Let su,tv € A such that s # t. Then from the definition of A it follows that s ~¢ t.
(ii) su,tv € A,s £t = u oy v:

From (i) follows that s ~¢ t and from the definition of A then follows that u oy v.
Let | X| = n. Define a partition of Y into n + 1 disjoint sets Y, Yy, ..., Y,, such that

Y = {u:sju,sou € A for some s1 # $9} (3.27)
Vi = {u:ssue A and s;#t=>tug A} where s, € X (3.28)

(ili) There are no edges between Y; and Y; for i # j:

Assume u ~p v for some u € Y;,v € Y;. Then Y;,Y; are nonempty and there exist
si,s; € X such that s;u,s;v € A. However, i # j implies that s; # s; and (ii)
concludes the contradiction. Therefore u ¢y v for all u € Y;,v € Y.

(iv) There are no edges between Y and Y; for all i

Assume u ~g v for some u € Y,v € Y;. Then Y,Y, are nonempty and there exist
si, §; € X such that s;u, sjuv € A and s; # s; (s; = s1 in the definition of Y if s; # s;
and s; = sy otherwise). (ii) then concludes the contradiction. Therefore u 4y v for
allu e Y,v ey,

(v) Y induces an independent set in H:
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Assume u ~g v for some u,v € Y. By the definition of Y there exist s; # s
such that sju, sev € A. (ii) immediately concludes the contradiction. Therefore Y
induces an independent set in H.

Finally, let A be a maximal independent set in G o H. We have proved above that
A has to satisfy (3.23) and (3.24). Assume that (3.25), i.e. [ is a primitive subset.
Let su € {su:s € X,u € Y}\I. It is a contradiction with A being a maximal
independent set, because {su} U A is also an independent set. O

Theorem 28 (Baéik, Mahajan [3]) G —; H iff K|, m)+1) 7 G-

Proof. Let K|, (41 — G and let C be a maximal clique in G such that |C| >
|ws(H) + 1]. Let y* be a minimum fractional colouring of H of the size x;(H) =
w¢(H). Construct the following fractional colouring of G o H

(i) V maximal independent set A C H : yoxa =y (3.29)
(13i)  yr =0 otherwise. (3.31)

All of type (i) and (ii) are clearly independent sets by Lemma 11. To show that
y is a proper colouring take any su € G o H. If s € V(G)\C then ysvm = 1.

If s € C then Elasu Yyr = Zindep.ASu Yoxa = Eindep.ASu yg > 1 because yH was
taken such to be a proper fractional colouring of H. The size of y is at most

wi(H)+ (|V(G)| = |ws(H)+1]) < |V(G)]. It implies that ws(G o H) < |V(G)| and
G # H. To prove the other direction assume K\, (m)+1) /> G. Again, take rf and
yH fractional clique and colouring in H dual to each other, w¢(H) = x;(H). From
the complementary slackness (Theorem 9) follows that

a:f = xf Z yg, (3.32)

B>3u

where B runs through all maximal independent sets in H.
Construct a fractional clique in G o H such that

Vs e G,u € H: xg =

Ll (3.33)

To show that x is a proper clique we need > ,,c4 Zsy < 1, where A C G o H is an
independent set. By Lemma 11 A = I U (U, I;) where I C K,, x Y, I; = s; X Y;
and n < wy(H) by the assumption K\, (m)+1) 7> G. Therefore

Y Ty = > Teu+ i > Tsu < (3.34)
su€A suel i=1 s;ucl;
n H 1 & H
<ot 50t am a5 S (3.35)
1 H H 1y " Y _
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= 5 25 (Z “5[> + sy 2y ( > :cﬁ’) — (3.37)

LSyl (5l + Al (3.38)
wy(H) 5 ue€y i=1 u€BNY;

where B runs through all maximal independent sets in H. Y U (U, (BNY;)) is an
independent set in H because Y and B are independent sets and there are no edges
between Y and Y; for all i. Therefore (3 ,cy 2 + 311 Yyepny, #) < 1. Hence

u

S e < wf(lH) Sk =1 (3.39)

sueA

The size of z is |V(G)| because

S oaw= ¥ = VOIY s = VO (340

sueGoH seGueH

O
Theorem 29 (Transitivity of /) G A F 8§ F /A, H=G /s H

Proof. Suppose G /4 F & F /4 H. By Theorem 28

lwi(H) + 1] < w(F) (3.41)
and
lwi(F)+ 1] <w(G). (3.42)

Since w(F) < |wg(F) + 1] it follows that |ws(H) + 1] < w(G). By Theorem 28
G 7L>f H. O

Theorem 30 G /A H=H —;G
Proof. Let G /4 H By Theorem 28

lwr(H) +1] < w(@). (3.43)
Since w(H) < |wy(H)+ 1] and w(G) < |ws(G) + 1] it follows that

w(H) < |w(G)+1] (3.44)
and hence by Theorem 28 H —; G. O
Lemma 12 Let G and H be graphs. Then

(3F such that G -5 F ¢~y H) & (|lws(G) + 1| <w(H)). (3.45)

32



Proof. Firstly suppose H /4, F /; G for some graph F. By Theorem 28
K\w,c)+1) — F and K\, (p)+1) — H or in other words

lwi(G) + 1] Sw(F) (3.46)
and
lwp(F) +1] <w(H) . (3.47)

Since w(F) < |ws(F) + 1] it follows that
lwe(G) + 1] <w(H). (3.48)

On the other hand suppose |w;(G) + 1| < w(H). Take F = K,m)-1, clearly
wi(F) =w(F) =w(H) — 1 and therefore

W(H) = w(F) +1 = |wp(F) +1]. (3.49)

Since |w¢(G) + 1| and w(H) are integers we also have |w;(G)+ 1| < w(H)— 1 and
therefore
w(F)=w(H)—1> |w/(G)+1]. (3.50)

Hence H /; F # G. This concludes the proof. O

The following theorem is a corollary of Lemma 12.

Theorem 31 (Weak Density Theorem for —;) Let G and H be graphs such

that
G—rH and G4 H. (3.51)
Then a graph F such that
G—>fF—>fH and G?LfF?Lf H. (352)
exists if and only if
lwr(G) + 1] < w(H). (3.53)

Proof. By Lemma 12 a graph F' such that H /4 F /¢ G exists iff |wp(G)+1] <
w(H). By Theorem 30 H /¢ F /; G implies G —; F —; H O

Corollary 7 Let G and H be graphs such that
G—;H and G4 H (3.54)

and let w(G) = w(H) — 1 and x(G) < w(H) (e.g. G = K3 and H = K4). Then
there is no graph F such that

G—;F—;H and G F oy H (3.55)
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Corollary 8 Let M,,,n > 2 be Mycielsky’s graphs defined in Section 3.4. Then since
M, are triangle-free My, — ¢ K|y (M) +1)- Also by Theorem 28 Ko (0a)41) +r M
But despite

lim w(Kwa( )+1J) (Mn) = 00, (356)

n—oo

there is no n such that
My =5 B =5 Kopouyry and - My =5 Fr o= Kjwp(ua)11) (3.57)
for some graph F,. This is because |ws(M,) + 1] = w(K|w,(a,)41)) for alln > 2.

Lemma 13

G—pH # wG) <w(H) (3.58)
G—yH # x;(G)<xs(H) (3.59)
G—;H # x(G)<x(H) (3.60)

Proof. To show that the first implication does not hold take G = K3 and H = Mj
where Mj is the Mycielsky’s graph defined in Section 3.4. Then

G —; H, (3.61)
and
w(@) =3 > 2=xs(H). (3.62)

Clearly w(K3) = 3 and w(M;) = 2. By Theorem 36 (Section 3.4)

29 10
Ms) = — 4+ — =941/290 = 3.24 )
Xr(Ms) 1()+29 941/290 = 3 (3.63)
Therefore [wf(H)+ 1] =4 and K|y, (m)41) /> G hence G —; H by Theorem 28.
To show that the second and the third implications do not hold take G = C5 and
H = K5. Then

G —; H, (3.64)

xi(G)=5/2 > 2=xs(H), (3.65)
and

xX(G)=3 > 2=x(H). (3.66)

Clearly w(G) = 2 and w(H) = wy(H) = 2. Since |w¢(H) + 1| = 3 it follows that
K w111 # G and hence by Theorem 28 G —; H. Cs = S3, and therefore

xf(C5) =5/2. O
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3.3 Pseudo Graph Homomorphism

Feige and Lovasz in [10] introduced a general technique for a polynomial approxi-
mation of any problem in NP. Given an N P-set L they construct a polynomial set
L’ (the hoax set for L) with the property L N X = L' N X for a certain family of
instances X. The technique can be applied to the following Graph Homomorphism
Problem

Instance: (G, H) where G and H are graphs (3.67)
Question: Is G homomorphic to H? (3.68)

Consider the 0-1 matrix V with rows and columns indexed by su where s € G,u € H
with the property that

Voutw =0 & (i)s =t&u # v or (ii)s ~¢g t&u g v (3.69)

(note that the matrix V' is the adjacency matrix of G o H with a self-loop added to
each vertex). Construct matrices C' = WV and Qsy 1w = Psulrw Where pg, have
the following properties (they are usually interpreted as probabilities over choices
su). Vs € G : Y ey Psu = 1 and Vs € G,Yu € H : pg, > 0. The following theorem
gives an alternative specification of the Graph Homomorphism Problem in terms of
the above matrices

Theorem 32 Let G and H be given graphs. Then G — H iff the optimum of the
following mazimization problem is 1

mgx Z Csu,t'uqu,tv (37())
s,u,t,v

s.t.

Q is a rank 1 matriz (3.71)

Q is symmetric (3.72)

Vs,t : Zqu,tv =1 (373)

vs7t7 u,v . qu,tv Z 0 (374)

Proof. Suppose G — H and let f: V(G) — V(H) be a homomorphism from G to
H. Construct a 0-1 vector p such that py, = 1iff f(s) =u, s € G, u € H. Then
Q = pp’ is a symmetric rank 1 matrix and Qg4 > 0 for all s,t € G, u,v € H.
Clearly, Vs,t € G : Qe = 1 & (u = f(s) & v = f(t)), and Qg = 0
otherwise. Therefore Vs,t € G : 32, ey Qsuto = 1 and all conditions (3.71) - (3.74)
are met (@ is a feasible solution).

As stated above, Qg1 = 1iff (f(s) = wand f(t) = v), where f is a homomorphism.
Thus Qs = 1 = Vsuw = 1, where V' is defined as in (3.69). Therefore

Z Csu,thsu,tv = Z ‘2 Veu thsu tv — Z ’2 qu tv —

s,u,t,v sutv sutv
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where C'is defined as above. The value of the objective function of the maximizatin
problem (3.70) is equal to 1 for @) and therefore @) is an optimal solution (note that
1 is an upper bound for (3.70)).

On the other hand, suppose @ is an optimal solution of the above maximization
problem and Zs,u,t,v Csu,thsu,tv = L By (373) Zs,t,u,v qu,tv = Zs,t Zu,y qu,tv =
Yt 1 =|V(G)[?. Since V is a 0-1 matrix and Q4 > 0 the following must hold

Z Csu,thsu,tv =1= (qu,tv >0= V;u,tv - 1) . (376)
s,u,t,v
By (3.73) Vs € GVt € G : ¥, yerr Qoupo = 1 > 0. By (3.74) all Q4 are nonnega-
tive and therefore

Vs € G : Ju € H such that Qsy . > 0 for some t € G,v € H. (3.77)

Since () is a nonnegative rank 1 matrix, there is also a nonnegative vector p such
that Qgutv = Psubiy for all s, ¢, u,v. Because Qg4 > 0 implies that ps, > 0 and
P > 0, by (3.77) we have Vs € G : Ju € H such that pg, > 0. Define a mapping
f:V(G) — V(H) such that f(s) =u = ps, > 0 (note that for each s there can be
more than one u for which py, > 0).

It remains to verify that f is a homomorphism. Let f(s) = u and f(t) = v. Then
Psu > 0 and py,, > 0 and hence also Qsytv = PsuPrv > 0. Moreover, by (3.76) also
Vsuto = 1 and therefore s ~ t = u ~p v by the definition of V. In other words, f
satisfies the properties of a homomorphism and G — H. O

The polynomial approximation of Feige and Lovasz replaces the rank 1 constraint
(3.71) with the requirement that @ is a positive semidefinite matrix. The ellipsoid
algorithm can be used to solve the new problem in a polynomial time (c.f. [10]).
The optimal solution of the modified problem with objective value 1 is called hoax
and the original and the new problems will be refered to as (*) and (**) respectively

(c.L. [10]).

Definition 32 (Pseudo Graph Homomorphism) Let G and H be graphs. We
say that G is pseudo homomorphic to H, write G —j, H, if the problem (*¥*)

mgx Z Csu,thsu,t'u (378>
s,u,t,v

S.1.

Q is a positive semidefinite matric (3.79)

Q is symmetric (3.80)

vsat : Zqu,tv =1 (381)

Vs, t,u, 0t Qsupe > 0 (3.82)

has a hoax for (G, H).
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Corollary 9 Clearly, G — H implies G —j, H.

Lemma 14 Let (**) has a hoar Q with instance (G,H). Then Q = MM?" for
some matriz M. Denote each column su of MT by mg,. Then for any independent
set I = {sjuq,...,spur} in G o H the set of vectors {ms,u,, ..., Mg, } 1S orthogonal.

Proof. By assumption, ) is a positive semidefinite matrix. Therefore Q = MM7T
for some M. Let I = {sjuq, ..., Sgux} be an independent set in G o H where k is a
positive integer. Then Vi, 5o, = 0 for all i # j. By (3.76) also 0 = Qqu;,s;u; =

ml., mg,., and hence m,,, and m,,, are orthogonal. O

Bacik and Mahajan [3] proved the following implication.
Theorem 33 G —, H implies G —; H.

Proof. Suppose Q is a hoax of the problem (**) and write Q@ as MM for some
matrix M (Q is positive semidefinite). Denote each column of M7 with index su by
Mgy Then Qs = ml my, and by (3.82)

Vs,t € G,Yu,v € H :m! my >0 (3.83)

For each s € G define vector ms = > ,cpy Msu. The condition (3.81) of (**) then
becomes

Vs, teG:1= Z Qsutv = Z msTuth = Z mSTu Z My = ThSTTht. (3.84)

u,veH u,veH ueH veH

Choosing s=t in (3.84) gives m!m, = 1 which means that 7, are all vectors with

unit length. Given this fact, (3.84) then also implies that the angle between any
two m, and m; is zero and hence they are all equal. Denote

= M. (3.85)
ueH

Then
im| = 1. (3.86)
From the definition of V', V;, s = 0 for u # v. Therefore by (3.76) mZ, mg, = 0 for
u # v and
M Mgy =Y MMy = MgyMigy = M|, (3.87)

(%

Construct a fractional clique z in G € H such that

Ty = M. (3.88)
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By Lemma 14 for any independent set I = {sjuq, ..., sgux} in G o H vectors {myg,,,
<eyM ¢ are all mutually orthogonal, i.e. mguimsjuj = 0 for 7 # j. Denote m; =

> suel Msu- Then
> = > ml Y myy = > Ima? (3.89)

suel tvel suel

By (3.87) |mgu|* = mTmg, and thus

s = Y g = " Y. my, = m i < |l - iyl (3.90)
suel suel

By (3.86) |m| = 1, hence

il = Y [mel? < [il. (3.91)

suel

The fact that |m;|* < || means that |m;| < 1. Together with (3.91) this implies
that

Yo zg =Y [ma)? < |y <1 (3.92)

suel suel

and therefore x is a proper fractional clique (note that x4, > 0 follows trivially from
its definition). Moreover,

Z Ly = Z|msu‘2 = Zmesu = ZmTstu = ZmTﬁ'L = Z 1= ’V(G”

su€GoH seG
(3.93)

Therefore G —; H. O

Thus we have G¢ — H = G —, H = G —; H. The converse, however, is not
true.

Theorem 34 G —; H#A G —, H# G — H.
Proof. Firstly, we will show that for each perfect n,m-string S, 41,
Sn+1’m —f Kn and STH—LTTZ 7L>h Kn. (394)

Clearly |wf(K,)+ 1] = n+ 1. By Theorem 14, w(S,+1,m) = n and therefore
Kyi1 # Spt1,m. Theorem 28 then implies that S,1., — ¢ K.

Now assume S, 41, —p K, with a hoax Q = MM T and denote each column of M7T
with index su by mg,. From the proof of Theorem 33 it follows that

S M = 10 (3.95)
ueV (Ky)

Take a partitioning of S, 1, similar to that in Definition 18. Then H;\{z;} =
K, and H\{y;} = K,, i = 1,...,m. For each u € K,, the sets I,, = {su :
se€ VH)\{z;}}, i =1,...,mand I, = {su:s € V(H)\{wi}}, i = 1,...,m are
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independent in S, 11, o K, and therefore by Lemma 14, vectors ms,, su € I, are
orthogonal as well as vectors m,, su € I,,. From the proof of Theorem 33 it follows
that

| > mal = |y, | <1 (3.96)
suEL,;i
| > mal = |y, | <1 (3.97)
su€ly,

The fact that H;\{x;} and H;\{y;} are cliques of size n then gives us

n> > Y mal > Y Y ma|=lwml=n (3.98)

ueV(Ky) seH;\{z:} s€H\{zi} ueV(Kny)
n> S 1Y ma > Y Y ma| = =n (3.99)
ueV(Kn) s€H;\{y:} s€H\{y: } ueV (Kn)

The above two inequalities are therefore in fact satisfied as equalities and by dividing
both sides by n we obtain

Y mal = m=1 (3.100)
scH\{z;}
| > ma| = |m|=1. (3.101)
s€H\{y:}

Also,

> ma? = = Y [ma? =" Y m, = m Ty < |ml -y (3.102)

suel suel suel

is true for any independent set I. In our case, thanks to (3.100) and (3.101), the
inequality in (3.102) holds as equality and we can conclude that

S e = m (3.103)
s€eH\{z;}

Yo me = m (3.104)
s€H;\{yi}

(c.f. [3]). Therefore, when rearranged, we obtain

Z Mgy = T = Z Mgy,

s€H;\{z;} s€H;\{y;}
or (3.105)

M= My, = M= My, y (3.106)

which implies my, , = my; , 1,7 = 1,...,m and thus also mg, , = m,,, ,. But vertices
x1 and y,, are adjacent and hence cannot be mapped to the same vertex u. Therefore
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My, o and my, ,, have to be at the same time equal and orthogonal, which can only
be satisfied if they are both zero vectors. That, however, contradits that

> maal =1 Y myl = m =1 (3.107)
ueV (Knp) ueV(Kp)

Therefore Sy, +1.m #n K
Secondly, for the Grotzsch’s graph G

g —h Kg and Q 7L> Kg. (3108)

In the next section it is shown that x(G) = 4, thus G 4 Kj. Conversely, the
following matrix is a hoax in (**) for the instance (G, K3)

1/3 0 0

Qss = 0o 1/3 0 |, (3.109)
0 0 1/3
0 1/6 1/6

Qsr = 1/6 0 1/6 | for s ~t, and (3.110)
1/6 1/6 0
1/6 1/12 1/12

Qee = | 1/12 1/6 1/12 | for s £ t. (3.111)

1/12 1/12 1/6
Where )5, denotes the s,t block of (). Therefore G —, K3. O
Theorem 35 (Transitivity of —,) G —, F & F —, H =G —, H

Proof. Let Q% be a hoax in (**) for the instance (G, F') and let Q7 be a hoax
in (**) for the instance (F, H). Construct a hoax @ for (G, H) as follows

Qgihs gaha = Z 91f1 92f2Qf1h1 f2ha (3.112)
f1,f2€F

The value of the objective function in (**) for @ is equal to

Z Cglh1ag2h2Q91h1,g2h2 - Z Cglh1192h2 Z glfl gngQflhl foho —

91,92€G,h1,ha€H 91,92€G,h1,ha€H f1,f2€F
(3.113)

Clearly @ is symmetric and Qg p, g,1, > 0 for all g;, 92 € G and hy, hy € H since
both Q% and Q¥ have those properties. For all g1, g2 € G

Z lehhgzhz = Z Z Qg1f192f2 f1h1f2h2:

hi,ho€H hi,ho€H f1,f2€F
= Z 91f1 g2f2 ( Z Qf1h1 fzhz) =
f1,f2€F hi,ho€H
_ Z GF _
o g1fi,g92f2 —
f1,f2€F
— 1 (cf 3] (3.114)
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() is also positive semidefinite (c.f. [3]). Hence @ is a hoax in (**) for the instance
(G,H). O

3.4 Examples

3.4.1 Mycielski’s Graphs

It is interesting to show that there can be graphs whose clique number is much
smaller than their chromatic number. The sequence of Mycielski’s Graphs has the
property that all its members are triangle-free, however the sequence of their chro-
matic numbers increases without a bound hence offering an arbitratily wide gap
between w and Yy.

Definition 33 (Mycielski’s Graph Transformation) Given a graph G such that
V(G) = vy, ..., vk, the Mycielski’s Transformation of G, u(QG), is defined as follows

V((G)) =A{x1, s @k, Y1,y ooy Uiy 2}, (3.115)
Ti ~u(@) Tj = Vi ~G Uy, (3.116)
Ti ~u(@) Yj = Vi ~a Uy, (3.117)
Yi ey 2 Vi=1,.,k, (3.118)
and there are no other edges. (3.119)

Theorem 36 (Mycielski [24], Larsen, Propp and Ullman [21]) Let G be a graph
with at least one edge. Then

() w(p(@) =w(G), (3.120)
) (@) =(G)+1 and (3.121)
(3.122)

Proof. The proof is not included here. It can be found in [21]. O

When M, = K, graphs recursively defined by M,, 11 = u(M,,) for n > 2 are called
Mycielski’s graphs. First few examples are M3 = C5 and M, which is Grotzsch’s
graph. By the previous theorem all M,’s are triangle free (or w(M,) = 2) and
X(M,,) = n. Also, the fractional chromatic numbers form an infinite sequence where

xf(Mz) =2 and x(Mpui1) = x5(M,) + (xy(M,))~t. This sequence grows like v/2n

in the sense that X{}gin") — oo L.

Therefore, the sequence of Myecielski’s graphs has the property that (x(M,) —
Xf(My,)) —noeo 00 and (wy(M,) — w(M,)) —n—0o 00. Moreover, Fisher [11]
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showed that the fractional chromatic numbers of Mycielski’s graphs have denomi-
nators on the order of e“*, where c is a constant.

Despite the colouring complexity of the Mycielski’s graphs they are, as triangle-free
graphs, trivially fractionally homomorphic to K5. On the other hand Vkdn such
that Kj —¢ M,.

3.4.2 Petersen’s Graph

Petersen’s graph P is defined as V(P) = {u,...,us,v1,...,v5}, where {uy,...,us}
induce a 5-cycle, {vy,...,vu5} induce a star (i.e. wvy,vs,vs,v2,v4 form a 5-cycle in
that order) and for each i = 1,....,5 w; ~ v;. Formally E(P) = {(u,uz), (ug,us),
(uz, ua), (ug, us), (us, u1), (vi,vs), (U3, 05), (vs,v2), (V2,04), (v, 01), (wr,v1), (U2, v2),
<U3,U3), (U4,U4)7 (U5,U5)}.

Petersen’s graph is triangle free. Therefore it is fractionally homomorphic to Ky
(take a fractional clique z* of size |V (P)| in P o K such that z}, = z%, = 1/2 for
all s € P and where t; and ¢y are the two vertices of K3).

We will also show the following

)
wP)=2 wi(P)=5=xs(P) x(P)=3 (3.123)
One possible 3-colouring of P is the partition Ay = {uy, us, vo}, Ay = {ug, ug, v, vs},

As = {us,v3,v4}. One fractional clique of size 5/2 is x such that z,, = 1/2 for all
i = 1,...,5 and zero otherwise. A fractional colouring of size 5/2 is y such that

Y{ur,uawaws} = Y{uz,us,wz,oa} = Y{usgur,vaval = Yuauo,vs,v1} = Y{us,uz,or,o} = 1/2 and zero
otherwise.

3.4.3 Grotzsch’s Graph

Grotzsch’s graph G is isomorphic to My. More formally, it is defined as V(G) =
{Ul,-..,U5,U1,...,'U57w} and E(g) = {(u17u2)7 (UQ,U/g), (u37u4)7 <u47u5)7 (U5,’U,1),
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(u1,v2), (u2,v3), (us,va), (ug,vs), (us,v1), (v1,uz), (va,uz), (v3,us), (v, us), (vs,u1),
(Ulvw)v (Uva)v (Ui’nw)ﬂ (U4’w>’ (v5,w)}

Grotzsch’s graph is also trangle-free and therefore it is fractionally homomorphic
to Ky (similarly as for Petersen’s graph). The following is also true

W(G) =2 wi(G) =22 = () \(G) =4 (3.124)

10

A 4-colouring of G is the following partition Ay = {uy, us, v1,v3}, Ay = {ug, ug, v, v4},
As = {us,v5}, Ay = {w}. A fractional clique z in G whose size is 29/10 is defined as
follows: x,, = 3/10, x,, =2/10 for all i = 1,...5 and x,, = 4/10. A dual fractional
colouring of size 29/10 is Y such that yqu, wivi v} = Yususwevs) = Y{usurwsn} =
Y{ug,uz,va,02} = Y{us,uz,vs,v3} = 3/1()’ Y{ur,ug,w} = Y{uz,us,w} = Y{usui,w}y = Y{uguz,w} =
Yususw) = 2/10 and Yy, vy v5,04,053 = 4/10 (there are no other maximal independent
sets in G).
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