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Abstract

The graph colouring problem is classical to combinatorics. Recently
many new concepts have been introduced relaxing this NP-complete
problem or generalising it even further. The most inclusive of them is
the question of existence of a homomorphism from one graph to another.
Existence of a graph homomorphism is also an NP-complete problem
and several relaxations, such as the concept of fractional graph homo-
morphism, try to introduce its polynomial approximations. This paper
attempts to show the different concepts in relationship to one another
and to give examples which emphasise their differences and similarities.
Particular attention is drawn to the relatively new concepts of fractional
colouring and fractional graph homomorphism.
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Vedoućı práce: Prof. Jaroslav Nešetřil, DrSc.

Prohlašuji, že jsem diplomovou práci vykonal samostatně pouze s použit́ım uve-
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Chapter 1

Introduction

1.1 Aims

It is more than two years since I left MFF UK, and a little longer since I chose frac-
tional graph homomorphisms as the subject for my diploma thesis. Several things
have changed in my life since then. I graduated from the University of Cambridge
and began to work as a bond trader in London. One thing, however, did not change
and that is the fact that I have been thinking of myself more as a ’matfyzak’ than
anything else. There are a couple of reasons for this, one of which is that I have
always enjoyed maths and liked to twiddle with computers, but perhaps even more
importantly, ’matfyz’ helped to shape my thinking into the structure in which I
hope it still is and will remain for some time, and which I would describe as logical
and rational, but with an essential degree of curiosity and willingness to question
the existing and attempt to understand the new.
My work on this thesis suffered many forced breaks and I am glad that I reached this
stage eventually. My primary aim is naturally to present a paper worthy of being
accepted by the examination committee but I hope that there is going to be a little
more to it than that. Graph Theory and Combinatorics are parts of mathematics
I find immensely interesting and studying them can give one, such as me, enough
satisfaction on its own. By writing this paper I hope to share some of this with the
reader.
My particular focus is going to be on fractional graph colouring and fractional graph
homomorphism, concepts of Graph Theory that are relatively new and that are usu-
ally excluded from mainstream publications. But what are they? It is the nature
of Graph Theory that solutions of many of its puzzles lead to problems that are
NP-complete. However, it is often desirable to approximate some of these problems
in order to obtain the solutions faster. The fractional concepts provide such ap-
proximations for the more classical graph colouring and graph homomorphism. The
original problem specifications are slightly altered into forms compatible with linear
programming. Polynomial algorithms for finding the fractional graph colouring and
homomorphism are then provided by Linear Programming Theory.
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Interesting questions arise. To what extent are these approximations accurate and
how do they relate to the original concepts? For what classes of instances do the
original and the fractional concepts turn out to be equivalent? Does the existence
of one imply the existence (or nonexistence) of the other? Do similar theorems hold
for the fractional concepts as well as for the original ones? Are their proofs similar?
What about alternative approximations? And many more.

1.2 Structure

The second chapter is devoted to graph colouring. Firstly, the paper introduces
traditional concepts such as chromatic and clique numbers and presents their alter-
native definitions. These then provide the link between the original concepts and
some of their relaxations (such as fractional chromatic and clique numbers) lead-
ing to problems with only polynomial complexity. Several generalisations of the
chromatic number (such as the star chromatic number) are also introduced in this
chapter together with connecting theorems and corollaries. The section on fractional
chromatic and clique numbers presents alternative definitions of the two concepts
which prove useful later in the paper. A subsection on perfect k,m-strings, with some
original ideas in derivations of their chromatic and fractional chromatic numbers,
is included among examples and it produces interesting limit results for fractional
chromatic and clique numbers. The chapter then proceeds with generalisations of
some of the concepts for weighted graphs. Finally it concludes with a section on
products of graphs showing some relationships between the characteristics of graphs
and their various products. Some of the proofs in that part are original to this
paper.
Chapter three is devoted to homomorphisms. It introduces graph homomorphism
together with a few elementary results and shows how it generalises the concept of
colouring. A large part of the chapter is concerned with fractional graph homomor-
phism and related topics. After some basic results are proved for fractional graph
homomorphism and a few related examples are presented the paper proceeds with
a section on duality centred around a theorem of Bač́ık and Mahajan. This part
also includes some results original to this paper (such as the Weak Density Theo-
rem for →f ). Then there follows an alternative polynomial relaxation of the graph
homomorphism problem - the pseudo graph homomorphism - and a theorem which
shows that this concept is both a relaxation of the original graph homomorpism and
a generalisation of the fractional graph homomorphism. The final segment presents
interesting results of Mycielski and Larsen, Propp and Ullman regarding Myciel-
ski’s Graphs and demonstrates the construction of fractional chromatic and clique
numbers on two well-known examples - Petersen’s and Grötzsch’s graphs.
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1.3 Notation Used

Unless otherwise indicated, graphs in this paper will be simple, loopless and finite.
For a given graph G denote V (G) its vertex set and E(G) its edge set. For given
s, t ∈ V (G) we denote s ∼ t or s ∼G t whenever (s, t) ∈ E(G) and s 6∼ t or s 6∼G t
otherwise. Unless specified otherwise, let Kn, Cn and Pn denote a complete graph,
a cycle and a path on n vertices. The shorter u ∈ G will sometimes be used instead
of u ∈ V (G). The vector of all ones will be denoted simply by 1 in situations where
there is no confusion.
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Chapter 2

Colouring

2.1 Chromatic Number

Definition 1 (Colouring) Let k be a positive integer. A k-colouring of a graph G
is a mapping c : V (G) → {1, ..., k} such that, ∀u, v ∈ V (G) : u ∼ v ⇒ c(u) 6= c(v).
Denote the set of all k-colourings by Ck.

Definition 2 (Chromatic Number) The chromatic number χ(G) of a graph G
is defined as:

χ(G) = min{k : G has a k-colouring}. (2.1)

Definition 3 (Clique Number) The clique number ω(G) of a graph G is defined
as the maximum size of a subset of V (G) such that the subset induces a complete
graph (i.e. a graph where each two vertices are adjacent) in G (such a subset is
called a clique).

Definition 4 (Independence Number) The independence number α(G) of a graph
G is defined as the maximum number of vertices in an independent set of G.

Definition 5 (Independence Ratio) The independence ratio of G, i(G), is de-
fined as i(G) = α(G)/|V (G)|.

Theorem 1 (Alternative Specifications of χ(G) and ω(G)) .

χ(G) = min{1T · y : yT A ≥ 1}, (2.2)

ω(G) = max{1T · x : Ax ≤ 1}, (2.3)

where x, y are 0-1 column vectors and A is a matrix with rows indexed by maximal
independent sets of G and columns indexed by vertices of G such that Aσ,i = 1 if the
vertex i belongs to the maximal independent set σ and otherwise is 0.
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Proof. Vector y defines a partitioning of V (G) into maximal independent sets such
that each vertex belongs to at least one such set. This is exactly the definition of
a colouring, where each independent set represents colouring by a different colour
(for vertices which are in more than one independent set we can choose the colour
arbitrarily). 1T · y is equivalent to the number of colours in such colouring. Hence
the minimization problems (2.1) and (2.2) are equivalent.
The set K = {u : xu = 1} is a clique, as for any independent set I in G there is at
most one vertex from K in I. On the other hand, for each clique K in G there is a
vector x such that K = {u : xu = 1} and Ax ≤ 1. The size of each such a clique
is then 1T · x. Therefore (2.3) defines the size of the maximal clique in G. 2

2.1.1 Examples

ω(C5) = 2, χ(C5) = 3

2.2 Star Chromatic Number

Vince [28] introduced a generalization of the chromatic number, the star chromatic
number. The colours on adjacent vertices are not only required to be distinct but
also, in certain sense, as far apart as possible. Because Vince’s proofs of some basic
facts about the star chromatic number rely on continuous methods, we introduce an
alternative approach of Bondy and Hell [5] allowing purely combinatorial treatment.

Definition 6 (Circular Norm) Let k be a positive integer. For x ∈ {−(k −
1), ..., 0, ..., k − 1} define |x|k = min{|x|, k − |x|}.
Definition 7 (k-chromatic number) Define the k-chromatic number χk(G) of a
graph G as

χk(G) =
k

max
c∈Ck

min
u∼Gv

|c(u)− c(v)|k (2.4)

Definition 8 ((k,d)-colouring) Let k and d be positive integers, k ≥ d. A (k,d)-
colouring of a graph G is a mapping c : V (G) → {1, ..., k} such that, ∀u, v ∈ V (G) :
u ∼ v ⇒ |c(u)− c(v)|k ≥ d.

Corollary 1 (k,1)-colouring of a graph G is also a k-colouring of G.

Theorem 2 If G has a (k,d)-colouring and k
d
≤ k

′

d
′ for some positive integers k

′
, d

′
,

then G has a (k
′
, d

′
)-colouring.

Proof. Let c : V (G) → {1, ..., k} be a (k,d)-colouring of G. Define c
′

: V (G) →
{1, ..., k} by

c
′
(u) =

⌊
d
′

d
c(u)

⌋
for all u ∈ G. (2.5)
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Consider u ∼ v such that c(u) > c(v). Because c defines a (k,d)-colouring of G,
d ≤ c(u)− c(v) ≤ k − d. Hence

c
′
(v) + d

′
=

⌊
d
′

d
(c(v) + d)

⌋
≤

⌊
d
′

d
c(u)

⌋
= c

′
(u) ≤ (2.6)

≤
⌊

d
′

d
(c(v) + k − d)

⌋
≤

⌊
d
′

d
c(v) + kd

′

d
− d

′
⌋
≤ c

′
(v) + k

′ − d
′

and d
′ ≤ c

′
(u)− c

′
(v) ≤ k

′ − d
′
. (2.7)

Thus c
′
is a (k

′
, d

′
)-colouring of G. 2

Corollary 2 If G has a (k,d)-colouring, then it also has a (k
′
, d

′
)-colouring where

k
′
/d

′
= k/d and the greatest common denominator gcd(k

′
, d

′
) is 1.

Lemma 1 Let G be a graph on n vertices that has a (k,d)-colouring with gcd(k,d)=1
and k > n. Then G has a (k

′
, d

′
)-colouring with k

′
< k and k

′
/d

′
< k/d.

Proof. The proof of this lemma is not included here, but it can be found in [5]. In
the context of this paper Lemma 1 serves only the purpose of helping to derive the
result of Lemma 2. 2

Definition 9 (Star Chromatic Number) The star chromatic number of a graph
G, χ∗(G), is defined as:

χ∗(G) = inf{k/d : G has a (k,d)-colouring}. (2.8)

Definition 10 (t-circular colouring) Let t be a positive real number and let C
be a circle in the plane of length t. A t-circular colouring of a graph G is a maping
∆ which assigns an open arc of C of length 1 to each vertex of G in such a way that

if u ∼G v then ∆(u) ∩∆(v) = ∅ (2.9)

Definition 11 (Circular Chromatic Number) The circular chromatic number,
χc(G), of a graph G is defined as

χc(G) = inf{t : there is a t-circular colouring of G}. (2.10)

Lemma 2 Let G be a graph on n vertices, then

χ∗(G) = min{k/d : G has a (k,d)-colouring and k ≤ n}. (2.11)

Proof. By Corollary 2 and Lemma 1, if G has a (k, d)-colouring then it has a
(k

′
, d

′
)-colouring with k

′ ≤ n and k
′
/d

′ ≤ k/d. Therefore

χ∗(G) = inf{k/d : G has a (k,d)-colouring and k ≤ n}. (2.12)

Because the set {k/d : G has a (k,d)-colouring and k ≤ n} is finite, the infimum can
be replaced by minimum. 2
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Theorem 3 (The Original Specification of χ∗(G) - Vince [28]) If G is a con-
nected graph with n vertices,

χ∗(G) = min
1≤k≤n

χk(G). (2.13)

Proof. Let k and d be positive integers such that a (k,d)-colouring of G (call it c)
exists. Then from the definition of (k,d)-colouring it follows that minu∼Gv |c(u) −
c(v)|k ≤ d and therefore χk(G) ≤ k/d. From Lemma 1 it follows that χ∗(G) ≥
min1≤k≤n χk(G).
On the other hand, let χk(G) = k/d for some d = maxc∈Ck

minu∼Gv |c(u) − c(v)|k.
Let c be the k-colouring for which the maximal value of d is attained. Then c is
clearly a (k,d)-colouring of G. Therefore χ∗(G) ≤ min1≤k≤n χk(G). This concludes
the proof of χ∗(G) = min1≤k≤n χk(G). 2

Theorem 4 (Another Specification of χ∗(G) - Zhu [31]) For any graph G

χ∗(G) = χc(G) (2.14)

Proof. Firstly, let c be a (k,d)-colouring of G, for some k and d. Put k points,
p1, ..., pk, evenly spaced on a circle of length k. For all u ∈ V (G) let ∆(u) be the
interval of length d centred at pc(u). Then ∆ is a k-circular colouring of G and
therefore χc(G) ≤ χ∗(G). 2

Theorem 5 Let G be a graph and let u ∈ G be a vertex such that u is adjacent to
all but one vertex in G. Then

χ∗(G) = χ(G) (2.15)

Proof. Let ∆ be a t-circular colouring of G for some t. Then ∆(u) is disjoint from
∆(v) for all v ∈ G but one and therefore one of the endpoints of ∆(u) is not covered
by any of the intervals ∆(v). Hence, we can construct a t-interval colouring of G by
cutting the circle at that end point. 2

Corollary 3 If G has a universal vertex then χ∗(G) = χ(G).

Corollary 4 Let χ(G) = n for some n and let u ∈ G be a vertex such that its
neighbours in G induce a subgraph Gu with ω(Gu) = n− 1. Then χ∗(G) = χ(G).

Theorem 6 Let G be a graph. Then

χ(G) = dχ∗(G)e (2.16)

Proof. χ∗(G) > χ(G) − 1 since by Lemma 1, χ∗(G) ≤ χ(G) − 1 implies that
there is a (k,d)-colouring of G for any positive integers k, d such that k

d
≤ χ− 1. By

Theorem 2.2 there exists also a (χ(G)−1, 1)-colouring of G which is a contradiction.
Corollary 1 implies χ∗(G) ≤ χ(G). 2

Theorem 7 Let G be a graph and let H be its subgraph. Then

χ∗(H) ≤ χ∗(G) (2.17)

Proof. Let c be a (k,d)-colouring of G for some integers k, d. Then c
′
(u) = c(u) for

all u ∈ H is clearly a (k,d)-colouring of H. Therefore χ∗(H) ≤ χ∗(G). 2
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2.3 Fractional Chromatic and Clique Numbers

Given the alternative specification of the chromatic number (2.2) the fractional
chromatic number represents a natural relaxation of the colouring concept. The
constraint on a colouring y to be strictly a vector of zeros and ones is replaced by
a weaker constraint y ≥ 0. This enables the minimization problem in (2.18) to be
solvable in a polynomial time using linear programming. An equivalent treatment
of the clique number leads to a dual problem, and from the theory of linear pro-
gramming it follows that the two fractional concepts are equivalent as shown later
in this section.

Definition 12 (Fractional Chromatic Number) We define the fractional chro-
matic number of a given graph G, χf (G) to be equal to:

χf (G) = inf{1T · y : yT A ≥ 1T , y ≥ 0}, (2.18)

where y is a rational column vector and A is the matrix with rows indexed by maximal
independent sets of G and columns indexed by vertices of G such that Aσ,i = 1 if the
vertex i belongs to the maximal independent set σ and otherwise is 0.

Definition 13 (Fractional Clique Number) We define the fractional clique num-
ber of a given graph G, ωf (G) to be equal to:

ωf (G) = sup{1T · x : Ax ≤ 1, x ≥ 0}, (2.19)

where x is a rational column vector and A is as above.

Call any vector y satisfying the feasibility conditions in (2.18) a fractional colour-
ing of G and similarly call any vector x satisfying the feasibility conditions in (2.19)
a fractional clique of G and call 1T · x its size. Also let us call an x for which the
optimum is attained a maximum fractional clique of G.

Theorem 8 (Duality Theorem of Linear Programming) Let A be a matrix
and let b and c be vectors. Then

max{cT · x : Ax ≤ b, x ≥ 0} = min{bT · y : yT A ≥ cT , y ≥ 0} (2.20)

provided that both sets in (2.20) are nonempty.

Proof. This theorem is a well-known result of the theory of linear programming.
Its proof can be found for example in [29]. 2

Theorem 9 (Complementary Slackness) Consider the linear programming du-
ality

max{cT · x : Ax ≤ b, x ≥ 0} = min{bT · y : yT A ≥ cT , y ≥ 0}. (2.21)
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Assume that both optima are finite and let x0 and y0 be feasible solutions. Then the
following are equivalent

(i) x0 and y0 are optimum solutions in (2.21) (2.22)

(ii) cT x0 = yT
0 b (2.23)

(iii) (yT
0 A− cT )x0 = 0 and yT

0 (b− Ax0) = 0 (2.24)

Proof. The equivalence of (i) and (ii) follows directly from Theorem 8. The equiv-
alence of (ii) and (iii) follows from

{(yT
0 A−cT )x0 = 0 and yT

0 (b−Ax0) = 0} ⇔ {yT
0 Ax0 = cT x0 and yT

0 b = yT
0 Ax0}
(2.25)

and the fact that cT x0 ≤ yT
0 Ax0 ≤ yT

0 b. 2

Theorem 10 inf and sup in definitions of the fractional chromatic and clique num-
bers are attained, they are equal to rational numbers and χf (G) = ωf (G) for all
graphs G.

Proof. x = 0 and y = 1 are feasible solutions of (2.19) and (2.18). Therefore by
Theorem 8 the inf and sup are attained and equal. Since A is an integer matrix,
the optimum is a rational number. 2

Theorem 11 Let G be a graph and let H be its subgraph. Then

χf (H) = ωf (H) ≤ ωf (G) = χf (G). (2.26)

Proof. Let x∗ be a fractional clique in H. Then we can construct the following
fractional clique x in G

xu = x∗u ∀u ∈ V (H) and xv = 0 ∀v ∈ V (G)\V (H). (2.27)

From the construction it follows that
∑

v∈G xv =
∑

u∈H x∗u and therefore ωf (H) ≤
ωf (G). 2

The fractional chromatic number is also refered to as the set chromatic number or
the multicolouring number or the ultimate chromatic number or the fuzzy chromatic
number and it is useful to introduce its equivalent characterisations.

Definition 14 (a/b-colouring) Let a and b be positive integers. An a/b-colouring
of a graph G is a mapping from V (G) to b-element subsets of {1, ..., a} such that all
adjacent vertices are assigned disjoint subsets.
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Definition 15 (Kneser graph) Let a and b be positive integers. The Kneser
graph K(a, b) is the graph whose vertices are the b-element subsets of {1, ..., a}.
There is an edge between such two vertices iff they are disjoint sets.

Although graph homomorphism has not yet been defined (see Chapter 3), we
include the definition of Kneser colouring and related theorems here because they
naturally belong in this section.

Definition 16 (Kneser colouring) Let a and b be positive integers. A Kneser
a/b-colouring of a graph G is a homomorphism from G to the Kneser graph K(a, b).

Theorem 12 A graph G has an a/b-colouring iff it has a Kneser a/b-colouring.

Proof. A mapping from V (G) to b-subsets of {1, ..., a} representing the a/b-
colouring defines a homomorphism from G to the Kneser graph K(a, b). On the
other hand, a homomorpism f : G → K(a, b) defines a mapping from G to b-subsets
of {1, ..., a} satisfying the properties of an a/b-colouring.2

Theorem 13

χf (G) = inf{a/b : G has an a/b-colouring} = sup{|H|/α(H) : H → G}. (2.28)

Proof. Firstly, we will show that χf (G) ≤ inf{a/b : G has an a/b-colouring}. Let
G have an a/b-colouring for some a and b, let K(a, b) be the Kneser graph, and let
f : G → K(a, b) be a homomorphism. Construct a fractional colouring, y, of G

as follows: yAj
=

kAj

b
, where Aj is the j-th independent set and kAj

is the number
of indices i ∈ {1, ...a} such that Aj = {u ∈ V (G) : i ∈ f(u)}. This shows that
χf (G) ≤ inf{a/b : G has an a/b-colouring}.
Secondly, we will show that χf (G) ≥ sup{|H|/α(H) : H → G}. Let f : V (H) →
V (G) be a homomorphism. Define a fractional clique x in G such that ∀u ∈ G :
xu = |{s ∈ H|f(s) = u}|/α(H). It follows that

∑

u∈G

xu =
∑

u∈G

|{s ∈ H|f(s) = u}|
α(H)

=
|H|

α(H)
. (2.29)

Let I be an independent set in G. Then the set {s ∈ H : f(s) ∈ I} must also be
independent because s ∼H t ⇒ u ∼G v. Therefore for any independent set I in G

∑

u∈I

xu =
|{s ∈ H|f(s) ∈ I}|

α(H)
≤ α(H)

α(H)
= 1. (2.30)

Hence x is a fractional clique in G of size |H|/α(H). This concludes the proof that
ωf (G) = χf (G) ≥ sup{|H|/α(H) : H → G}. It remains to show that

inf{a/b : G has an a/b-colouring} ≤ sup{|H|/α(H) : H → G}. (2.31)

The proof of this last inequality is not included here. See for example [14] for further
references. 2

14



2.3.1 Examples

Perfect k,m-strings

Definition 17 (Almost Complete Graphs) An almost complete graph on n ver-
tices is Kn with one of its edges removed.

Definition 18 (Perfect k,m-string) Let k ≥ 2 and m be positive integers. Define
a perfect k,m-string as a graph Sk,m such that

(i) V (Sk,m) =
⋃m

i=1 V (Hi), where Hi’s are almost complete graphs on k
vertices;
(ii) Let xi, yi be such that xi 6∼Hi

yi. Then xi+1 = yi for i = 1, ..., m− 1
and no other vertices belong to more than one Hi;
(iii) E(Sk,m) = {(u, v) : ∃i; u ∼Hi

v} ∪ (x1, ym)

Theorem 14 Let k,m be positive integers. If k ≥ 3 and m ≥ 2 then

ω(Sk,m) = k − 1, χf (Sk,m) = k − 1 +
1

m
and χ(Sk,m) = k (2.32)

Proof. Let Sk,m be a perfect k,m-string where k ≥ 3 and m ≥ 2 and let Hi, xi

and yi, i = 1, ...,m be as in the definition above. Define H̄i = Hi\{xi, yi} and H̃ =
Sk,m\(⋃m

i=1 H̄i) = {x1, ..., xm, ym}. Note that each H̄i is a clique. Clearly 2 ≤ k−1 ≤
ω(H1) ≤ ω(Sk,m). Construct the following k-colouring of Sk,m. Use one colour for
{x1, ..., xm}, second colour for ym and the same set of another (k − 2) colours for
each one of H̄i, i = 1, ..., m. This is a k-colouring of Sk,m and hence χ(Sk,m) ≤ k.
Since ω(Sk,m) ≤ ωf (Sk,m) = χf (Sk,m) ≤ χ(Sk,m) and because the fractional and the
clique numbers are integers it will be enough to show that χf (Sk,m) = k − 1 + 1

m
to

conclude the proof.
Firstly, we will argue that each independent set in Sk,m has at most m vertices.
Clearly, for any independent set I at most one of x1 and ym belongs to I.
Consider an independent set I such that ym 6∈ I and let zi1 , ..., zip be the p vertices

from I that belong to H̃ (zil = xil or zil = yil for each l). Then there are at most
m − p vertices from

⋃m
i=1 H̄i in I since all vertices from H̄j are adjacent to xj for

each j = i1, ..., ip and H̄j’s are complete graphs on k − 2 vertices. Therefore there
are at most (m− p) + p = m in I.
Similarly, consider an independent set I such that x1 6∈ I. The same arguments
apply, with the difference that all vertices from H̄j are now adjacent to yj for certain
j’s.
Secondly, construct a fractional clique w in Sk,m such that

wu =
1

m
∀u ∈ Sk,m (2.33)
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Therefore
∑

u∈Sk,m
wu =

|V (Sk,m)|
m

= m(k−1)+1
m

= (k−1)+ 1
m

and (k−1)+ 1
m
≤ ωf (Sk,m).

It remains to show that ωf (Sk,m) ≤ (k− 1) + 1
m

. We will show that by constructing
a (m(k − 1) + 1)/m-colouring of Sk,m. Consider the mapping c from V (Sk,m) to
m-element subsets of {0, ..., m(k − 1)} which satisfies

c(x1) = {m(k − 1)−m + 1, ...,m(k − 1)} (2.34)

c(x2) = {m(k − 1)−m + 2, ...,m(k − 1)} ∪ {0} (2.35)

c(x3) = {m(k − 1)−m + 3, ...,m(k − 1)} ∪ {0, 1} (2.36)

...

c(xm) = {m(k − 1)} ∪ {0, 1, ..., m− 2} (2.37)

c(ym) = {0, 1, ..., m− 1}, (2.38)

and where each H̄i is coloured by (m(k − 1) + 1) − m − 1 = m(k − 2) colours
{0, ..., m(k − 1)}\(c(xi) ∪ c(yi)). Note that c was constructed in such a way that
c(x1) ∩ c(ym) = ∅. Since |V (H̄i)| = (k − 2) for each i = 1, ..., m , c is a proper
(m(k-1)+1)/m-colouring of Sk,m and therefore ωf (Sk,m) ≤ (k − 1) + 1

m
.

By showing that ωf (Sk,m) = (k − 1) + 1
m

we have concluded the proof of

ω(Sk,m) = k − 1, χf (Sk,m) = k − 1 +
1

m
and χ(Sk,m) = k (2.39)

2

The above theorem produces an interestiong corollary. There is a sequence of
graphs for which the fractional chromatic number converges to the clique number
while the chromatic number does not.

Corollary 5

lim
m→∞

ωf (Sk,m)

ω(Sk,m)
= 1, ∀k (2.40)

and

lim
k→∞

χ(Sk,m)

χf (Sk,m)
= 1, ∀m (2.41)

Moreover, also
lim

m→∞ωf (Sk,m)− ω(Sk,m) = 0, ∀k (2.42)

2.4 Weighted Graphs

Some of the concepts introduced in this paper can be extended naturally to graphs
with defined assignment of nonnegative real weights to its vertices.

Definition 19 (Weighted Graph) A weighted graph is a pair (G,w) where G is
a graph and w : V (G) → [0,∞) is a weight function.
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Definition 20 (Clique Number of (G,w)) For a weighted graph (G,w) its clique
number ω(G, w) is defined as the maximum weight of a clique in G (weight of a clique
is the sum of weights of vertices of that clique).

Definition 21 (t-interval colouring of (G,w)) Let I be an interval of length t.
A t-interval colouring of a weighted graph (G,w) is a mapping ∆ which assigns to
each vertex of G an open sub-interval in I such that

(i) if u ∼G v then ∆(u) ∩∆(v) = ∅ (2.43)

(ii) ∀u ∈ V (G) : the length of ∆(u) is w(u) (2.44)

Definition 22 (Interval Chromatic Number of (G,w)) The interval chromatic
number χ(G,w) of a weighted graph (G, w) is defined as

χ(G,w) = min{t : there is a t-interval colouring of (G,w)}. (2.45)

Deuber and Zhu introduced a concept of circular colouring to weighted graphs.

Definition 23 (t-circular colouring of (G,w)) Let t be a positive real number
and let C be a circle in the plane of length t. A t-circular colouring of a weighted
graph (G,w) is a mapping ∆ which assigns an open arc of C to each vertex of G in
such a way that

(i) if u ∼G v then ∆(u) ∩∆(v) = ∅ (2.46)

(ii) ∀u ∈ V (G) : the length of arc ∆(u) is at least w(u) (2.47)

Definition 24 (Circular Chromatic Number of (G,w)) The circular chromatic
number χc(G,w) of a weighted graph (G,w) is defined as

χc(G,w) = inf{t : there is a t-circular colouring of (G,w)}. (2.48)

Definition 25 (Fractional Chromatic Number of (G,w)) The fractional chro-
matic number χf (G,w) of a weighted graph (G,w) is defined as

χf (G,w) = inf{1T · y| ∀u ∈ V (G) : (yT A)u ≥ w(u), y ≥ 0}, (2.49)

where y is a column vector and A is a matrix with rows indexed by maximal inde-
pendent sets of G and columns indexed by vertices of G such that Aσ,i = 1 if the
vertex i belongs to the maximal independent set σ and otherwise is 0.

A vector y satisfying the feasibility conditions in (2.49) is called a fractional
colouring of (G,w). Again, a fractional clique is a vector x satisfying the feasibility
conditions in a problem of linear programming dual to (2.49) and the fractional
clique number is equal to the fractional chromatic number as for ordinary graphs.
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Theorem 15 (Alternative Specification of χf (G,w)) Let (G,w) be a weighted
graph. A fractional colouring of size t of (G,w), where t is a positive number, exists
iff there exists a mapping ∆ of V (G) to measurable subsets of I, where I is an
interval of length t, such that ∆(u) has measure w(u) for all u ∈ G and adjacent
vertices are mapped to disjoint subsets of I.

Proof. A detailed proof is not included here. Some details are discussed in [32]. 2

Theorem 16

ω(G,w) ≤ ωf (G, w) = χf (G, w) ≤ χc(G,w) ≤ χ(G,w) (2.50)

Proof. A t-interval colouring of a weighted graph (G,w) can be interpreted as a
t-circular colouring where the end points of an interval are joined together. Hence
χc(G,w) ≤ χ(G,w).
Let ∆ be a t-circular colouring of (G,w) on a circle of length t and let x be a point
on that circle. Construct a mapping ∆

′
by cutting the circle at x and stretching it

on an interval I of length t. ∆
′
clearly maps vertices of G to measurable subsets of

I and by Theorem 15 there is a fractional colouring of (G,w) of size t. Therefore
χf (G,w) ≤ χc(G,w).
The equality follows again from the duality of linear programming. Finally, ω(G,w) ≤
ωf (G,w) follows from the fact that ω(G,w) can be expressed through an equivalent
maximization problem as ωf (G,w) only with an additional constraint (the control
variable being a 0-1 vector). 2

Corollary 6
ω(G) ≤ ωf (G) = χf (G) ≤ χc(G) ≤ χ(G) (2.51)

2.5 Products of Graphs

Theorem 17 (Characteristics of Disjoint Union of Graphs) Let G and H be
graphs and let F be a disjoint union of G and H. Then

ω(F ) = max(ω(G), ω(H)) (2.52)

χ∗(F ) = max(χ∗(G), χ∗(H)) (2.53)

χf (F ) = max(χf (G), χf (H)) (2.54)

χ(F ) = max(χ(G), χ(H)) (2.55)

Proof. The first and fourth equalities are trivial. The second and third equalities
clearly hold with ≥ since both G and H are subgraphs of F .
To prove the other side of the second equality, consider circular colourings ∆G, ∆H

of G and H with the lenghts of the circles tG and tH and assume tG ≥ tH . Then
construct a mapping ∆ from V (F ) to unit arcs of a circle with length t = tG such
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that ∆(u) = ∆G(u) ∀u ∈ G, and the vertices of H are mapped onto unit arcs with
centres at the same angles as ∆(v)’s for v ∈ H.
To prove the other side of the third equality, let yG, yH be maximal fractional colour-
ings in G and H and let χf (G) = max{χf (G), χf (H)}. Each maximal independent
set in F is of the form IG ∪ IH where IG, IH are maximal independent sets in G and
H. Construct the following fractional colouring y of F

yIG,IH
= yG

IG
· yH

IH

χf (H)
. (2.56)

y is a proper fractional colouring since ∀u ∈ G :

∑

I3u

yI =
∑

IG3u

yG
IG

∑

IH

yH
IH

χf (H)
=

∑

IG3u

yG
IG
≥ 1 (2.57)

and ∀v ∈ H :

∑

I3v

yI =
∑

IG

yG
IG

∑

IH3v

yH
IH

χf (H)
= χf (G)

∑

IH3v

yH
IH

χf (H)
≥ χf (G)

χf (H)
≥ 1. (2.58)

The size of y is equal to

∑

I3u

yI =
∑

IG

yG
IG

∑

IH

yH
IH

χf (H)
=

∑

IG

yG
IG

= χf (G). (2.59)

Therefore χf (f) ≤ max{χf (G), χf (H)}. 2

Definition 26 (Sum of Graphs) Let G and H be graphs. Define the sum of G
and H as follows

V (G + H) = {s : s ∈ V (G)} ∪ {u : u ∈ V (H)} and (2.60)

E(G + H) = {st : s ∼G t} ∪ {uv : u ∼H v} ∪ {su : s ∈ G, u ∈H)} (2.61)

Theorem 18 (Characteristics of the Sum of Graphs) Then

ω(G + H) = ω(G) + ω(H) (2.62)

χf (G + H) = χf (G) + χf (H) (2.63)

χ∗(G + H) = χ(G) + χ(H) (2.64)

χ(G + H) = χ(G) + χ(H) (2.65)

Proof. G + H contains all edges of G and H plus all edges between vertices from
G and H. Clearly, any two cliques in G and H form together a clique in G + H.
Similarly, any clique in G + H consists of two cliques from G and H and edges
between them. Hence the first equality is trivial.
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Each independent set in G+H contains only vertices from G or H. Thus for xG, xH

fractional cliques in G and H

xu = xG
u ∀u ∈ G and xv = xH

v ∀v ∈ H (2.66)

is a fractional clique in G + H and for yG, yH fractional colourings of G and H

xI = xG
I ∀I ⊂ G and xI = xH

I ∀I ⊂ H, (2.67)

where I denotes a maximal independent set, is a fractional colouring of G+H. The
second equality therefore holds as well.
G and H have to be coloured by two distinct sets of colours since each vertex from
G is adjoint to each vertex from H. The last equality then follows.
Let ∆ be a circular colouring of G + H of size t. Because each vertex s from G is
adjoint to each vertex u from H the arcs ∆(s) and ∆(u) must also be disjoint for
any such s and u. We can therefore separate and cut out the parts of the circle of
length t which are covered by arcs ∆(s), s ∈ G. Because we were allowed to cut
the circle into such pieces we can now glue them together in such an order as to
produce a t-interval colouring of G + H and moreover in such a way that all the
pieces ∆(s), s ∈ G remain on the left of the pieces ∆(u), u ∈ H. Thus we showed
that χ∗(G + H) ≥ χ(G) + χ(H). The other side follows from equality four. 2

Definition 27 (Graph Products) For graphs G and H we define the following
graph products. For all of them the vertex set of a product is V (GprodH) = {su :
s ∈ G, u ∈ H}. The corresponding edge sets are as follows

Wreath product: E(G[H]) = {su, tv : either s ∼G t or (2.68)

s = t and u ∼H v}
Categorical product: E(G×H) = {su, tv : s ∼G t and u ∼H v} (2.69)

Cartesian product: E(G2H) = {su, tv : either s = t and u ∼H v (2.70)

or s ∼G t and u = v}

Theorem 19 (Characteristics of the Wreath Product) Let G and H be graphs.
Then

ω(G[H]) = ω(G)ω(H) (2.71)

χf (G[H]) ≤ χf (G)χf (H) (2.72)

χ∗(G[H]) ≤ χ∗(G)χ(H) (2.73)

χ(G[H]) ≤ χ(G)χ(H) (2.74)

Proof. Let Km ⊂ G and Kn ⊂ G be cliques in G and H such that m = ω(G) and
n = ω(H). Clearly ω(G[H]) ≥ ω(G)ω(H) since Kmn = {su : s ∈ Km, u ∈ Kn} is
a clique in G[H]. On the other hand all maximal independent sets in G[H] are of
the form

⋃p
i=1{siu : si ∈ Kp, u ∈ Kqi

} where p ≤ m and qi ≤ n for all i = 1, ..., p.
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Therefore also ω(G[H]) ≤ ω(G)ω(H) and the first equality holds.
Let yG and yH be fractional colourings of G and H. Let IG and IH be independent
sets in G and H. Then clearly IIG,IH

= {su : s ∈ IG, u ∈ IH} is an independent set
in G[H]. Construct a fractional colouring y of G[H] as follows

yIIG,IH
= yG

IG
· yH

IH
(2.75)

and zero otherwise. Then for each su ∈ G[H]

∑

I3su

yI =
∑

IG3s

yG
IG

∑

IH3u

yH
IH
≥ ∑

IG3s

yG
IG
≥ 1 (2.76)

hence y is a proper fractional colouring. Clearly, the size of y is equal to

∑

I

yI =
∑

IG

yG
IG

∑

IH

yH
IH

= χf (H)
∑

IG3s

yG
IG

= χf (H)χf (G). (2.77)

Therefore χf (G[H]) ≤ χf (G)χf (H) and the second inequality holds.
Suppose χ(H) = n and χ∗(G) = k/d for some positive integers n, k, d. Let c

′
be an

n-colouring of H and c∗ be a (k, d)-colouring of G. We will show that the following
mapping c : V (G[H]) → {1, ..., n} is a (kn, d)-colouring of G[H]

c(gh) = c∗(g) + c
′
(h) · k. (2.78)

For g1, g2 ∈ G, g1 6= g2

|c(g1h1)− c(g2h2)|kn = |c∗(g1)− c∗(g2) + pk|kn ≥ (2.79)

≥ |c∗(g1)− c∗(g2) + pk|k = |c∗(g1)− c∗(g2)|k ≥ d. (2.80)

On the other hand For g1 = g2 = g ∈ G and h1, h2 ∈ H, h1 6= h2

|c(gh1)− c(gh2)|kn = |pk|kn ≥ k ≥ d. (2.81)

Therefore χ∗(G[H]) ≤ nk
d

= χ∗(G)χ(H).
Similar arguments can be used to prove the last inequality. Take c∗ to be a (k,1)-
colouring where k = χ(G) and the same proof gives the result. 2

Theorem 20 (Characteristics of the Categorical Product) Let G and H be
graphs. Then

ω(G×H) = min(ω(G), ω(H)) (2.82)

χf (G×H) ≤ min(χf (G), χf (H)) (2.83)

χ∗(G×H) ≤ min(χ∗(G), χ∗(H)) (2.84)

χ(G×H) ≤ min(χ(G), χ(H)) (2.85)
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Proof. Let ω(G) = m ≤ n = ω(H) for some integers m,n. Take a clique of
size m in each G and H. Then a subset of G × H consisting of pairs of vertices
representing a one-to-one correspondence between these two sets is a clique in G×H.
On the other hand each clique in G×H must represent a one to one correspondence
between vertices in two cliques from G and H. Therefore it follows that ω(G×H) =
min(ω(G), ω(H)) and the first equality holds.
Suppose χf (G) = p ≤ q = χf (H) and let yG be a fractional colouring of G of size p.
Let IG be a maximal independent set in G. Then the set

IIG,H = {su : s ∈ IG, u ∈ H} (2.86)

is independent in G×H. Construct the following fractional colouring y of G×H

yIIG,H
= yG

IG
(2.87)

for all IG and zero otherwise. For each su ∈ G×H

∑

I3su

yI =
∑

IG3s

yIIG,H
=

∑

IG3s

yG
IG
≥ 1 (2.88)

hence y is a proper fractional colouring. Clearly, the size of y is equal to the size of
yG and therefore χf (G×H) ≤ min(χf (G), χf (H)) and the second inequality holds.
Let c

′
be a (k,d)-colouring of G. Then c(gh) = c

′
(g) is clearly a (k,d)-colouring of

G×H since g1h1 ∼G×H g2h2 ⇒ g1 ∼G g2. Therefore the third inequality holds.
Similarly, let c

′
be a k-colouring of G. Then c(gh) = c

′
(g) is k-colouring of G ×H

since g1h1 ∼G×H g2h2 ⇒ g1 ∼G g2 and the last inequality also holds. 2

Theorem 21 (Characteristics of the Cartesian Product) Let G and H be graphs.
Then

ω(G2H) = max(ω(G), ω(H)) (2.89)

χf (G2H) = max(χf (G), χf (H)) (2.90)

χ∗(G2H) = max(χ∗(G), χ∗(H)) (2.91)

χ(G2H) = max(χ(G), χ(H)) (2.92)

Proof. G and H are subgraphs of G2H. Therefore

ω(G2H) ≥ max(ω(G), ω(H)) (2.93)

χf (G2H) ≥ max(χf (G), χf (H)) (2.94)

χ∗(G2H) ≥ max(χ∗(G), χ∗(H)) (2.95)

χ(G2H) ≥ max(χ(G), χ(H)). (2.96)

Each clique in G2H must form a bunch {su : u ∈ Kn}, n ≤ ω(H) or {su : s ∈ Km},
m ≤ ω(G). A size of a clique in G2H is therefore at most max(ω(G), ω(H)) and
the first equality holds.
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Let G have an āG/b̄G-colouring and H has an āH/b̄H-colouring such that āG/b̄G =
χf (G) and āH/b̄H = χf (H). Assume χf (G) ≤ χf (H). Construct an aG/b-colouring
cG of G and an aH/b-colouring cH of H such that b = b̄Gb̄H , aG = āGb̄H and
aH = āH b̄G. Let g be a one to one mapping of b-element subsets of {1, ..., aH} to

{1, ..., ( aH

b
)}. Construct the following aH/b-colouring c of G2H

c(su) = g−1

(
g(cG(s)) + g(cH(u)) mod (

aH

b
)

)
(2.97)

It is a proper aH/b-colouring of G2H where aH/b = max{χf (G), χf (H)}. Therefore
the second equality holds.
It remains to prove the last two equalities. Let cG and cH be (k,d)-colourings of G
and H for some positive integers k, d. Then

c(gh) = cG(g) + cH(h) (mod) k (2.98)

is a (k,d) colouring of G2H. This is so, because |c(g1h1) − c(g2h2)|k = |cG(g1) −
cG(g2) + cH(h1) − cH(h2)|k which is equal to |cG(g1) − cG(g2)|k ≥ d when h1 = h2

and g1 ∼G g2 and to |cH(h1)− cH(h2)|k ≥ d when g1 = g2 and h1 ∼H h2. Therefore
χ∗(G2H) ≤ max(χ∗(G), χ∗(H)).
Because each k-colouring is also a (k,1)-colouring the above arguments hold also for
χ(G2H) ≤ max(χ(G), χ(H)). 2
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Chapter 3

Homomorphisms

3.1 Graph Homomorphism

Definition 28 (Homomorphism) For given graphs G, H we say that G is homo-
morphic to H or that there is a homomorphism from G to H (we write G → H) if
there is a function f : V (G) → V (H) satisfying ∀s, u ∈ V (G) : s ∼G u ⇒ f(s) ∼H

f(u).

Theorem 22 (Alternative Characterisation of Colouring) Let n be a posi-
tive integer. A graph G has a n-colouring iff G → Kn, where Kn is the complete
graph on n vertices.

Proof. Let f : G → Kn be a homomorphism and let c : V (G) → {1, ..., n} be a
colouring such that for all u ∈ V (G), c(u) = i ⇔ f(u) = vi, where vi is the i-th
vertex of Kn in some canonical ordering. It is trivial to check that c is indeed a
colouring iff f is a homomorphism.2

Theorem 23 (Transitivity of →) G → H & H → H
′ ⇒ G → H

′

Proof. Let f : V (G) → V (H) and g : V (H) → V (H
′
) be the functions defining

G → H and H → H
′
. Construct a function f

′
: V (G) → V (H

′
) as g ◦ f . Then

∀s, u ∈ V (G) : s ∼G u ⇒ f(s) ∼H f(u) and ∀f(s), f(u) ∈ V (H) : f(s) ∼H f(u) ⇒
g(f(s)) ∼H′ g(f(u)) thus ∀s, u ∈ V (G) : s ∼G u ⇒ f

′
(s) ∼H′ f

′
(u). 2

Lemma 3 Let G be a graph with a (k,d)-colouring. Then G → K(k, d), where
K(k, d) is the Kneser graph.

Proof. Let c : V (G) → {1, ..., k} be a (k,d) colouring of G. Define a mapping
f : V (G) → K(k, d) such that f(u) = {c(u), c(u) + 1, ..., c(u) + d mod k} for u ∈ G.
Clearly f(u) ∩ f(v) = ∅ for u ∼G v because |c(u)− c(v)|k ≥ d. 2
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Theorem 24 Let G and H be graphs such that G → H. Then

ω(G) ≤ ω(H), (3.1)

χf (G) ≤ χf (H), (3.2)

χ∗(G) ≤ χ∗(H) and (3.3)

χ(G) ≤ χ(H). (3.4)

Proof. Assume H → Kn. Then G → H and the transitivity of → imply G → Kn.
Similarly, assume Kn → G. Then G → H and the transitivity of → imply Kn → H.
Thus the first and the last inequalities hold.
Suppose c : V (H) → {1, ..., k} is a (k,d)-colouring of H for some positive integers
k, d. Then by the proof of Lemma 3 there is a homomorphism g : V (H) → K(k, d)
such that g(v) = {c(v), c(v) + 1, ..., c(v) + d mod k} for v ∈ H. Construct f

′
:

V (G) → K(k, d) such that f
′
(u) = g(f(u)) for u ∈ G where f : V (G) → V (H) is

a homomorphism from G to H. Then construct a mapping c
′
: V (G) → {1, ..., k}

such that ∀u ∈ G : c
′
(u) = i where g(f(u)) = {i, i + 1, ..., i + d mod k}. Such i

clearly exists and it is unique. c
′
is a (k,d)-colouring because c was assumed to be

a (k,d)-colouring. Thus the third inequality holds.
Let χf (H) = a/b for some positive integers a, b. Then by Theorem 12 H → K(a, b)
where K(a, b) is the Kneser graph. Then G → H and the transitivity of → imply
G → K(a, b). By Theorem 12 G has an a/b-colouring and by Theorem 13 χf (G) ≤
χf (H). Therefore the second inequality also holds. 2

Definition 29 For given graphs G, H we denote by G ◦H the graph with vertices
V (G ◦ H) = {su : s ∈ G and u ∈ H} and edges E(G ◦ H) = {su ∼ tw : s ∼G

t ⇒ u ∼H w and (ii)s 6= t}

Lemma 4 ω(G ◦H) ≤ |V (G)|

Proof. Assume ω(G ◦ H) > |V (G)|. Choose a clique, C, in G ◦ H of size greater
than |V (G)|. Then there must exist su, sw ∈ C such that u 6= w. However, u 6= w
contradicts su ∼G◦H sw.2

Theorem 25 (Alternative Specification of →) G → H iff ω(G ◦H) = |V (G)|

Proof. Let f : G → H be a homomorphism of G to H. Construct a set C = {su :
u = f(s)}. |C| = |V (G)| and ∀su, tw ∈ C : su ∼G◦H tw from the definition of
f . Therefore C is a clique in G ◦H of size |V (G)|. From Lemma 4 it follows that
ω(G ◦H) = |V (G)|.
On the other hand, let C be a maximum clique in G ◦H of size ω(G ◦H). Because
su 6∼G◦H sw for u 6= w and ω(G◦H) = |V (G)|, C defines a homomorphism f : G →
H in the following way: f(s) = u iff su ∈ C.2
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Theorem 26 (Graph Homomorphism Density - Welzl) Let G and H be graphs
such that

G → H and G 6← H. (3.5)

Then there always exists a graph F such that

G → F → H and G 6← F 6← H. (3.6)

Proof. This theorem is given without a proof. The original proof was published in
[30]. A shorter proof can be found in [14]. 2

3.2 Fractional Graph Homomorphism

3.2.1 Definitions and Basic Results

Definition 30 (Fractional Homomorphism) For given graphs G, H we say that
G is fractionally homomorphic to H or that there is a fractional homomorphism from
G to H (we write G →f H) if ωf (G ◦H) = |V (G)|.

Lemma 5 Let G →f H and let x be a maximal fractional clique in G ◦ H. Then
∀s ∈ V (G) :

∑
u∈V (H) xsu = 1.

Proof. From the definitions we have ωf (G ◦H) =
∑

su xsu =
∑

s

∑
u xsu = |V (G)|.

It is therefore enough to show that ∀s ∈ G :
∑

u∈V (H) xsu ≤ 1. This and
∑

s

∑
u xsu =

|V (G)| then implies ∀s ∈ V (G) :
∑

u∈V (H) xsu = 1. Using the notation from Defi-
nition 3, it follows from the definitions that

∑
su Aσ,su · xsu ≤ 1 and Aσ,su, xsu ≥ 0.

Together with the fact that each vertex belongs to at least one maximal independent
set this implies that ∀s ∈ G :

∑
u∈V (H) xsu ≤ 1. 2

Theorem 27 (Transitivity of →f) G →f F & F →f H ⇒ G →f H

Proof. Let x and x
′

be maximal fractional cliques in graphs G ◦ F and F ◦
H respectively. Construct a fractional clique z in the graph G ◦ H as follows:
zgh =

∑
f∈V (F ) xgf · x′fh. We want to show that ωf (G ◦ H) = |V (G)|, i.e. that∑

gh∈V (G◦H) zgh = |V (G)|. But
∑

gh∈V (G◦H) zgh =
∑

g∈V (G),h∈V (H)

∑
f∈V (F ) xgf · x′fh =∑

g∈V (G),f∈V (F ) xgf
∑

g∈V (H) x
′
fh. Now, applying the previous lemma on F →f H we

know that the last sum is equal to 1 and
∑

g∈V (G),f∈V (F ) xgf =
∑

gf∈V (G◦F ) xgf =
|V (G)| due to the assumption that G →f F . 2

Lemma 6 G →f H ⇒ G∗ →f H, where G∗ is a subgraph of G.

Proof. Let x be a maximal fractional clique in G ◦H of the size |V (G)|. Construct
a fractional clique, x∗ in G∗ ◦H such that ∀u ∈ G∗ and ∀v ∈ H : x∗uv = xuv. Using
Lemma 5, we know that ∀u ∈ G∗ :

∑
v∈H x∗uv = 1 and therefore

∑
uv∈G∗◦H x∗uv =

|V (G∗)| which means that G∗ →f H.2
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Lemma 7 G →f Kω(G)

Proof. Construct a fractional clique, x, in G ◦Kω(G) such that ∀uv ∈ G ◦Kω(G) :
xuv = 1

ω(G)
. It is easy to verify that x is indeed a fractional clique and that it has

the size |V (G)|.2

Lemma 8 G →f H ⇒ Kω(H)+1 6→ G

Proof. Assume Kω(H)+1 → G and that G →f H. We will show that such assump-
tions lead to a contradiction and therefore the original statement must hold.
Denote ω(H)+1 by n, i.e. we have Kn → G which implies ω(G) ≥ n. Take a clique,
KG

n , of size n in G.
We will show that H →f Kn−1. Construct a fractional clique x∗ in H ◦Kn−1 in the
following way

∀u ∈ H, ∀v ∈ Kn−1 : x∗uv =
xKn−1

v

ωf (Kn−1)
=

1

n− 1
, (3.7)

where xKn−1 is the maximal fractional clique in Kn−1 (it assigns weight 1 to each
vertex). Now recall that ω(H) = n − 1 and therefore any clique KH in H has size
at most n− 1. The only maximal independent sets in H ◦Kn−1 are of the following
two types

(i) IKH ,v = {uv : u ∈ KH
n−1}, KH is a clique in G, v ∈ Kn−1 (3.8)

(ii) Iu = {uv : v ∈ Kn−1}, u ∈ G (3.9)

Clearly, |I| ≤ n− 1 for any such independent set I and therefore
∑

uv∈I x∗uv = (n−
1)∗ 1

n−1
≤ 1 and x∗ is indeed a fractional clique. Moreover, also

∑
u∈H

∑
v∈Kn−1

x∗uv =

|V (H)| ∗ (n− 1) ∗ 1
n−1

= |V (H)| which means that H →f Kn−1.
Now using Theorem 27 we know that

G →f H & H →f Kn−1 ⇒ G →f Kn−1. (3.10)

We will show that G →f Kn−1 leads to a contradiction. Lemma 6 implies that
KG

n →f Kn−1 Let x be a maximal fractional clique in KG
n ◦ Kn−1. All maximal

independent sets in KG
n ◦Kn−1 are of the following form

Iv = {uv : u ∈ KG
n }, v ∈ Kn−1 (3.11)

It must hold that
∑

uv∈Iv
xuv ≤ 1 for all v ∈ Kn−1. Clearly,

∑
v∈Kn−1

∑
u∈KG

n
xuv ≤

(n−1) < |V (KG
n )| = n which contradicts that x defines a fractional homomorphism

KG
n →f Kn−1. 2
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3.2.2 Examples

Triangulated Graphs

Definition 31 (n-Triangulated Graph) (i) Kn is an n-triangulated graph. (ii)
Let H = Kn−1 be a subgraph of an n-triangulated graph G and let v be a new vertex.
Then a graph (V (G) ∪ {v}, E(G) ∪ {uv : u ∈ H}) is also an n-triangulated graph.

For example, 1-triangulated graphs are discrete graphs and 2-triangulated graphs
are trees.

Lemma 9 Let G be an n-triangulated graph. Then G →f Kn and G 6→f Kn−1.

Proof. Firstly, we will show that G 6→f Kn−1. By definition, any n-triangulated
graph contains Kn or in other words Kn → G. Put H = Kn−1, ω(H) = n− 1 and
by Lemma 8 G 6→f H or G 6→f Kn−1.
We will now construct a fractional clique in G ◦Kn in the following way:

∀u ∈ V (G), ∀v ∈ V (Kn) : x∗uv =
xKn

u

ωf (Kn)
=

1

n
, (3.12)

where xKn is the maximal fractional clique in Kn (it assigns weight 1 to each vertex).
The only maximal independent sets in G ◦Kn are of the following two types

(i) IH,v = {uv : u ∈ V (H)}, H is a Kn subgraph in G, v ∈ V (Kn)(3.13)

(ii) Iu = {uv : v ∈ V (Kn)}, u ∈ V (G) (3.14)

Clearly, |I| = n for any such independent set I and therefore
∑

uv∈I x∗uv = n ∗ 1
n

= 1
and x∗ is indeed a fractional clique. Moreover, also

∑
u∈V (G)

∑
v∈Kn

x∗uv = |V (G)| ∗
n ∗ 1

n
= |V (G)| which means that G →f Kn.2

Fractional Homomorphisms to C5

Lemma 10 G →f C5 iff G does not contain K3 as its subgraph.

Proof. Firstly, if G does not contain K3 we construct a fractional clique x in G◦C5

as follows:

∀u ∈ V (G),∀v ∈ V (C5) : xuv =
xC5

u

ωf (C5)
=

1/2

5/2
=

1

5
, (3.15)

where xC5 is the maximal fractional clique in C5. Again, let us describe all possible
maximal independent sets in G ◦ C5. They are of the following three types

(i) Iu1,u2,v1,v2 = {uivj : i, j = 1, 2}, (3.16)

where u1 ∼G u2 and v1 6∼C5 v2

(ii) Iu1,u2,v1,v2,v3 = {uiv3 : i = 1, 2} ∪ {u1vj : j = 1, 2}, (3.17)

where u1 ∼G u2, v1 6∼C5 v3 and v2 6∼C5 v3

(iii) Iu = {uv : v ∈ V (C5)}, where u ∈ V (G) (3.18)
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Because |I| ≤ 5 for any such independent set I,
∑

uv∈I xuv ≤ 1 and x is indeed a
fractional clique. Moreover,

∑
u∈V (G),v∈C5

xuv = 5∗ 1
5
∗|V (G)| = |V (G)| which means

that G →f C5.
Note that the fractional clique specified in 3.15 is not unique. x

′
uv = 1/4 for v 6= v1

and x
′
uv1 = 0 is also a fractional clique of size |V (G)|.

Secondly, assume that G contains a triangle T, V (T ) = a, b, c. Then we can construct
the following independent sets in G ◦ C5

IT,v = {uv : u ∈ V (T )}, v ∈ V (C5) (3.19)

and a graph H such that V (H) = {IT,v : v ∈ V (C5)}, E(H) = {(IT,v1 , IT,v2) :
v1, v2 ∈ V (C5) and v1 6∼C5 v2}. Graph H is isomorphic with C5 and therefore
ωf (H) = 5/2. Also, two vertices IT,v1 , IT,v2 constitute an independent set in H iff
V (IT,v1) ∪ V (IT,v2) induces an independent set in G ◦ C5.
Let x be a fractional clique in G ◦ C5. Then we can construct a fractional clique in
H, x∗, such that

x∗IT,v
=

∑

u∈V (T )

xuv and (3.20)

∑

u∈T,v∈C5

xuv =
∑

IT,v∈V (H)

x∗IT,v
. (3.21)

This implies that ωf (T ◦ C5) ≤ ωf (H) = 5/2 < 3 = |V (T ◦ C5)| and therefore
T 6→f C5. Because T is a subgraph of G ◦ C5 it also implies that G 6→f C5.2

3.2.3 Duality

Lemma 11 Let G and H be graphs. All independent sets in G ◦H are of the form

I ∪ (
n⋃

i=1

Ii), where (3.22)

I ⊆ {su : s ∈ X ⊆ V (G), u ∈ Y ⊆ V (H)} (3.23)

Ii ⊆ {siu : u ∈ Yi ⊆ V (H)}, (3.24)

X induces a clique in G of size n with vertices s1, ..., sn, Y induces an independent
set in H and Yi’s are such that there are no edges in H between any two Yi, Yj where
i 6= j and for all i there are no edges between Yi and Y . Any two of the Y -sets have
no vertices in common.
Moreover, all sets of the form (3.22) are independent and for maximal independent
sets in addition

I = {su : s ∈ X ⊆ V (G), u ∈ Y ⊆ V (H)} (3.25)

29



Proof. Firstly, we will show that the specified sets are independent.
(i) I = {su : s ∈ X ⊆ V (G), u ∈ Y ⊆ V (H)} is independent:
Let su 6= tv be from I and su ∼G◦H tv. Then s 6= t and s 6∼G t or u ∼H v by the
definition of G ◦ H. This, however contradicts su, tv ∈ I and therefore I must be
independent.
(ii) Ii = {siu : u ∈ Yi ⊆ V (H)} is independent for all i:
Let siu 6= siv be from Ii and siu ∼G◦H siv. Then because u 6= v clearly siu ∼ siv
clearly contradicts the definition of G ◦H.
(iii) There are no edges between I and Ii for all i:
Let su ∈ I, tiv ∈ Ii and su ∼G◦H tiv. If s = ti then the fact that u 6= v (I ∩ Ii = ∅)
clearly contradicts su ∼ tiv. If s 6= ti then s ∼G ti by the definition of X. Also,
u 6∼H v by the definitions of Y and Yi. Now s ∼G ti and u 6∼H v contradict
su ∼G◦H tiv.
(iv) There are no edges between Ii and Ij for i 6= j:
Let siu ∈ Ii, sjv ∈ Ij and siu ∼G◦H sjv. si 6= sj by assumption and u 6∼H v by the
definitions of Yi and Yj. Moreover, si ∼G sj by the definition of Y . Again, si ∼G sj

and u 6∼H v contradict su ∼G◦H tiv.
Secondly, we will show that all maximal independent sets are in the specified form.
Let I be an independent set in G ◦H such that

A = {su : s ∈ G, u ∈ H}, where ∀su, tv ∈ A : (3.26)

s = t and u 6= v or

s ∼G t and u 6∼H v

and define X = {s : su ∈ A} and Ȳ = {u : su ∈ A}.
(i) X induces a clique in G:
Let su, tv ∈ A such that s 6= t. Then from the definition of A it follows that s ∼G t.
(ii) su, tv ∈ A, s 6= t ⇒ u 6∼H v:
From (i) follows that s ∼G t and from the definition of A then follows that u 6∼H v.
Let |X| = n. Define a partition of Ȳ into n + 1 disjoint sets Y, Y1, ..., Yn such that

Y = {u : s1u, s2u ∈ A for some s1 6= s2} (3.27)

Yi = {u : siu ∈ A and si 6= t ⇒ tu 6∈ A} where si ∈ X (3.28)

(iii) There are no edges between Yi and Yj for i 6= j:
Assume u ∼H v for some u ∈ Yi, v ∈ Yj. Then Yi, Yj are nonempty and there exist
si, sj ∈ X such that siu, sjv ∈ A. However, i 6= j implies that si 6= sj and (ii)
concludes the contradiction. Therefore u 6∼H v for all u ∈ Yi, v ∈ Yj.
(iv) There are no edges between Y and Yi for all i:
Assume u ∼H v for some u ∈ Y, v ∈ Yi. Then Y, Yi are nonempty and there exist
si, sj ∈ X such that siu, sjv ∈ A and si 6= sj (si = s1 in the definition of Y if sj 6= s1

and si = s2 otherwise). (ii) then concludes the contradiction. Therefore u 6∼H v for
all u ∈ Y, v ∈ Yi.
(v) Y induces an independent set in H:
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Assume u ∼H v for some u, v ∈ Y . By the definition of Y there exist s1 6= s2

such that s1u, s2v ∈ A. (ii) immediately concludes the contradiction. Therefore Y
induces an independent set in H.
Finally, let A be a maximal independent set in G ◦H. We have proved above that
A has to satisfy (3.23) and (3.24). Assume that (3.25), i.e. I is a primitive subset.
Let su ∈ {su : s ∈ X, u ∈ Y }\I. It is a contradiction with A being a maximal
independent set, because {su} ∪ A is also an independent set. 2

Theorem 28 (Bač́ık, Mahajan [3]) G →f H iff Kbωf (H)+1c 6→ G.

Proof. Let Kbωf (H)+1c → G and let C be a maximal clique in G such that |C| ≥
bωf (H) + 1c. Let yH be a minimum fractional colouring of H of the size χf (H) =
ωf (H). Construct the following fractional colouring of G ◦H

(i) ∀ maximal independent set A ⊆ H : yC×A = yH
A (3.29)

(ii) ∀ u ∈ V (G)\C : yu×V (H) = 1 (3.30)

(iii) yI = 0 otherwise. (3.31)

All of type (i) and (ii) are clearly independent sets by Lemma 11. To show that
y is a proper colouring take any su ∈ G ◦ H. If s ∈ V (G)\C then ys×V (H) = 1.
If s ∈ C then

∑
I3su yI =

∑
indep.A3u yC×A =

∑
indep.A3u yH

A ≥ 1 because yH was
taken such to be a proper fractional colouring of H. The size of y is at most
ωf (H) + (|V (G)| − bωf (H) + 1c) < |V (G)|. It implies that ωf (G ◦H) < |V (G)| and
G 6→ H. To prove the other direction assume Kbωf (H)+1c 6→ G. Again, take xH and
yH fractional clique and colouring in H dual to each other, ωf (H) = χf (H). From
the complementary slackness (Theorem 9) follows that

xH
u = xH

u

∑

B3u

yH
B , (3.32)

where B runs through all maximal independent sets in H.
Construct a fractional clique in G ◦H such that

∀s ∈ G, u ∈ H : xsu =
xH

u

ωf (H)
. (3.33)

To show that x is a proper clique we need
∑

su∈A xsu ≤ 1, where A ⊆ G ◦ H is an
independent set. By Lemma 11 A = I ∪ (

⋃n
i=1 Ii) where I ⊆ Kn × Y, Ii = si × Yi

and n ≤ ωf (H) by the assumption Kbωf (H)+1c 6→ G. Therefore

∑
su∈A

xsu =
∑

su∈I
xsu +

n∑
i=1

∑
siu∈Ii

xsiu ≤ (3.34)

≤ n
ωf (H)

∑
u∈Y

xH
u + 1

ωf (H)

n∑
i=1

∑
u∈Yi

xH
u ≤ (3.35)

≤ 1
ωf (H)

(∑
B

yH
B

) ∑
u∈Y

xH
u + 1

ωf (H)

n∑
i=1

∑
u∈Yi

(
xH

u

∑
B3u

yH
B

)
= (3.36)
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= 1
ωf (H)

∑
B

yH
B

(
∑

u∈Y
xH

u

)
+ 1

ωf (H)

n∑
i=1

∑
B

yH
B

(
∑

u∈B∩Yi

xH
u

)
= (3.37)

= 1
ωf (H)

∑
B

yH
B

(
∑

u∈Y
xH

u +
n∑

i=1

∑
u∈B∩Yi

xH
u

)
, (3.38)

where B runs through all maximal independent sets in H. Y ∪ (
⋃n

i=1(B ∩ Yi)) is an
independent set in H because Y and B are independent sets and there are no edges
between Y and Yi for all i. Therefore (

∑
u∈Y xH

u +
∑n

i=1

∑
u∈B∩Yi

xH
u ) ≤ 1. Hence

∑

su∈A

xsu ≤ 1

ωf (H)

∑

B

yH
B = 1. (3.39)

The size of x is |V (G)| because

∑

su∈G◦H
xsu =

∑

s∈G,u∈H

xH
u

ωf (H)
= |V (G)| ∑

u∈H

xH
u

ωf (H)
= |V (G)|. (3.40)

2

Theorem 29 (Transitivity of 6→f) G 6→f F & F 6→f H ⇒ G 6→f H

Proof. Suppose G 6→f F & F 6→f H. By Theorem 28

bωf (H) + 1c ≤ ω(F ) (3.41)

and

bωf (F ) + 1c ≤ ω(G). (3.42)

Since ω(F ) < bωf (F ) + 1c it follows that bωf (H) + 1c < ω(G). By Theorem 28
G 6→f H. 2

Theorem 30 G 6→f H ⇒ H →f G

Proof. Let G 6→f H By Theorem 28

bωf (H) + 1c ≤ ω(G). (3.43)

Since ω(H) < bωf (H) + 1c and ω(G) < bωf (G) + 1c it follows that

ω(H) < bωf (G) + 1c (3.44)

and hence by Theorem 28 H →f G. 2

Lemma 12 Let G and H be graphs. Then

(∃F such that G 6←f F 6←f H) ⇔ (bωf (G) + 1c < ω(H)) . (3.45)
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Proof. Firstly suppose H 6→f F 6→f G for some graph F . By Theorem 28
Kbωf (G)+1c → F and Kbωf (F )+1c → H or in other words

bωf (G) + 1c ≤ ω(F ) (3.46)

and

bωf (F ) + 1c ≤ ω(H) . (3.47)

Since ω(F ) < bωf (F ) + 1c it follows that

bωf (G) + 1c < ω(H). (3.48)

On the other hand suppose bωf (G) + 1c < ω(H). Take F = Kω(H)−1, clearly
ωf (F ) = ω(F ) = ω(H)− 1 and therefore

ω(H) = ω(F ) + 1 = bωf (F ) + 1c. (3.49)

Since bωf (G) + 1c and ω(H) are integers we also have bωf (G) + 1c ≤ ω(H)− 1 and
therefore

ω(F ) = ω(H)− 1 ≥ bωf (G) + 1c. (3.50)

Hence H 6→f F 6→f G. This concludes the proof. 2

The following theorem is a corollary of Lemma 12.

Theorem 31 (Weak Density Theorem for →f) Let G and H be graphs such
that

G →f H and G 6←f H. (3.51)

Then a graph F such that

G →f F →f H and G 6←f F 6←f H. (3.52)

exists if and only if
bωf (G) + 1c < ω(H). (3.53)

Proof. By Lemma 12 a graph F such that H 6→f F 6→f G exists iff bωf (G) + 1c <
ω(H). By Theorem 30 H 6→f F 6→f G implies G →f F →f H 2

Corollary 7 Let G and H be graphs such that

G →f H and G 6←f H (3.54)

and let ω(G) = ω(H) − 1 and χ(G) < ω(H) (e.g. G = K3 and H = K4). Then
there is no graph F such that

G →f F →f H and G 6←f F 6←f H. (3.55)
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Corollary 8 Let Mn, n ≥ 2 be Mycielsky’s graphs defined in Section 3.4. Then since
Mn are triangle-free Mn →f Kbωf (Mn)+1c. Also by Theorem 28 Kbωf (Mn)+1c 6→f Mn.
But despite

lim
n→∞ω(Kbωf (Mn)+1c)− ω(Mn) = ∞, (3.56)

there is no n such that

Mn →f Fn →f Kbωf (Mn)+1c and Mn 6←f Fn 6←f Kbωf (Mn)+1c (3.57)

for some graph Fn. This is because bωf (Mn) + 1c = ω(Kbωf (Mn)+1c) for all n ≥ 2.

Lemma 13

G →f H 6⇒ ω(G) ≤ ω(H) (3.58)

G →f H 6⇒ χf (G) ≤ χf (H) (3.59)

G →f H 6⇒ χ(G) ≤ χ(H) (3.60)

Proof. To show that the first implication does not hold take G = K3 and H = M5

where M5 is the Mycielsky’s graph defined in Section 3.4. Then

G →f H, (3.61)

and

ω(G) = 3 > 2 = χf (H). (3.62)

Clearly ω(K3) = 3 and ω(M5) = 2. By Theorem 36 (Section 3.4)

χf (M5) =
29

10
+

10

29
= 941/290

.
= 3.24 (3.63)

Therefore bωf (H) + 1c = 4 and Kbωf (H)+1c 6→ G hence G →f H by Theorem 28.
To show that the second and the third implications do not hold take G = C5 and
H = K2. Then

G →f H, (3.64)

χf (G) = 5/2 > 2 = χf (H), (3.65)

and

χ(G) = 3 > 2 = χ(H). (3.66)

Clearly ω(G) = 2 and ω(H) = ωf (H) = 2. Since bωf (H) + 1c = 3 it follows that
Kbωf (H)+1c 6→ G and hence by Theorem 28 G →f H. C5 = S3,2 and therefore
χf (C5) = 5/2. 2
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3.3 Pseudo Graph Homomorphism

Feige and Lovász in [10] introduced a general technique for a polynomial approxi-
mation of any problem in NP . Given an NP -set L they construct a polynomial set
L′ (the hoax set for L) with the property L ∩ X = L′ ∩ X for a certain family of
instances X. The technique can be applied to the following Graph Homomorphism
Problem

Instance: (G,H) where G and H are graphs (3.67)

Question: Is G homomorphic to H? (3.68)

Consider the 0-1 matrix V with rows and columns indexed by su where s ∈ G, u ∈ H
with the property that

Vsu,tv = 0 ⇔ (i)s = t&u 6= v or (ii)s ∼G t&u 6∼G v (3.69)

(note that the matrix V is the adjacency matrix of G ◦H with a self-loop added to
each vertex). Construct matrices C = 1

|V (G)|2 V and Qsu,tw = psuptw where psu have

the following properties (they are usually interpreted as probabilities over choices
su). ∀s ∈ G :

∑
u∈H psu = 1 and ∀s ∈ G, ∀u ∈ H : psu ≥ 0. The following theorem

gives an alternative specification of the Graph Homomorphism Problem in terms of
the above matrices

Theorem 32 Let G and H be given graphs. Then G → H iff the optimum of the
following maximization problem is 1

max
Q

∑

s,u,t,v

Csu,tvQsu,tv (3.70)

s.t.

Q is a rank 1 matrix (3.71)

Q is symmetric (3.72)

∀s, t :
∑
u,v

Qsu,tv = 1 (3.73)

∀s, t, u, v : Qsu,tv ≥ 0 (3.74)

Proof. Suppose G → H and let f : V (G) → V (H) be a homomorphism from G to
H. Construct a 0-1 vector p such that psu = 1 iff f(s) = u, s ∈ G, u ∈ H. Then
Q = ppT is a symmetric rank 1 matrix and Qsu,tv ≥ 0 for all s, t ∈ G, u, v ∈ H.
Clearly, ∀s, t ∈ G : Qsu,tv = 1 ⇔ (u = f(s) & v = f(t)), and Qsu,tv = 0
otherwise. Therefore ∀s, t ∈ G :

∑
u,v∈H Qsu,tv = 1 and all conditions (3.71) - (3.74)

are met (Q is a feasible solution).
As stated above, Qsu,tv = 1 iff (f(s) = u and f(t) = v), where f is a homomorphism.
Thus Qsu,tv = 1 ⇒ Vsu,tv = 1, where V is defined as in (3.69). Therefore

∑

s,u,t,v

Csu,tvQsu,tv =
∑

s,u,t,v

1

|V (G)|2Vsu,tvQsu,tv =
∑

s,u,t,v

1

|V (G)|2Qsu,tv =
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=
1

|V (G)|2
∑
su

psu

∑

tv

ptv =
1

|V (G)|2 |V (G)|2 = 1, (3.75)

where C is defined as above. The value of the objective function of the maximizatin
problem (3.70) is equal to 1 for Q and therefore Q is an optimal solution (note that
1 is an upper bound for (3.70)).
On the other hand, suppose Q is an optimal solution of the above maximization
problem and

∑
s,u,t,v Csu,tvQsu,tv = 1. By (3.73)

∑
s,t,u,v Qsu,tv =

∑
s,t

∑
u,v Qsu,tv =∑

s,t 1 = |V (G)|2. Since V is a 0-1 matrix and Qsu,tv ≥ 0 the following must hold
∑

s,u,t,v

Csu,tvQsu,tv = 1 ⇒ (Qsu,tv > 0 ⇒ Vsu,tv = 1) . (3.76)

By (3.73) ∀s ∈ G, ∀t ∈ G :
∑

u,v∈H Qsu,tv = 1 > 0. By (3.74) all Qsu,tv are nonnega-
tive and therefore

∀s ∈ G : ∃u ∈ H such that Qsu,tv > 0 for some t ∈ G, v ∈ H. (3.77)

Since Q is a nonnegative rank 1 matrix, there is also a nonnegative vector p such
that Qsu,tv = psuptv for all s, t, u, v. Because Qsu,tv > 0 implies that psu > 0 and
ptv > 0, by (3.77) we have ∀s ∈ G : ∃u ∈ H such that psu > 0. Define a mapping
f : V (G) → V (H) such that f(s) = u ⇒ psu > 0 (note that for each s there can be
more than one u for which psu > 0).
It remains to verify that f is a homomorphism. Let f(s) = u and f(t) = v. Then
psu > 0 and ptv > 0 and hence also Qsu,tv = psuptv > 0. Moreover, by (3.76) also
Vsu,tv = 1 and therefore s ∼G t ⇒ u ∼H v by the definition of V . In other words, f
satisfies the properties of a homomorphism and G → H. 2

The polynomial approximation of Feige and Lovász replaces the rank 1 constraint
(3.71) with the requirement that Q is a positive semidefinite matrix. The ellipsoid
algorithm can be used to solve the new problem in a polynomial time (c.f. [10]).
The optimal solution of the modified problem with objective value 1 is called hoax
and the original and the new problems will be refered to as (*) and (**) respectively
(c.f. [10]).

Definition 32 (Pseudo Graph Homomorphism) Let G and H be graphs. We
say that G is pseudo homomorphic to H, write G →h H, if the problem (**)

max
Q

∑

s,u,t,v

Csu,tvQsu,tv (3.78)

s.t.

Q is a positive semidefinite matrix (3.79)

Q is symmetric (3.80)

∀s, t :
∑
u,v

Qsu,tv = 1 (3.81)

∀s, t, u, v : Qsu,tv ≥ 0 (3.82)

has a hoax for (G,H).
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Corollary 9 Clearly, G → H implies G →h H.

Lemma 14 Let (**) has a hoax Q with instance (G,H). Then Q = MMT for
some matrix M . Denote each column su of MT by msu. Then for any independent
set I = {s1u1, ..., skuk} in G ◦H the set of vectors {ms1u1 , ..., mskuk

} is orthogonal.

Proof. By assumption, Q is a positive semidefinite matrix. Therefore Q = MMT

for some M . Let I = {s1u1, ..., skuk} be an independent set in G ◦H where k is a
positive integer. Then Vsiui,sjuj

= 0 for all i 6= j. By (3.76) also 0 = Qsiui,sjuj
=

mT
siui

msjuj
and hence msiui

and msjuj
are orthogonal. 2

Bač́ık and Mahajan [3] proved the following implication.

Theorem 33 G →h H implies G →f H.

Proof. Suppose Q is a hoax of the problem (**) and write Q as MMT for some
matrix M (Q is positive semidefinite). Denote each column of MT with index su by
msu. Then Qsu,tv = mT

sumtv and by (3.82)

∀s, t ∈ G,∀u, v ∈ H : mT
sumtv ≥ 0 (3.83)

For each s ∈ G define vector m̃s =
∑

u∈H msu. The condition (3.81) of (**) then
becomes

∀s, t ∈ G : 1 =
∑

u,v∈H

Qsu,tv =
∑

u,v∈H

mT
sumtv =

∑

u∈H

mT
su

∑

v∈H

mtv = m̃T
s m̃t. (3.84)

Choosing s=t in (3.84) gives m̃T
s m̃s = 1 which means that m̃s are all vectors with

unit length. Given this fact, (3.84) then also implies that the angle between any
two m̃s and m̃t is zero and hence they are all equal. Denote

m̃ =
∑

u∈H

msu. (3.85)

Then
|m̃| = 1. (3.86)

From the definition of V , Vsu,sv = 0 for u 6= v. Therefore by (3.76) mT
sumsv = 0 for

u 6= v and
m̃T msu =

∑
v

msvmsu = msumsu = |msu|2. (3.87)

Construct a fractional clique x in G ∈ H such that

xsu = |msu|2. (3.88)
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By Lemma 14 for any independent set I = {s1u1, ..., skuk} in G ◦H vectors {ms1u1 ,
...,mskuk

} are all mutually orthogonal, i.e. mT
siui

msjuj
= 0 for i 6= j. Denote m̃I =∑

su∈I msu. Then
|m̃I |2 =

∑

su∈I

mT
su

∑

tv∈I

mtv =
∑

su∈I

|msu|2 (3.89)

By (3.87) |msu|2 = m̃T msu and thus

|m̃I |2 =
∑

su∈I

|msu|2 = m̃T
∑

su∈I

msu = m̃T m̃I ≤ |m̃| · |m̃I | (3.90)

By (3.86) |m̃| = 1, hence

|m̃I |2 =
∑

su∈I

|msu|2 ≤ |m̃I |. (3.91)

The fact that |m̃I |2 ≤ |m̃I | means that |m̃I | ≤ 1. Together with (3.91) this implies
that ∑

su∈I

xsu =
∑

su∈I

|msu|2 ≤ |m̃I | ≤ 1 (3.92)

and therefore x is a proper fractional clique (note that xsu ≥ 0 follows trivially from
its definition). Moreover,

∑

su∈G◦H
xsu =

∑
su

|msu|2 =
∑
su

m̃T msu =
∑
s

m̃T
∑
u

msu =
∑
s

m̃T m̃ =
∑

s∈G

1 = |V (G)|.
(3.93)

Therefore G →f H. 2

Thus we have G → H ⇒ G →h H ⇒ G →f H. The converse, however, is not
true.

Theorem 34 G →f H 6⇒ G →h H 6⇒ G → H.

Proof. Firstly, we will show that for each perfect n,m-string Sn+1,m

Sn+1,m →f Kn and Sn+1,m 6→h Kn. (3.94)

Clearly bωf (Kn) + 1c = n + 1. By Theorem 14, ω(Sn+1,m) = n and therefore
Kn+1 6→ Sn+1,m. Theorem 28 then implies that Sn+1,m →f Kn.
Now assume Sn+1,m →h Kn with a hoax Q = MMT and denote each column of MT

with index su by msu. From the proof of Theorem 33 it follows that

∑

u∈V (Kn)

msu = m̃. (3.95)

Take a partitioning of Sn+1,m similar to that in Definition 18. Then Hi\{xi} =
Kn and Hi\{yi} = Kn, i = 1, ..., m. For each u ∈ Kn, the sets Ixi

= {su :
s ∈ V (Hi)\{xi}}, i = 1, ...,m and Iyi

= {su : s ∈ V (Hi)\{yi}}, i = 1, ..., m are
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independent in Sn+1,m ◦Kn and therefore by Lemma 14, vectors msu, su ∈ Ixi
are

orthogonal as well as vectors msu, su ∈ Iyi
. From the proof of Theorem 33 it follows

that

| ∑

su∈Ixi

msu| = |m̃Ixi
| ≤ 1 (3.96)

| ∑

su∈Iyi

msu| = |m̃Iyi
| ≤ 1 (3.97)

The fact that Hi\{xi} and Hi\{yi} are cliques of size n then gives us

n ≥ ∑

u∈V (Kn)

| ∑

s∈Hi\{xi}
msu| ≥ | ∑

s∈Hi\{xi}

∑

u∈V (Kn)

msu| = |nm̃| = n (3.98)

n ≥ ∑

u∈V (Kn)

| ∑

s∈Hi\{yi}
msu| ≥ | ∑

s∈Hi\{yi}

∑

u∈V (Kn)

msu| = |nm̃| = n. (3.99)

The above two inequalities are therefore in fact satisfied as equalities and by dividing
both sides by n we obtain

| ∑

s∈Hi\{xi}
msu| = |m̃| = 1 (3.100)

| ∑

s∈Hi\{yi}
msu| = |m̃| = 1. (3.101)

Also,

| ∑

su∈I

msu|2 = |m̃I |2 =
∑

su∈I

|msu|2 = m̃T
∑

su∈I

msu = m̃T m̃I ≤ |m̃| · |m̃I | (3.102)

is true for any independent set I. In our case, thanks to (3.100) and (3.101), the
inequality in (3.102) holds as equality and we can conclude that

∑

s∈Hi\{xi}
msu = m̃ (3.103)

∑

s∈Hi\{yi}
msu = m̃ (3.104)

(c.f. [3]). Therefore, when rearranged, we obtain

∑

s∈Hi\{xi}
msu = m̃ =

∑

s∈Hj\{yj}
msu

or (3.105)

m̃−mxi,u = m̃−myj ,u (3.106)

which implies mxi,u = myj ,u, i, j = 1, ..., m and thus also mx1,u = mym,u. But vertices
x1 and ym are adjacent and hence cannot be mapped to the same vertex u. Therefore
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mx1,u and mym,u have to be at the same time equal and orthogonal, which can only
be satisfied if they are both zero vectors. That, however, contradits that

| ∑

u∈V (Kn)

mx1,u| = | ∑

u∈V (Kn)

mym,u| = |m̃| = 1. (3.107)

Therefore Sn+1,m 6→h Kn.
Secondly, for the Grötzsch’s graph G

G →h K3 and G 6→ K3. (3.108)

In the next section it is shown that χ(G) = 4, thus G 6→ K3. Conversely, the
following matrix is a hoax in (**) for the instance (G, K3)

Qs,s =




1/3 0 0
0 1/3 0
0 0 1/3


 , (3.109)

Qs,t =




0 1/6 1/6
1/6 0 1/6
1/6 1/6 0


 for s ∼ t, and (3.110)

Qs,t =




1/6 1/12 1/12
1/12 1/6 1/12
1/12 1/12 1/6


 for s 6∼ t. (3.111)

Where Qs,t denotes the s, t block of Q. Therefore G →h K3. 2

Theorem 35 (Transitivity of →h) G →h F & F →h H ⇒ G →h H

Proof. Let QGF be a hoax in (**) for the instance (G,F ) and let QFH be a hoax
in (**) for the instance (F, H). Construct a hoax Q for (G,H) as follows

Qg1h1,g2h2 =
∑

f1,f2∈F

QGF
g1f1,g2f2

QGF
f1h1,f2h2

(3.112)

The value of the objective function in (**) for Q is equal to
∑

g1,g2∈G,h1,h2∈H

Cg1h1,g2h2Qg1h1,g2h2 =
∑

g1,g2∈G,h1,h2∈H

Cg1h1,g2h2

∑

f1,f2∈F

QGF
g1f1,g2f2

QGF
f1h1,f2h2

= 1

(3.113)
Clearly Q is symmetric and Qg1h1,g2h2 ≥ 0 for all g1, g2 ∈ G and h1, h2 ∈ H since
both QGF and QFH have those properties. For all g1, g2 ∈ G

∑

h1,h2∈H

Qg1h1,g2h2 =
∑

h1,h2∈H

∑

f1,f2∈F

QGF
g1f1,g2f2

QGF
f1h1,f2h2

=

=
∑

f1,f2∈F

QGF
g1f1,g2f2


 ∑

h1,h2∈H

QGF
f1h1,f2h2


 =

=
∑

f1,f2∈F

QGF
g1f1,g2f2

=

= 1 (c.f. [3]). (3.114)
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Q is also positive semidefinite (c.f. [3]). Hence Q is a hoax in (**) for the instance
(G,H). 2

3.4 Examples

3.4.1 Mycielski’s Graphs

It is interesting to show that there can be graphs whose clique number is much
smaller than their chromatic number. The sequence of Mycielski’s Graphs has the
property that all its members are triangle-free, however the sequence of their chro-
matic numbers increases without a bound hence offering an arbitratily wide gap
between ω and χ.

Definition 33 (Mycielski’s Graph Transformation) Given a graph G such that
V (G) = v1, ..., vk, the Mycielski’s Transformation of G,µ(G), is defined as follows

V (µ(G)) = {x1, ..., xk, y1, ..., yk, z}, (3.115)

xi ∼µ(G) xj ⇔ vi ∼G vj, (3.116)

xi ∼µ(G) yj ⇔ vi ∼G vj, (3.117)

yi ∼µ(G) z ∀i = 1, ..., k, (3.118)

and there are no other edges. (3.119)

Theorem 36 (Mycielski [24], Larsen, Propp and Ullman [21]) Let G be a graph
with at least one edge. Then

(a) ω(µ(G)) = ω(G), (3.120)

(b) χ(µ(G)) = χ(G) + 1 and (3.121)

(c) χf (µ(G)) = χf (G) +
1

χf (G)
. (3.122)

Proof. The proof is not included here. It can be found in [21]. 2

When M2 = K2 graphs recursively defined by Mn+1 = µ(Mn) for n ≥ 2 are called
Mycielski’s graphs. First few examples are M3 = C5 and M4 which is Grötzsch’s
graph. By the previous theorem all Mn’s are triangle free (or ω(Mn) = 2) and
χ(Mn) = n. Also, the fractional chromatic numbers form an infinite sequence where
χf (M2) = 2 and χf (Mn+1) = χf (Mn) + (χf (Mn))−1. This sequence grows like

√
2n

in the sense that
χf (Mn)√

2n
−→n→∞ 1.

Therefore, the sequence of Mycielski’s graphs has the property that (χ(Mn) −
χf (Mn)) −→n→∞ ∞ and (ωf (Mn) − ω(Mn)) −→n→∞ ∞. Moreover, Fisher [11]
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showed that the fractional chromatic numbers of Mycielski’s graphs have denomi-
nators on the order of ecn, where c is a constant.
Despite the colouring complexity of the Mycielski’s graphs they are, as triangle-free
graphs, trivially fractionally homomorphic to K2. On the other hand ∀k∃n such
that Kk →f Mn.

3.4.2 Petersen’s Graph

Petersen’s graph P is defined as V (P) = {u1, ..., u5, v1, ..., v5}, where {u1, ..., u5}
induce a 5-cycle, {v1, ..., v5} induce a star (i.e. v1, v3, v5, v2, v4 form a 5-cycle in
that order) and for each i = 1, ..., 5 ui ∼ vi. Formally E(P) = {(u1, u2), (u2, u3),
(u3, u4), (u4, u5), (u5, u1), (v1, v3), (v3, v5), (v5, v2), (v2, v4), (v4, v1), (u1, v1), (u2, v2),
(u3, v3), (u4, v4), (u5, v5)}.
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Petersen’s graph is triangle free. Therefore it is fractionally homomorphic to K2

(take a fractional clique x∗ of size |V (P)| in P ◦K2 such that x∗st1 = x∗st2 = 1/2 for
all s ∈ P and where t1 and t2 are the two vertices of K2).
We will also show the following

ω(P) = 2 ωf (P) =
5

2
= χf (P) χ(P) = 3 (3.123)

One possible 3-colouring of P is the partition A1 = {u1, u3, v2}, A2 = {u2, u4, v1, v5},
A3 = {u5, v3, v4}. One fractional clique of size 5/2 is x such that xvi

= 1/2 for all
i = 1, ..., 5 and zero otherwise. A fractional colouring of size 5/2 is y such that
y{u1,u4,v2,v3} = y{u2,u5,v3,v4} = y{u3,u1,v4,v4} = y{u4,u2,v5,v1} = y{u5,u3,v1,v1} = 1/2 and zero
otherwise.

3.4.3 Grötzsch’s Graph

Grötzsch’s graph G is isomorphic to M4. More formally, it is defined as V (G) =
{u1, ..., u5, v1, ..., v5, w} and E(G) = {(u1, u2), (u2, u3), (u3, u4), (u4, u5), (u5, u1),
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(u1, v2), (u2, v3), (u3, v4), (u4, v5), (u5, v1), (v1, u2), (v2, u3), (v3, u4), (v4, u5), (v5, u1),
(v1, w), (v2, w), (v3, w), (v4, w), (v5, w)}
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Grötzsch’s graph is also trangle-free and therefore it is fractionally homomorphic
to K2 (similarly as for Petersen’s graph). The following is also true

ω(G) = 2 ωf (G) =
29

10
= χf (G) χ(G) = 4 (3.124)

A 4-colouring of G is the following partition A1 = {u1, u3, v1, v3}, A2 = {u2, u4, v2, v4},
A3 = {u5, v5}, A4 = {w}. A fractional clique x in G whose size is 29/10 is defined as
follows: xui

= 3/10, xvi
= 2/10 for all i = 1, ...5 and xw = 4/10. A dual fractional

colouring of size 29/10 is Y such that y{u1,u4,v1,v4} = y{u2,u5,v2,v5} = y{u3,u1,v3,v1} =
y{u4,u2,v4,v2} = y{u5,u3,v5,v3} = 3/10, y{u1,u4,w} = y{u2,u5,w} = y{u3,u1,w} = y{u4,u2,w} =
y{u5,u3,w} = 2/10 and y{v1,v2,v3,v4,v5} = 4/10 (there are no other maximal independent
sets in G).
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[25] J.Nešetřil, A.Raspaud and E.Sopena, Colorings and Girth of Oriented
Planar Graphs, KAM Series 95-291 (1995), 1-14
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