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Nonlinear programming problem:

Consider the problem

fl@) — min,
CI(I) < 07
cg(xr) = 0,

I = {1,...,777,]}, E = {m[—l— 1,...,m1—|—mE},
where functions f(z), c;(x), cp(x) are twice
continuously differentiable. Necessary (KKT)
conditions have the following form (we assume the
standard constraint qualifications):

g(z,u) = 0,
Cl(x) < 07 ur > Oa U?C](x) — 07
cep(x) = 0,

where

g(z,u) = Vf(x)+ Ar(x)ur + Ap(z)ug,

and Aj(z) = [Vei(x) : 1 € 1], Ap(x) = [Ve(x) -
i € E|. Here uy € R™, up € R™E are vectors of
Lagrange multipliers.



Interior point (IP) principle:

f(x) — pe’ In(Sy)e — min,
cilx)+s; = 0,
cg(xr) = 0,
where s; > 0 is a slack vector, e is the vector with

unit elements and S; = diag(s; : i € I) (we assume
that u — 0).

Necessary (KKT) conditions have the following
form:

primal formulation primal-dual formulation

g(z,u) =0, g9(z,u) =0,
U]e—,uSl_le:O, StUre — ue =0,
cr(x) + sy =0, cr(z) 4+ sy =0,
cp(r) =0, ce(r) =0,

where
g(z,u) = V() + Ar(@)ur + Ap(z)up,

and S; = diag(s; : ¢ € I), Uy = diag(u; : i € I).
The inequalities s; > 0 and u; > 0 have to be
satisfied in all iterations. Primal-dual formulation
leads to more effective algorithms.



Direction determination (line-search approach):

Linearization - the Newton method

2 G 0 A[ AE 3 2 g
0 U[ S[ 0 ZEAS]Z_ S[Uje—/,be
A? A’u,[ C]—I—S]
Ag O 0 A’U,E CE

where g = g(x,u) and

G = G(z,u) = Vf(z) + Z u; V2ci(x)

1€IUE

We assume that matrix of this system
nonsingular. Elimination of Asjy:

As; = —Ul_lSI(uI + Auy) + ,uUl_le
Active and inactive constraints (¢; > 0).

s <eruy — active constraints

S; > ¢eyuy — 1nactive constraints

Elimination of inactive constraints:

v

Al 5;1(71(61 + A?A:r;) + ,ugl_le

¢



The final equations

2 . A 32 3 2 . 3
G A[ AE AQZ g

A7 —U;'S; 094A4,9=—-4¢ +uU;"ed,
AL 0 0 Aug CE

where

é = G—I—A[gl_llypzl?,
g = g""AISI_lU]é[—l—,uA[SI_le.

Both matrices G and U; S} are bounded (if G and
A are bounded) and if the strict complementarity

conditions hold, then lim, .o U;*S; = 0. After
substitution we obtain

AS; = —Ul_lgj(?l]+AfL[)+/LUI_1€,
As; = —(51+A?ASB+§[).

Vector Ay is determined as an inexact solution of
the above system, vector A is obtained by direct
elimination.



Indefinitely preconditioned conjugate gradient
method:

_ G A d bl -
af 4100- 1]

where A [AI,AE] and M = diag(M;,0). Here
MI U SI Is a positive definite diagonal matrix.
We assume that matrix K is nonsingular, which
implies that Ag has a full column rank.

The first class of indefinite preconditioners:

A A

D A
o=\ i

where D is a positive definite diagonal matrix
derived from the diagonal of G. Expressions for
matrices K and C imply that

O~ = P o QA .
QT —(ATD_1A+M)_1 ?

A A

where P :AD_lTZA)_}A(I{lTD_lfl—FM)_lfAlTﬁ_l,
Q=DTAATD YA+ M)~!



The preconditioned matrix

ko-1_ | I+ (G =D)P (G-D)Q
0 I ’

Basic theorems:

Theorem 1. Consider preconditioner C' applied
to system Kd = b and assume that G-1Dis
nonsingular. Then matrix KC~! has at least
mr + 2mpg unit eigenvalues but at most m; + mg
linearly independent eigenvectors corresponding to
these eigenvalues exist. The other eigenvalues
of matrix KC~! are exactly eigenvalues of
matrix ZLGZp(ZEDZg)~!, where [Zg, Ag] is a
nonsingular square matrix, ZLAp =0, ZLZp =1
and where

G = G+ AM; AT,
D+ A/M; A7

S
I

|f ZgéZE is positive definite then all eigenvalues
are positive.

Theorem 2. Consider preconditioner C' applied
to system Kd = b and assume that G-1Dis
nonsingular. Then the Krylov subspace K defined
by matrix KC~! and vector ¥ € R*t"+™E has a
dimension of at most min(n + 1,n — mg + 2).



The preconditioned CG method:
- & A]Jd bl -
=[5 4114

Algorithm PCG

d — given, d = 0,
ri=b—Gd— Ad 7:=b— ATd+ Md,
G :=0,

while ||r|| > w||b|| or ||#| > w]||]| do

t:=(ATD A+ M)~ Y (ATD 1r — ),
t:= D 1(r — Ab),

voi=rTt + 7T, B = B,

pi=1-+ ﬁp,A D ZfA—I— B8P, )

q = Gp+ Ap, g := A'p— Mp,
a=plqg+p'q a=q/a
d:=d+ ap d:=d+ ap
ri=1r—aq, T =17 — aq,
G:=1/v

end while.



Theorem 3. Consider Algorithm PCG with
preconditioner C applied to system Kd = b.
Assume that initial d is chosen in such a way
that 7 = 0 at the start of the algorithm. Let matrix
ZLG Zy be positive definite. Then:

(a) Vector d* (the first part of vector d* which

(b)

(c)

(d)

solves equation Kd = b) is found after n — mpg
iterations at most.

The algorithm cannot break down before d* is
found.

Error ||d — d*|| converges to zero at least R -
linearly with quotient

Ve —1
VE+1

where x is the spectral condition number of
matrix ZLGZp(ZLDZg)™ 1.

If d = d*, then also d; = a?}f and dp can be
determined by the formula

dy =dg+ (ALD 'A)tALD 1y,



Theorem 3 assumes that 7 = 0 at the start of
Algorithm PCG. This condition is satisfied if we set
d = (0 and

In  Algorithm PCG, the sparse Choleski
decomposition (complete or incomplete) of matrix
ATD=1A + M is used instead of its inversion.

Unfortunately, this matrix can be denAse |f A has
dense rows. Assume that AT = [Al Al] and

D = diag(Ds, D), where

A

N = ATDVA, + NI
Is sparse and Ay consists of dense rows. Then

(ATD 'A+ M)~ = (M, + ATD;"A4) !
= M7 — M7YAT MY AN
where ) ) o
My;= D,g+ AdMs_lAZ;
is a (low-dimensional) dense matrix. Again the

sparse Choleski decomposition of matrix M is used
instead of its inversion.



Linear dependence of gradients of active
constraints:

We use a perturbation of M to eliminate singularity
(or near singularity) of matrix ATD~*A+ M. Thus
we solve equation

|-

ki< i) i =

and use preconditioner

o_[ D A
AT —(M+E) |”

S o

where E is a (small) positive semidefinite diagonal
matrix.

Theorem 4. Let c?( ) be the solution of the

perturbed system with G nonsingular and E = ¢E,.
Then

1d(d”(¢) Eod(e))
2 de
—dT(e)Eo(ATGYA + M + cEo) "L Eod(e).

If there is a number £ > 0 such that ATG 1A +
M + eE, is positive definite Ve > &, the above
expression is negative Ve > g and d” (¢) Eyd(e) — 0
if £ — o0.



Regularization:

Matrix C = ATD~1A + M is at least positive
semidefinite. We can use the Gill- Murray decom-
position RTR = C + E, where R is an upper
triangular matrix and E is a small positive definite
diagonal matrix. In the i-th elimination step, the
pivot is changed so that

RZ-Z- — max (|7“m\ ?,5) :

where #;; is the pivot before correction, 52 > ||C||,
6 = \/WHCA'H (ear — machine precision) and 7; is
the maximum absolute value of the off diagonal
element in the i-th row. Then EAZZ = Rm — 7 > 0.
Then we obtain the reasonable preconditioner

a_[ D A
AT (M +E)

and the regularized system

L?T —<MA+E>] li?] B lil

Another possibility is to compute an approximation
A of the least eigenvalue of C' (from the Choleski
decomposition) and replace M by M + 61 if A <.



Additional indefinite preconditioners:

Let

A A

B A
C = A n
v
where N = M+D—-vATB- 1A Bisa “nonsingular
approximation of G (usually B =@G), Dis a
diagonal matrix such that M+DJs positive definite

and v is a parameter. Using B or N for block
elimination, we obtain

ol Bl - BTAC'ATB™' B'AC!
- CLATB™! —C!
where C' = ATB 1A+ N (G = N[ +Difv=1)
or
AN
N71ATB=1 N1ATB 'AN
where B = B4+ AN—1AT (N = M+ D if v = 0).

Matrix B is usually sparse (it is dense when A has
dense columns). If B = G, then

I 0

A

_1_ . ~ R
RO =1 1 _mare—+ 7 |

where H H (ATCAJ 'A + M)C~'.  Notice that
H=ATB~ 1AN if M =0.



Theorem 5. Consider preconditioner (' with B =
G and M + D positive definite applied to system
Kd = b. Then matrix KC~! has at least n
unit eigenvalues with a full system of n linearly
independent eigenvectors. The other eigenvalues
of KC~1 are exactly eigenvalues of matrix H =
(ATGYA+ M)C'. If ATG—'A+ M is positive
definite then all eigenvalues are positive.

Theorem 6. Consider preconditioner C' with B =
G applied to system Kd = b. Then the Krylov
subspace K defined by matrix KC~! and vector
¥ € R"T™ has a dimension of at most 7 + 1.

Theorem 7. Consider the conjugate gradient
method preconditioned by C with B = G and
applied to system Kd = b. Assume that initial d is
chosen in such a way that » = 0 at the start of the
algorithm. Let matrix ATG™1A + M be positive
definite. Then:

(a) Vector d* which solves equation Kd = b is found
after m iterations at most.

(b) The algorithm cannot break down before d* is
found.

(c) Error ||d — d*|| converges to zero at least R -

linearly with quotient (v/k—1)/(v/k+1), where
K is the spectral condition number of matrix

= (ATG A+ M)C.



Strategies for step-length restriction:

Let £, = = + alAx, where 0 < a < @ with @ =
min(1, A/||Az]||). Since sT > 0 and u} > 0 have
to hold, step-lengths for s; and wu; have to be
restricted. Strategy 1 uses individual step-lengths

s,f = 5; + a5, As; and uj = u; + ay,, Au;, where

s, = a, As; > 0,
(s, = min (a, —’yz;) : As; <0,
Oy, = Q, Au; > 0,
Qy,;, = Min (a, _,YAU;) : Au; <0,

(0 < v < 1is a coefficient close to unit). Other
strategies require bounds

. Si
o, = min —
° /yieI,AsZ-<O ( ASZ') ’

_ : Uq
84 = 1mM1n —
“ ,yiEI,Aui<O A’LLZ ’

where 0 < v < 1 and define

st =si(a) = s;+min(a,a@,)Asy,

uf =ur(@) = wuy+ min(a, @,)Au;.



Merit function for step-length selection:

flz + alAz) — pe’ In(S;(a))e

(ur + Aup) ' (cr(z + aAz) + s;(a))

(ug + Aug)' cp(z + aAz)

Sller(@ + ade) + si(@) = Br(ur(@) — u)|f

P(a)

+ 4+ o+ +

o
EHCE(ZC + aAx) — EEozAuE||2,

where o > 0.

Theorem 8. Let s; > 0, uy > 0 and let the
triple Ax, Au;, Aug be an inexact solution of a
regularized system. Then

P'(0) = —(A2)T'GAz — (Asp)TS;'UAs;
— o(ller +s1ll” + lexl?)
+ (Ax)'r+o((er + 507 + chrr).

where r, 77, rg are parts of the residual vector. If

(AxT)GAz + (Asp)TS; U Asg
ler + s1l||? + ||ce|?

g > —

and if (Ax) ' r+o((¢r+37) Pr+chrg) is sufficiently
small, then
P'(0)<0



Restart:

If P'(0) > 0, then line-search usually fails. There
are two basic possibilities.

e We recompute 0 > 0 so that

(AzT)GAz + (As))TS; U As)
ler + si]l* + lleell? |

g >

Then P'(0) < 0.

e We keep o0 > 0 unchanged, replace matrix G by
a positive definite diagonal matrix D and resolve
the resulting linear system. Moreover, we use
the same diagonal matrix for the construction of
the first-type preconditioner.

Theorem 9. Consider Algorithm PCG with
preconditioner C' applied to system Kd = b (with
G replaced by 15) Then this algorithm finds the
exact solution in its first iteration and P’(0) < 0
for any value o > 0.

The use of restarts is computationally more efficient
than the recomputation of o > 0.



Computation of the barrier parameter

Most implementations of interior-point methods
choose the value p in such a way that

0<pu< S?U[/m]

(or u = Astur/my, where 0 < XA < 1)
Computational experience indicates that the
algorithm performs best when components s;u;
approach zero at a uniform rate. The distance
from uniformity can be measured by the ratio

_ min;er(s;u;)

stur/my

(the centrality measure). Clearly, 0 < o < 1 and
o = lifandonlyif S;Ure = pue. The value A is then
computed by using o. Usually heuristic formulas
are used for this purpose. In our implementation,
we have used the formula

1 — 3
A = 0.1 min (0.05—9, 2)
0

proposed by Vanderbei and Shanno. We have
also tested other possibilities, e.g., formulas given
by Argaez, Tapia and Velasquez, but the above
formula has shown to be best.



Numerical experiments:

Interior-point method was tested by using three
sets each containing 17 test problems with 1000
variables. The results are listed in three tables,
where:

e M - method for step-length selection (F - the
first step accepted, L - line search).

e S - strategy for step-length restriction.

e P - the preconditioner used (the first and the
second classes with complete (+) or incomplete
(-) Gill-Murray decomposition).

e NIT - the total number of iterations.
e NFV - the total number of function evaluations.

e NFG - the total number of gradient evaluations
(NFG is much greater than NIT, since the second
order derivatives are computed by using gradient
differences)

e NCG - the total number of CG iterations.
e NRS - the total number of restarts.

e NFAIL - the number of failures for a given set
(the number of problems which have not been
solved).



M S P NIT NFV NFG NCG NRS TIME NFAIL
F 1 1 567 567 4137 24969 20 4.88 -
F 2 1 529 529 3855 23473 14 4.75 -
F 3 1 611 611 4680 25431 22 5.92 -
L 1 1 508 711 3832 24933 20 5.28 -
L 2 1 550 593 3936 21806 14 4.67 -
L 3 1 622 695 4785 22801 27 5.92
F 1 1 567 567 4137 24969 20 4.88 -
F 1 -1 549 549 3954 25021 17 4.94 -
F 1 2 1037 1038 6986 3166 23 4.48 1
F 1 -2 1726 1727 12120 9315 170 18.11 1
L 2 1 550 593 3936 21806 14 4.64 -
L 2 -1 575 761 4127 24101 18 5.17 1
L 2 2 781 1770 5776 2150 15 4.28 1
L 2 -2 845 2041 6922 18061 25 13.86 2

Table 1: Set 1 of 17 problems with 1000 variables

M S P NIT NFV NFG NCG NRS TIME NFAIL
F 1 1 393 393 2823 10728 19 2.88

F 2 1 413 413 2994 5435 19 2.67 -
F 3 1 672 672 4896 9964 12 4.03 -
L 1 1 395 846 2812 16396 72 4.09 1
L 2 1 476 925 3403 5654 73 3.28 1
L 3 1 876 1343 6223 17823 69 6.14 1
F 1 1 393 393 2823 10728 19 2.88 -
F 1 -1 388 388 2790 11513 10 3.06

F 1 2 908 908 5952 1091 14 4.64 -
F 1 -2 860 860 5661 6231 7 9.80 -
L 2 1 476 925 3403 5654 73 3.28 1
L 2 -1 482 939 3449 6521 72 3.57 1
L 2 2 911 1597 6067 2275 52 5.14 2
L 2 -2 902 1691 6079 2937 65 10.07 2

Table 2: Set 2 of 17 problems with 1000 variables

(problems LUKVLI1-LUKVLI18 from CUTE)



M S P NIT NFV NFG NCG NRS TIME NFAIL
F 1 1 550 551 3895 2737 11 5.75 1
F 2 1 567 567 4114 2993 6 5.69 -
F 3 1 737 751 5347 5342 28 8.84 2
L 1 1 471 694 3502 4492 26 6.25 1
L 2 1 540 637 4070 3475 21 6.67 -
L 3 1 941 1311 7448 15261 45 12.92 2
F 1 1 550 551 3895 2738 11 5.75 1
F 1 -1 542 548 3850 3204 12 8.78 1
F 1 2 541 541 3861 3790 29 5.34 1
F 1 -2 502 502 3529 942 14 5.64 1
L 2 1 540 637 4070 3475 21 6.67 -
L 2 -1 546 688 4125 3532 21 7.86 -
L 2 2 495 705 3699 745 22 4.31 -
L 2 -2 467 709 3321 983 29 6.33 1

Table 3: Set 3 of 17 problems with 1000 variables



The CUTE! collection:

Problem n m S P NIT NFV NFG NCG
BRITGAS 450 360 1 1 15 15 285 132
CLNLBEAM 1503 1000 1 1 19 19 133 81
DALLASL 906 667 1 1 47 47 893 47
EG3 1001 2000 3 -1 41 41 287 251
EIGENB2 420 210 1 1 8 8 3261 207
EIGENC2 462 231 1 1 17 17 7531 180
GAUSSELM 819 1296 3 1 20 20 660 1640
HANGING 1800 1150 1 1 29 29 609 792
MANNE 600 400 3 -1 50 50 300 476
NGONE 100 1273 3 -1 35 35 3535 539
OPTCDEG2 1202 800 1 1 11 11 88 236
OPTCDEG3 1202 800 1 1 7 7 56 11
OPTMASS 1210 1005 1 1 6 6 48 26
READING1 2002 1000 3 -1 35 35 245 352
READING3 2002 1001 3 -1 19 19 133 532
READING4 1001 1000 3 -2 51 51 204 73
READING5 5001 5000 1 -1 2 3 12 4
READING9 2002 1000 1 1 11 11 55 53
SINROSNB 1000 999 1 1 13 13 52 50
SREADIN3 1002 501 1 -1 38 38 266 193
SSNLBEAM 3003 2000 1 1 19 19 133 125
SVANBERG 1000 1000 1 1 20 20 380 81
TRAINF 2008 1002 1 1 37 37 370 94
TRAINH 2008 1002 1 1 30 30 390 424
ZAMB2 1326 480 1 -1 29 29 348 1927

Table 4 : The first step accepted (M = F)

IN.I.M. Gould, D. Orban, P.L.Toint: CUTEr (and SifDec), a
Constrained and Unconstrained Testing Environment, revisited.



The comparison with NITRO?:

Algorithm 1 NITRO
Problem n m NFV n m NFV
CLNLBEAM 1503 1000 19 303 200 21
DALLASL 906 667 47 906 667 100
EG3 1001 2000 41 101 200 31
GAUSSELM 819 1926 22 819 1926 115
GRIDNETA 924 484 12 924 484 21
GRIDNETD 924 484 12 924 484 19
GRIDNETF 924 484 17 924 484 20
GRIDNETG 924 484 13 924 484 21
GRIDNET]I 924 484 15 924 484 28
MANNE 600 400 50 300 200 9
NGONE 100 1273 35 100 1273 217
OPTCDEG2 1202 800 11 302 200 30
OPTCDEG3 1202 800 7 302 200 22
OPTMASS 1210 1005 6 610 505 15
READINGI1 2002 1000 35 202 100 52
READING3 2002 1001 19 303 200 12
READING4 1001 1000 51 202 101 77
READING5 5001 5000 3 501 500 6
READING9 2002 1000 11 501 500 15
SINROSNB 1000 999 13 1000 999 90
SREADIN3 1002 501 38 202 101 30
SSNLBEAM 3003 2000 19 303 200 23
SVANBERG 1000 1000 20 1000 1000 18
TRAINF 2008 1002 34 808 402 345
TRAINH 2008 1002 30 808 402 441
ZAMB2 1326 480 29 1326 480 37

Table 5 : Comparison of results

’R.H Byrd, J. Nocedal, R.A.Waltz: Feasible Interior Methods
Using Slacks for Nonlinear Optimization.



Direction determination (trust-region approach):

Linearization - the Newton method (after elimi-
nation of inactive constraints). Only active slacks
are considered in the trust-region subproblem.
Primal-dual formulation is used.

2 4 0 i 3 2 ; 3
go SUr 1 oégASIZ g Gs Z
Ag 0 0 Aug

G = G+ A;S;'UAT,
= 9-|—AISI_1UIéI-|—MAIS;1€7

Scaling

2 . o 32 3 2 3
G 0 A[ AE Ax g

g 0 I D; 0 égD;1A§IZ__§ Dig, é
A? D[ 0 0 A’ﬁ,[ o é[‘l‘ §I ’
AL 0 0 0 Aug CE

where 151 = \/Sl_lﬁj. Notation

- [G o]l - [ g B Ax
¢=[o 7] 0= [o]- 2= [5hs]



Trust region subproblem:

1 _
i(Az)TGAz + gAz — min,
ATAz+¢ = 0,
1Az < A,

(with the additional constraint §;+A3; > 0), where

r 121[ Ag A cr+ Sy N Aug
S V4 L A I Vo

The Byrd-Omojokun approach: Az = Azy +Azpy.
Vertical subproblem:

|ATAzy +¢| — min,

|Azy]] < 0A,

where 0 < § < 1. Horizontal subproblem:

1 _ _

§(AZH)TGAZH + (g + GAZV)TAZH —  min,
ATAZH = O,

|Azm|* +[[Azv[* < A%

The additional constraint 57 + As; > 0 has to be
taken into account.



Vertical step:

AzG = ———LAg,
| AT Ae|
Az = —A(ATA) e

(Az$ - The Cauchy step, Az - The Newton step).

The dog-leg method:

o If [AZG]|| > 6A, then Azy = TAz C||AZV

o If |AzZY|| <A, then Azy = Az{Y.

o If [AZT] < 6A < ||AZY]],
Azy = AzG 4+ a(Az)Y — AZ5)
where « is chosen so that ||Azy || = JA.

The additional constraint As; > 0 can imply an
additional decrease of the step-length.



Horizontal step:
ATAZH =0 = AZH = ZAZZ,

where columns of Z form a basis in the null-space
of AT. Then

1 A — A A
5(A22>TZTGZAZZ+§[Z;ZAZH — IIliIl,
|28z + |An]? < A2

where gy = § + GAzy. This is an unconstrained
trust region subproblem, which can be solved by
the Steihaug-Toint CG method (preconditioned by
ZT 7). The use of Azyy = ZAzy (instead of Azy)

leads to the multiplication by the matrix
2272V 5T = [ — A(ATA) AT

Thus matrix Z need not be computed. Notice that
the preconditioner

ALA; AL AE
(where D? = S7'U;) is the same as that used in
line-search methods (this is the reason for our choice
of lA)I) Solution of the horizontal subproblem gives
A as a by-product.



Step-length restriction:

After determination As; and Au; from the Byrd-
Omojokun trust-region subproblem ve set

AsS; = —(é[—FA?AZU‘FgI),

At; = S;7'U(ér+ AFAz) + uS;le.

Since s > 0 and u} > 0 have to hold, step-lengths
for s; and u; have to be restricted. we use the
bounds

_ : Si
as = min | —
° Vel Ami<0 ( Asi) ’

_ . Uj
o, = min —
v 7z'eI,Auz-<o Au; )’

where 0 < v < 1 and define z17 = x + Az, s}r =
+ + _

sr(1), uy =ur(l), uy = ug + Aug, where
si(a) = s;+ min(a,ag)Asy,

ur(a) = uy+ min(a, @,)Au;.
Notice that the step-length for 57 is usually

restricted by using additional constraints in the
Byrd-Omojokun trust-region subproblem.



Merit function for trust-region reduction:

flz + aAz) — pe’ In(S;(a))e
(ur + Aup)’ (ci(z + aAz) + si(a))
(ug + Augp) cp(z + aAz)

P(a)

+ + +

o
S ller(z + alz) + sr(a)|”

o

+ Slles(z + ad)|’,

where o > 0. Obviously,

P'(0) = (A2)T(7 + AAG + d A¢).

Theorem 10. Denote by

Q(a) = P(0) + aP'(0) + %Z(Az)T@Az

the quadratic approximation of P(a). Let Az
be the solution of the Byrd-Omojokun trust-region
subproblem (with residual vector 7 = ATAz + ¢
such that ||7]| < [|¢]|) and let

(A2)T (g + AAG) +

T(e—7

(A2)TGAz

Y

g >

)

then Q(1) < Q(0).



Trust region strategy:

e We compute Az by using the Byrd-Omojokun
trust-region subproblem. Then either ||Az|| = A
or the horizontal subproblem is solved with a
sufficient precision.

e We set 2t =2 + Az, s7 = s7(1), uj = uz(1),
ul = ug + Aug if P(1) < P(0) and 2T = =z,

s}r = Sy, u}r = uy, ug — ug otherwise.

e Denoting

we set

AT =BlAz i p<p,
AT =A if p<p=<Dp,
AT =~vA if p<p.

Here 0 <8 <1<vyand0<p<p<l



M S P NIT NFV NFG NCG NRS TIME NFAIL
L 1 1 567 567 4137 24969 20 4.88 -
L 2 1 550 593 3936 21806 14 4.67 -
T 1 1 1344 1431 11995 18188 16 9.38 1
T 2 1 1106 1171 8522 26060 10 10.53 1

Table 6: Set 1 of 17 problems with 1000 variables

M S P NIT NFV NFG NCG NRS TIME NFAIL
L 1 1 393 393 2823 10728 19 5.75 -
L 2 1 476 925 3403 5654 73 6.67 1
T 1 1 906 941 6048 10448 5.84 1
T 2 1 904 998 6185 10521 8 6.77 1

Table 7: Set 2 of 17 problems with 1000 variables
(problems LUKVLI1-LUKVLI18 from CUTE)

M S P NIT NFV NFG NCG NRS TIME NFAIL
L 1 1 550 551 3895 2737 11 5.75 1

L 2 1 540 637 4070 3475 21 6.67 -

T 1 1 697 768 5133 5925 0 8.72 1

T 2 1 544 625 3989 7545 8 8.36 1

Table 8: Set 3 of 17 problems with 1000 variables



