Jan Hladky
Graphons as weak* limits

(1) “entropy minimization” with Dolezal (arXiv: 1705.09160)
ietoris topology” with DoleZal, Grebik, Rocha, Rozhoi
2) “Vietori logy” with Dolezal, Grebik, Rocha, Rozh
(arXiv: 1806.07368, 1809.03797)

(3) hypergraphons with Garbe, Noel, Piguet, Rocha, Saumell
(7277)



Limits of dense graph sequences

Borgs, Chayes, Lovasz, Sés, Szegedy, Vesztergombi 2006

idea: convergence notion for sequences of finite graphs
compactification of the space of finite graphs =
... graphons symmetric Lebesgue-m. functions Q2 — [0, 1]
Q=separable atomless probability space = [0, 1]



Graphons
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Graphons

Gq Ga Gs Gn

Represent these graphs by their adjacency matrices:

g =

... works if you do things the right way. But, ...
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The cut-distance topology

Step 1: “Comparing the number of edges inside any vertex set”

| [ vt = wixey)

Step 2: “Permuting the adjacency matrix”

dl:I(U7 W) = sup
5cQ

oo(U, W) = inf do(U, WT) |
s
where 7 : Q — Q runs through all measure-preserving bijections
and W™(x,y) := W(rn(x),m(y)) version of W
Many important graph parameters still continuous

Lovasz&Szegedy’06 0 is a compact topology (on Q2 — [0, 1])



Lovasz&Szegedy’06 & is a compact topology (on Q2 — [0, 1])

ACC[](rl, Mo, .. ) = {6D—acc pts of ['1,1o,.. }
= U {d-acc pts of I'*,T72,...}

1,2,
LIMo(M, o, ) = | {do-limit of T2, 732, )

1,72,

Lovasz&Szegedy’06 For any sequence 1,15, ... we have that
ACCH(I1,T5,...) # 0.
Proofs of the Lovasz—Szegedy Theorem

1. Lovasz—Szegedy: Using Szemerédi's Regularity lemma
2. Elek—Szegedy (2012): Ultraproducts

3. Aldous—Hoover theorem on exchangeable arrays (1981)
Persi Diaconis&Svante Janson and Tim Austin, 2008

4. our proof(s) based on weak* convergence



Comparing the weak* and cut-distance topology
Weak* converg.: 1, o, ... LT YX C Q2 limn [y Tn=[sT
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Comparing the weak* and cut-distance topology
Weak* converg.: 1,5, ... LT VX C Q2 limn [y Tn=[s T

ACC,.(I1,l2,..

Note: ACCW*(Fl, Mo,..

0 1 0
1 0 O
0 1

1 0 '

1
1
il
]

)= U {w*-acc pts of ['T*,T3%,...}

T2,

.) is nonempty by Banach—Alaoglu Thm

g =




Comparing the weak* and cut-distance topology

/XES /yes Walxy) = W(X,y)‘} =0
/Xes Jes Walxy) = W(X,y)‘}
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Lovasz&Szegedy’06 65 is a compact topology.
Proof Suppose that Wy, Wa, ... : Q% — [0, 1].
e We need to find an accumulation point w.r.t. cut-distance.

e Lets search only in ACC,,«(Wy, Wh,...)

e From ACC,,«(Wy, W,,...) take a most structured graphon a

prove that it is also a cut-distance accumulation point:
Fix concave function f : [0,1] — R. Define INT(W) := [ f(W(x,y))

(1) ()

1 f

0
0 0.5 1

Take I € ACC,,« (Wi, W, . ..) that minimizes INT(I)
Lemma If Uy, U,, Us, ... converges weak* but not in do to K. Then
there exists a subsequence of versions Un*, Up?, U,7,T3"3, ... that weak*

converges to some L, INT(L) < INT(K)



Graphons and the Vietoris topology

Theorem A For every sequence Wy, Wh, ... there exists a
subsequence so that

ACC,,- (W, W, ...) = LIMy« (W, W, ...) .
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Graphons and the Vietoris topology

Theorem A For every sequence Wy, Wh, ... there exists a
subsequence so that

ACC,,- (W, W, ...) = LIMy« (W, W, ...) .

Theorem B Any sequence of graphons U, Us, . .. is cut-distance
Cauchy if and only if ACCy+(Us, Ua,...) = LIM,« (U, Ua,...) ...
and converges to the most structured element in LIM,,«.

Envelopes: (W) := LIM-(W,W,...)
Structurdness order: U < W iff (U) C (W)



Range frequencies and degree frequencies

Range freq.: Given a graphon W, let Wy be a measure on [0, 1],

Vi (A) ==\ (W (A))
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Range frequencies and degree frequencies

Range freq.: Given a graphon W, let Wy be a measure on [0, 1],
Vi (A) ==\ (W (A))

INT(W) = fx’y f(W(x,y)) = ft o F(B)dVyy(t)

Degree freq.: Let ¢y be a measure on [0, 1],
Oy (A) == A (deg ) (A))

Theorem If U < W then W, is strictly flatter than Wy, and
®y is at least as flat than .

A1 is at least as flat as Ay if there exists a finite measure A on
[0, 1] such that A; is the marginal of A on the first coordinate, Ay
is the marginal of A on the second coordinate, and for each

D c [0, 1] we have fDx[O,l] x dA(x,y) = fDx[O,l] y dA(x, y).



Cut-distance identifying graphon parameters

Motivation: The Chung-Graham-Wilson Theorem:
Among all graphons with edge density p, the constant-p graphon is
the only graphon U satisfying any of the following:

> (G, U) < p*
> [M(U)] < pand [A2(U)] <0.



Cut-distance identifying graphon parameters

Motivation: The Chung-Graham-Wilson Theorem:
Among all graphons with edge density p, the constant-p graphon is
the only graphon U satisfying any of the following:

> (G, U) < p*

> (A (V)] < pand [X2(U)[ < 0.
Definition F : VW — R is a cut-distance identifying graphon
parameter (CDIGP) if for each U < W we have F(U) < F(W).
(cut-distance compatible if for each U < W we have
F(U) < F(W).)
Results:

» t(Cq,-) is a CDIGP

» each kth eigenvalue is CDIGP (not precise)



The (Erdos-Simonovits-)Sidorenko conjecture (1984, 1993)

Density of a graph H in a graphon W:

t(H, W) / / W (xi, x;j) -
Xk

jeE(H)

Sidorenko’s conjecture: For any bipartite graph H, and any
graphon W of density p, t(H, W) > pe(*).
Forcing conjecture: . ..strict, unless H is a forest or W is constant

Definition (Kral-Martins-Pach-Wrochna): H has step Sidorenko
property if for every W and every partition P of Q2 we have

t(H, W) > t(H, Wp) (step forcing property analogously)

(Lets work with connected graphs)

Theorem

H step Sidorenko < t(H,-) is CDCGP <« H is weakly norming
H step forcing < t(H,-) is CDCGP <« H is norming



