Tilings in graphons

Jan Hladký Institute for geometry, TU Dresden

with P. Hu and D. Piguet (arXiv:1606.03113, 1607.08415) and M. Doležal (arXiv: 1606.06958)

Razborov 2008 Optimal function $g_3:[0,1]\to [0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq (g_3(\alpha)\pm o(1))\binom{n}{3}$ triangles.

- g_2 trivial: $g_2 = identity$
- g₃ Razborov: graph limits
- g₄,... Nikiforov, Reiher: graph limits inspired

Razborov 2008 Optimal function $g_3:[0,1]\to [0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq (g_3(\alpha)\pm o(1))\binom{n}{3}$ triangles.

 g_2 trivial: $g_2 = identity$

g₃ Razborov: graph limits

g₄,... Nikiforov, Reiher: graph limits inspired

Dense graph limits (either flag algebras or "graphons") have been very useful in obtaining results of the type:

density $\geq \alpha$ of graph F in G implies density $\geq \beta$ of H in G

Razborov 2008 Optimal function $g_3:[0,1]\to [0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq (g_3(\alpha)\pm o(1))\binom{n}{3}$ triangles.

 g_2 trivial: $g_2 = identity$ g_3 Razborov: graph limits

g₄,... Nikiforov, Reiher: graph limits inspired

Dense graph limits (either flag algebras or "graphons") have been very useful in obtaining results of the type:

density $\geq \alpha$ of graph ${\it F}$ in ${\it G}$ implies density $\geq \beta$ of ${\it H}$ in ${\it G}$

Allen-Böttcher-H-Piguet 2014 Optimal function $f_3:[0,1] \to [0,1]$ such that if G has $\alpha\binom{n}{2}$ edges then it has $\geq (f_3(\alpha) \pm o(1))\frac{n}{3}$ vertex-disjoint triangles.

f₂ Erdős–Gallai 1959: "consider a maximum matching, . . . "

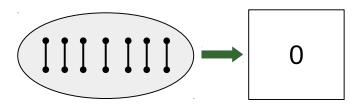
f₃ Allen-Böttcher-H-Piguet 2014: modern tools but finite

 $f_4, \ldots ??$

Could graph limits help us in obtaining such tiling results?

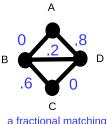
In this talk, we focus on K_2 -tilings=matchings. This is for notational convenience only. All the features of the basic theory hold for H-tilings as well. (Some advanced, like the half-integrality of the vertex cover polytope do not.)

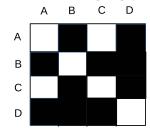
Aim: notion of matchings of linear size in graphons. **Bad news:** normalized size of the maximum matching not continuous . . .



Good news: ... but lower semicontinuous, which is the more useful half of continuity

4-vertex graph and its representation $W:\Omega^2 \to [0,1]$ (measure λ)

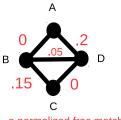


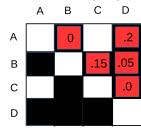


a fractional matching

finite fractional matching	
weight incident with D	
.8+.2=1	

4-vertex graph and its representation $W:\Omega^2\to [0,1]$ (measure λ)



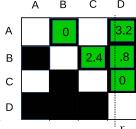


a normalized frac matching

finite fractional matching	"brick measure" μ	
weight incident with D	$\mu(D \times \Omega)$	
.8+.2=1	.2+.05=.25	

4-vertex graph and its representation $W:\Omega^2\to [0,1]$ (measure λ)

area of an elementary rectangle=(1/4*1/4)=1/16

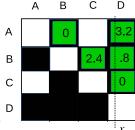


Radon-Nikodym derivative f

finite fractional matching	"brick measure" μ	Rad-Nyk der f
weight incident with D	$\mu(D \times \Omega)$	$\int_{V} f(x,y) d\lambda$
.8+.2=1	.2+.05=.25	1

4-vertex graph and its representation $W:\Omega^2\to [0,1]$ (measure λ)

area of an elementary rectangle=(1/4*1/4)=1/16



Radon-Nikodym derivative f

finite fractional matching	"brick measure" μ	Rad-Nyk der f		
weight incident with D	$\mu(D \times \Omega)$	$\int_{V} f(x,y) d\lambda$		
.8+.2=1	.2+.05=.25	1		
General properties				
supported on edges		$supp f \subset supp W$		
total weight at vertex ≤ 1		$\sup f \subset \sup W$ $\int_{\mathcal{Y}} f(y,x) d\lambda \leq 1$		
weights $\in [0,1]$		$f \geq 0$		

 $f \in L^1(\Omega^2)$ is a matching in a graphon W if:

- ▶ $supp(f) \subset supp(W)$ (?)
- ▶ for each $x \in \Omega$: $\int_{V} f(x,y)d\lambda \leq 1$, $\int_{V} f(y,x)d\lambda \leq 1$
- ▶ f non-negative

The size of f is $\frac{1}{2} \int_{x} \int_{y} f(x, y)$

The matching number of W is $MN(W) = \sup_f size(f)$

 $f \in L^1(\Omega^2)$ is a matching in a graphon W if:

- $supp(f) \subset supp(W)$ (?)
- ▶ for each $x \in \Omega$: $\int_{y} f(x,y)d\lambda \leq 1$, $\int_{y} f(y,x)d\lambda \leq 1$
- ▶ f non-negative

The size of f is $\frac{1}{2} \int_{X} \int_{Y} f(x, y)$

The matching number of W is $MN(W) = \sup_f size(f)$

A function $c: \Omega \to [0,1]$ is a fractional vertex cover of W if W(x,y)=0 for almost every (x,y):c(x)+c(y)<1. The size of c is $\int_X c(x)$ The cover number of W is $CN(W)=\inf_C size(f)$

Results

Thm1 (finite versus limit)

If $G_n \to W$ then $\liminf_n \frac{MN(G_n)}{n} \ge MN(W)$.

Thm2 (semicontinuity of Matching Number for graphons) If $W_n \to W$ then $\liminf_n MN(W_n) \ge MN(W)$.

Thm3 (semicontinuity of Cover Number for graphons)

If $W_n \to W$ (optimally overlaid) and c_n a vertex cover of W_n . Then any weak* limit of c_n 's is a vertex cover of W.

Thm4 (LP-duality)

$$CN(W) = MN(W)$$
 attained not necessarily attained

Applications

F is an arbitrary "smallish" graph. The theory introduced above for for matchings generalizes to F-tilings.

TIL(F,G), TIL(F,W): size of the maximum tiling in G or in W

F-tilings in random graphs $\mathbb{G}(n, W)$

Thm For an fixed graph F, a.a.s.,

$$\lim \frac{TIL(F,\mathbb{G}(n,W))}{n} = TIL(F,W).$$

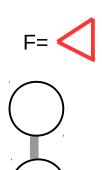
Komlós's Theorem

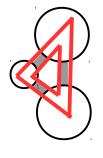
Thm Suppose G is on n vertices and that $\delta(G) \geq \alpha n$. Then

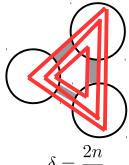
$$TIL(F,G) \geq h_F(\alpha)n \pm o(n)$$
,

where the function $h_F : [0,1] \rightarrow [0,1]$ is best possible.

Komlós's Theorem

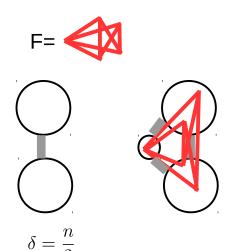


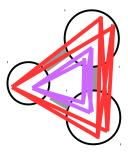




$$\delta = \frac{2n}{3}$$

Komlós's Theorem





$$\delta = \frac{3}{5} \cdot n$$

Other graph(ON) parameters and LP-duality relations?

Other graph(ON) parameters and LP-duality relations? Finite graphs: fractional clique=fractional chromatic number

Other graph(ON) parameters and LP-duality relations? Finite graphs: fractional clique=fractional chromatic number

Graphons: Not true

Ongoing work with Israel Rocha.