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density > « of graph F in G implies density > 3 of H in G‘

Allen-Béttcher-H-Piguet 2014 Optimal function f3 : [0,1] — [0, 1]
such that if G has () edges then it has > (3(a) £ 0(1))5
vertex-disjoint triangles.

H Erd6s—Gallai 1959: “consider a maximum matching, ..."
f3 Allen-Bottcher-H-Piguet 2014: modern tools but finite
fa,...77

Could graph limits help us in obtaining such tiling results?



In this talk, we focus on Kb-tilings=matchings. This is for
notational convenience only. All the features of the basic theory
hold for H-tilings as well. (Some advanced, like the half-integrality
of the vertex cover polytope do not.)

Aim: notion of matchings of linear size in graphons.
Bad news: normalized size of the maximum matching not
continuous . ..

Good news: ...but lower semicontinuous,
which is the more useful half of continuity
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Aim: notion of fractional matchings in graphons.

4-vertex graph and its representation W : Q2 — [0, 1] (measure \)
) A B C D

area of an elementary
rectangle=(1/4*1/4)=1/16

Radon-Nikodym derivative [

finite fractional matching | “brick measure” © | Rad-Nyk der f
weight incident with D wu(D x Q) J, f(x y)dA
8+.2=1 .24.05=.25 1
General properties
supported on edges suppf C suppW
total weight at vertex< 1 fy fly,x)d\ <1
weightse [0, 1] f>0




f € L1(Q?) is a matching in a graphon W if:
» supp(f) C supp(W) (?)
> foreach x € Qi [ f(x,y)dA <1, [ f(y,x)dA <1
» f non-negative

The size of f is 3 [, J, f(x.y)

The matching number of W is MN(W) = supy size(f)
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A function ¢ : Q — [0, 1] is a fractional vertex cover of W if
W(x,y) = 0 for almost every (x,y) : c(x) + c(y) < 1.

The size of cis [ c(x) The cover number of W is

CN(W) = inf. size(f)



Results

Thm1 (finite versus limit)
If G, — W then liminf, MY > py(w).

Thm2 (semicontinuity of Matching Number for graphons)
If W, — W then liminf, MN(W,) > MN(W).

Thm3 (semicontinuity of Cover Number for graphons)
If W, — W (optimally overlaid) and ¢, a vertex cover of W,,.
Then any weak™® limit of ¢,'s is a vertex cover of W.

Thm4 (LP-duality)

CN(W) = MN(W)

attained not necessarily attained



Applications

F is an arbitrary “smallish” graph. The theory introduced above
for for matchings generalizes to F-tilings.
TIL(F,G), TIL(F, W): size of the maximum tiling in G or in W

F-tilings in random graphs G(n, W)
Thm For an fixed graph F, a.as.,
TIL(F,G(n, W))

- = TIL(F, W)

lim

Komlés's Theorem
Thm Suppose G is on n vertices and that 6(G) > an. Then

TIL(F,G) > hp(a)n £ o(n) ,

where the function hg : [0,1] — [0, 1] is best possible.
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Other graph(ON) parameters and LP-duality relations?
Finite graphs: fractional clique=fractional chromatic number
Graphons: Not true

Ongoing work with Israel Rocha.



