Flip processes on graphs and dynamical systems they induce on graphons

Frederik Garbe, Jan Hladký, Matas Šileikis Czech Academy of Sciences

Fiona Skerman
Uppsala University

Erdos-Renyi random graph process

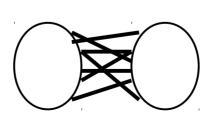
- G(n,p) binomial Erdos-Renyi random graph
 - *n* vertices, insert each potential edge with probability *p*
 - For this talk, $p \in (0,1)$ fixed
- G(n,m) uniform *Erdos-Renyi random graph*
 - Uniformly random graph with *m* edges.
 - For m=pn²/2; G(n,p)≈G(n,m)
- Erdos-Renyi random graph process (n vertices) G_0 , G_1 , ..., $G_{n \choose 2}$
 - G_0 is edgeless, G_{r+1} is obtained from by turning a randomly selected nonedge into an edge
- With high probability, everything on this slide is quasirandom

Quasirandomness

- 1980's (Chung-Graham-Wilson, Szemeredi, ...)
- **Density** of a graph $d=e(G)/\binom{n}{2}$
- A graph is ε -quasirandom if for each set of vertices U

$$\left| e(G[U]) - d(\frac{|U|}{2}) \right| < \varepsilon n^2$$

A nonquasirandom graph



Triangle removal process

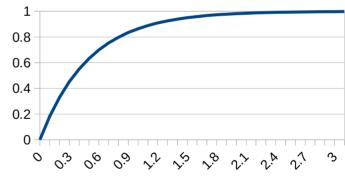
- Introduced by Bollobas-Erdos'90
- Start with G₀=clique
- In step *r*, pick a random triangle of G_r and delete it
- Bohman-Frieze-Lubetzky'15: *Triangle removal process typically terminates when there are* $n^{3/2+o(1)}$ *edges left.*
 - Key in the proof: quasirandomness during the evolution

Erdos-Renyi flip process

- Start with a graph G_0 (for now the edgeless graph)
- In each step, "replace" a uniformly chosen **pair** with an edge
- Density computation for G_r , $r=\alpha n^2$:

P[uv is an edge] = 1 - P[uv is not an edge]

...=1-
$$\left(1-\frac{1}{\binom{n}{2}}\right)^r \approx 1-\exp(-2r/n^2)=1-\exp(-2\alpha)$$



Triangle removal flip process

- Start with a graph G₀ (for now the complete graph)
- In each step r pick three random vertices u_1 , u_2 , u_3 ,
- If $G_r[u_1, u_2, u_3]$ induces a triangle then remove it...
 - ...otherwise $G_{r+1} := G_r$.
- Density computation: G_r , $r=\alpha n^2$, $e(\alpha):=e(G_r)$, $d(\alpha):=e(\alpha) / \binom{n}{2}$

$$P[u_{1}u_{2}u_{3} \text{ is a triangle}] \approx d(\alpha)^{3}$$

$$e(\alpha+\epsilon)-e(\alpha)\approx-3d(\alpha)^{3}\cdot\epsilon n^{2}$$

$$\frac{d(\alpha)}{d\alpha}=-6d(\alpha)^{3} \implies d(\alpha)=\frac{1}{\sqrt{1+12\alpha}}$$

$$0.8$$

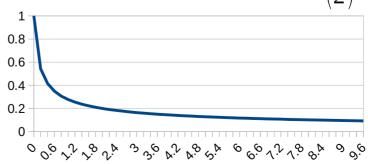
$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.2$$



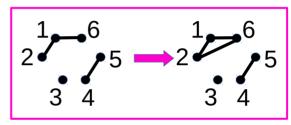
Flip process of order k (here, k=3)

 \blacksquare Rule $\mathcal R$

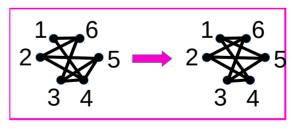
- Start with a (large) graph G₀
- Step $G_r \Rightarrow G_{r+1}$: Sample k vertices and replace the induced graph according to \mathcal{R}

More examples of flip processes

- Ignorant flip process
- Removal flip process
- Complement flip process
- Component completion flip process
- The stirring flip process
- The extremist flip process
- The polarizing flip process



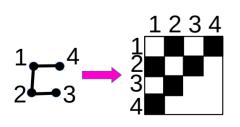
Component completion

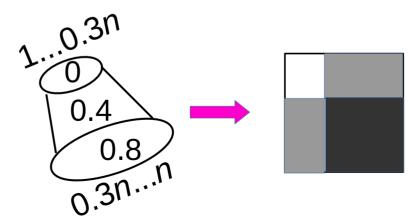


Polarizing

Graphons (limits of dense graphs)

- Borgs-Chayes-Lovasz-Sos-Szegedy-Vesztergombi 2004
- Useful framework for extremal and probabilistic questions
- Graphon is a symmetric function W:[0,1]² → [0,1]
- Cut norm measures how similar two graphons are





Trajectories

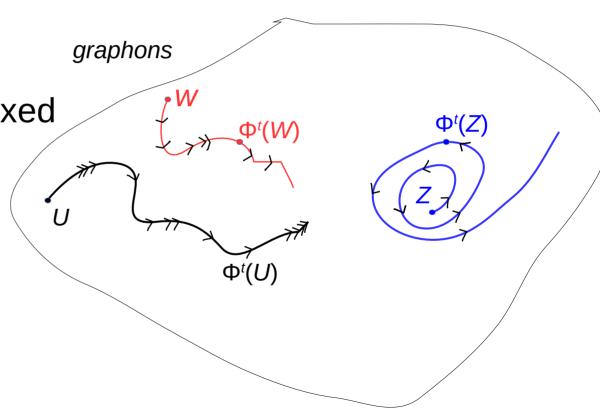
• Fixed rule \mathcal{R} of order k

We construct time-indexed

trajectories

 $\Phi: \mathcal{W}_0 \times [0, \infty) \to \mathcal{W}_0$

Construction later



Transference theorem

Given ${\mathcal R}$ and corresponding

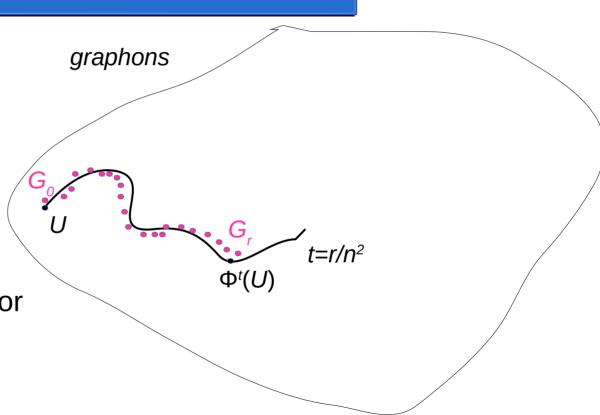
trajectories $\Phi: \mathcal{W}_0 \times [0, \infty) \to \mathcal{W}_0$,

whenever a large n-vertex G_0

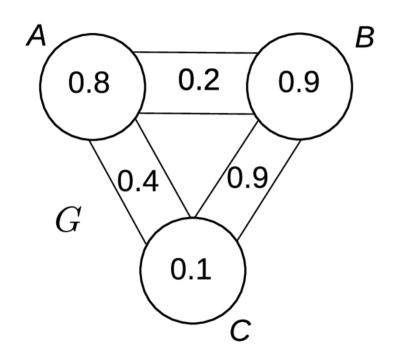
is close to *U* (in cut norm)

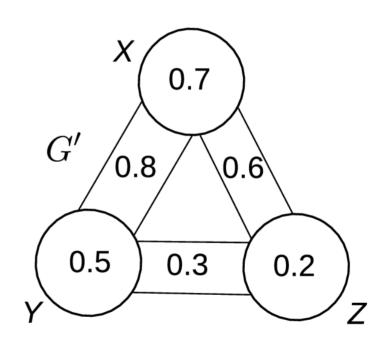
then w.h.p. G_r is close to $\Phi^t(U)$ for

 $t:=r/n^2$



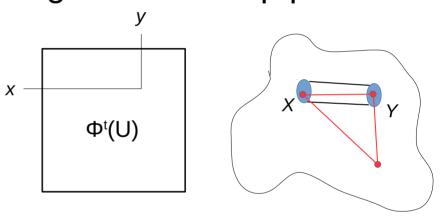
Cut norm, not cut distance





Constructing trajectories I

- In this example, consider the Triangle removal flip process
- $(\Phi^{t+\epsilon}(U)-\Phi^t(U))(x,y)$ correspondence with a graph $|X|=|Y|=\gamma n$ and ϵn^2 steps



• Number of removed edges between X and Y in εn^2 steps:

$$\epsilon n^2 \cdot y^2 \cdot t_{xy}(K_{3,}\Phi^t(U))$$
 Density change at $(x,y): -\epsilon \cdot t_{xy}^{"}(K_{3,}\Phi^t(U))$

$$t_{xy}^{"}(K_{3}, W) = \int_{z} W(x, y) W(x, z) W(y, z)$$

Constructing trajectories II

• Construct a velocity field $V: \mathcal{W}_0 \to \mathcal{W}$,

$$V(W) = \lim_{\epsilon \to 0} \frac{\Phi^{\epsilon}(W) - W}{\epsilon}$$

• Triangle removal flip process
$$V(W)(x,y)=-W(x,y)\int_z W(x,z)W(y,z)$$

Velocity is continuous in L^{∞} and cut norm

Properties of trajectories

- No confluences
- Block structure preservation

- Limits $t \rightarrow \infty$:
 - Stable and unstable fixed points (often constants)
 - Example with an oscillatory trajectory

