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Erdos-Renyi random graph process

● G(n,p) binomial Erdos-Renyi random graph
– n vertices, insert each potential edge with probability p
– For this talk, pϵ(0,1) fixed

● G(n,m) uniform Erdos-Renyi random graph
– Uniformly random graph with m edges.
– For m=pn²/2; G(n,p)≈G(n,m)

● Erdos-Renyi random graph process  (n vertices) G0, G1, …, G

– G0 is edgeless, Gr+1 is obtained from by turning a randomly 
selected nonedge into an edge

● With high probability, everything on this slide is quasirandom 

(n2 )



  

Quasirandomness

● 1980’s (Chung-Graham-Wilson, Szemeredi, ...)
● Density of a graph d=e(G)/
● A graph is ε-quasirandom if for each set of vertices U

● A nonquasirandom graph

(n2)

|e (G [U ])−d (|U|

2
)|<εn2



  

Triangle removal process

● Introduced by Bollobas-Erdos’90
● Start with G0=clique

● In step r, pick a random triangle of Gr and delete it

● Bohman-Frieze-Lubetzky’15: Triangle removal process 
typically terminates when there are n3/2+o(1) edges left.
– Key in the proof: quasirandomness during the evolution



  

Erdos-Renyi flip process

● Start with a graph G0             (for now the edgeless graph)

● In each step, “replace” a uniformly chosen pair with an 
edge

● Density computation for Gr, r=αnαnn2:

P [uv isanedge ]=1−P [uv isnot anedge ]
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Erdos-Renyi 50:50 flip process

● Start with a graph G0  on n vertices           

● In each step, “replace” a uniformly chosen pair with an 
edge or an non-edge (50:50)

● “Converges to quasirandom graph of density 0.5”, after 
Cn2 steps, C→∞



  

Triangle removal flip process

● Start with a graph G0             (for now the complete graph)

● In each step r pick three random vertices u1, u2, u3,

● If Gr[u1, u2, u3] induces a triangle then remove it…

...otherwise Gr+1 := Gr.
● Density computation: Gr, r=αnαnn2, e(αn):=e(Gr), d(αn):=e(αn) /

P [u1u2u3 is a triangle ]≈d (α)
3

(n2)

e (α+ϵ)−e (α)≈−3d (α)
3
⋅ϵn2

d (α)

dα
=−6d(α)

3 d (α)=
1

√1+12α 0
0.
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Flip process of order k     (here, k=3)

● Rule R

● Start with a (large) graph G0

● Step Gr G⇒G r+1: Sample k vertices and replace the induced 
graph according to R
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More examples of flip processes

● Ignorant flip process
● Removal flip process
● Complement flip process
● Component completion flip process
● The stirring flip process
● The extremist flip process
● The polarizing flip process
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Graphons (limits of dense graphs)

● Borgs-Chayes-Lovasz-Sos-Szegedy-Vesztergombi 2004
● Useful framework for extremal and probabilistic questions
● Graphon is a symmetric function W:[0,1]2→[0,1]
● Cut norm measures how similar two graphons are
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Trajectories

● Fixed rule R  of order k 

● We construct time-indexed

       trajectories

       Φ:W0×[0,∞)→W0

● Construction later



  

graphons
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Transference theorem

Given R and corresponding

trajectories Φ:W0×[0,∞)→W0,

whenever a large n-vertex G0

is close to U (in cut norm) 

then w.h.p. Gr is close to Φt(U) for

t:=αnr/n2



  

Cut norm, not cut distance

100n2 steps
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Constructing trajectories I

● In this example, consider the Triangle removal flip process
● (Φε(U)-U) (x,y)

correspondence with a graph

   |X|=|Y|=γn and εn2 steps

   U(x,y)=e(X,Y)/(γn)2

● Number of removed edges between X and Y in εn2 steps:

                                      Density change at (x,y): ϵn2⋅γ2⋅t xy
••
(K3,U ) −ϵ⋅t xy

••
(K3,U )



  

Constructing trajectories II

● Construct a velocity field V:W0→W   (signed graphons) 

● Triangle removal flip process

● Velocity is continuous in L∞ and cut norm

V (W )=limϵ→0

Φ
ϵ
(W )−W

ϵ

V (W )(x , y )=−W (x , y )∫z
W (x , z)W ( y , z)
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What is all this good for ?

● No confluences
● Going back in time
● Block structure preservation
● Limits t→∞:

– Stable and unstable fixed

points (often constants)
– Periodic trajectory
– Really complicated trajectories?

● Speed of convergence
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No confluences

Theorem: Fix a rule R.

If X and Y are graphons, then
● Φt(X)=Y for some t ≥ 0, or
● Φt(Y)=X for some t ≥ 0, or
● The trajectories of X and

Y are disjoint



  

No confluences, proof

We want to prove that if X ≠ Y  then

for each t>0, Φt(Y) ≠ Φt(X).
● Introduce

● Prove

● Leading to

                               and hence

h(t ):=‖Φ
t
(Y )−Φ

t
(X )‖□

d
dt
h(t)≥−C kh(t ) h(t)≥exp(−C k t )h(0)



  

Behaviour of indivdual trajectories???

Fix a rule R. X is a graphon.

● “Typically”, trajectory (Φt(X): t) converges to a graphon
● We have an example of a periodic nonconstant trajectory,       

            Φt(X)=Φt+7(X)
● What else? Does there exist a really complicated trajectory? 

T:={ΦΦt(X): t [∈[ 0,+∞) }

Can the set T be totally unbounded (non-compact, after 
closeru)? (with respect to cut-norm)
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