Flip processes on graphs and dynamical systems they induce on graphons

Frederik Garbe Masaryk University

Jan Hladký, Matas Šileikis Czech Academy of Sciences

> Fiona Skerman Uppsala University

Erdos-Renyi random graph process

- G(n,p) binomial Erdos-Renyi random graph
 - n vertices, insert each potential edge with probability p
 - For this talk, $p \in (0,1)$ fixed
- G(n,m) uniform Erdos-Renyi random graph
 - Uniformly random graph with *m* edges.
 - For m=pn²/2; G(*n*,*p*)≈G(*n*,*m*)
- Erdos-Renyi random graph process (n vertices) G₀, G₁, ..., G_n
 - G_0 is edgeless, G_{r+1} is obtained from by turning a randomly selected nonedge into an edge
- With high probability, everything on this slide is *quasirandom*

Quasirandomness

- 1980's (Chung-Graham-Wilson, Szemeredi, ...)
- **Density** of a graph $d=e(G)/\binom{n}{2}$
- A graph is ϵ -quasirandom if for each set of vertices U

$$\left| e(G[U]) - d(\frac{|U|}{2}) \right| < \varepsilon n^2$$

• A nonquasirandom graph

Triangle removal process

- Introduced by Bollobas-Erdos'90
- Start with G₀=clique
- In step r, pick a random triangle of G_r and delete it
- Bohman-Frieze-Lubetzky'15: *Triangle removal process typically terminates when there are n*^{3/2+o(1)}*edges left.*
 - Key in the proof: quasirandomness during the evolution

Erdos-Renyi *flip* process

- Start with a graph G_0 (for now the edgeless graph)
- In each step, "replace" a uniformly chosen pair with an edge
- Density computation for G_r , $r=\alpha n^2$:

P[uv is an edge] = 1 - P[uv is not an edge]

$$\dots = 1 - \left(1 - \frac{1}{\binom{n}{2}}\right)^r \approx 1 - \exp\left(-\frac{2r}{n^2}\right) = 1 - \exp\left(-\frac{2\alpha}{n}\right)$$

Erdos-Renyi 50:50 *flip* process

- Start with a graph G₀ on *n* vertices
- In each step, "replace" a uniformly chosen pair with an edge or an non-edge (50:50)
- "Converges to quasirandom graph of density 0.5", after Cn^2 steps, $C \rightarrow \infty$

Triangle removal *flip* process

- Start with a graph G₀ (for now the complete graph)
- In each step *r* pick three random vertices u_1 , u_2 , u_3 ,
- If $G_r[u_1, u_2, u_3]$ induces a triangle then remove it...

...otherwise $G_{r+1} := G_r$.

• Density computation: G_r , $r=\alpha n^2$, $e(\alpha):=e(G_r)$, $d(\alpha):=e(\alpha) / {n \choose 2}$ $P[u_1u_2u_3 is a triangle] \approx d(\alpha)^3$ $e(\alpha+\epsilon)-e(\alpha) \approx -3d(\alpha)^3 \cdot \epsilon n^2$ $\frac{d(\alpha)}{d\alpha} = -6d(\alpha)^3$ $d(\alpha) = \frac{1}{\sqrt{1+12\alpha}} \int_{0}^{0} \int_{$

Separable first-order ODE

Flip process of order k (here, k=3)

• Rule \mathcal{R}

- Start with a (large) graph G₀
- Step $G_r \Rightarrow G_{r+1}$: Sample *k* vertices and replace the induced graph according to \mathcal{R}

More examples of flip processes

- Ignorant flip process
- Removal flip process
- Complement flip process
- Component completion flip process
- The stirring flip process
- The extremist flip process
- The polarizing flip process

Component completion

Polarizing

Graphons (limits of dense graphs)

- Borgs-Chayes-Lovasz-Sos-Szegedy-Vesztergombi 2004
- Useful framework for extremal and probabilistic questions
- Graphon is a symmetric function $W:[0,1]^2 \rightarrow [0,1]$
- Cut norm measures how similar two graphons are

Trajectories

- Fixed rule \mathcal{R} of order k
- We construct time-indexed trajectories $\Phi: \mathcal{W}_0 \times [0,\infty) \to \mathcal{W}_0$
- Construction later

Transference theorem

Given ${\mathcal R}$ and corresponding

trajectories $\Phi: \mathcal{W}_0 \times [0, \infty) \to \mathcal{W}_0$,

whenever a large n-vertex G_0

is close to *U* (in cut norm)

then w.h.p. G_r is close to $\Phi^t(U)$ for

t:=*r/n*²

Cut norm, not cut distance

Constructing trajectories I

- In this example, consider the Triangle removal flip process
- (Φε(U)-U) (x,y)
 correspondence with a graph
 |X|=|Y|=γn and εn² steps
 U(x,y)=e(X,Y)/(γn)²

• Number of removed edges between X and Y in εn^2 steps: $\epsilon n^2 \cdot \gamma^2 \cdot t^{\cdot \cdot}_{xy}(K_3, U)$ Density change at $(x,y): -\epsilon \cdot t^{\cdot \cdot}_{xy}(K_3, U)$

 $t_{xy}^{\prime\prime}(K_{3},W) = \int_{z} W(x,y) W(x,z) W(y,z)$

Constructing trajectories II

• Construct a velocity field $V: \mathcal{W}_0 \to \mathcal{W}$ (signed graphons)

• Velocity is continuous in *L*[∞] and cut norm

What is all this good for ?

- No confluences
- Going back in time
- Block structure preservation
- Limits $t \to \infty$:
 - Stable and unstable fixed points (often constants)
 - Periodic trajectory
 - Really complicated trajectories?
- Speed of convergence

No confluences

Theorem: Fix a rule \mathcal{R} .

If X and Y are graphons, then

- $\Phi^t(X) = Y$ for some $t \ge 0$, or
- $\Phi^t(Y) = X$ for some $t \ge 0$, or
- The trajectories of *X* and *Y* are disjoint

No confluences, proof

We want to prove that if $X \neq Y$ then for each t > 0, $\Phi^t(Y) \neq \Phi^t(X)$.

• Introduce

 $h(t) := \left\| \Phi^{t}(Y) - \Phi^{t}(X) \right\|_{\Box}$

Prove

 $\|V_{\mathcal{R}}(U) - V_{\mathcal{R}}(W)\|_{\Box} \le C_k \|U - W\|_{\Box}, \quad \{$

• Leading to

 $\frac{d}{dt}h(t) \ge -C_k h(t)$ and hence $h(t) \ge \exp(-C_k t)h(0)$

Behaviour of indivdual trajectories???

Fix a rule \mathcal{R} . *X* is a graphon.

- "Typically", trajectory ($\Phi^t(X)$: *t*) converges to a graphon
- We have an example of a periodic nonconstant trajectory, $\Phi^{t}(X) = \Phi^{t+7}(X)$
- What else? Does there exist a really complicated trajectory? $T:=\{\Phi^{t}(X): t\in[0,+\infty)\}$

Can the set *T* be totally unbounded (non-compact, after closeru)? (with respect to cut-norm)