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Structure of graphs:

Information-theoretic perspective

Szemeredi’s regularity lemma 1978

For every >0 there exists an M(€) so that each graph can
be g-approximately represented by a matrix of “densities”
of dimensions M(g)xM(¢).

Szemerédi’s theorem about arithmetic progressions 1975
Abel prize 2012
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Structure of graphs:

Information-theoretic perspective

Szemeredi’s regularity lemma 1978

For every >0 there exists an M(€) so that each graph can
be s-approximately represented by a matrix of “densities”

of dimensions M(g)xM(e). T
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Szemeredi’s regularity lemma

For every >0 there exists an M(c) so that each graph can be g-approximately
represented by a matrix of “densities” of dimensions M(g)xM(e).
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Szemeredi’s regularity lemma

For every >0 there exists an M(c) so that each graph can be g-approximately
represented by a matrix of “densities” of dimensions M(g)xM(e).
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Szemeredi’s regularity lemma

For every >0 there exists an M(c) so that each graph can be g-approximately
represented by a matrix of “densities” of dimensions M(g)xM(e).
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Graphons (a.k.a. graph limits)

Lovasz, Szegedy 2004
Fulkerson Prize 2012

Borgs, Chayes, Lovasz, Sos, Vesztergombi, ...

 Main idea: Compactify the space of finite graphs.

* Definition: A graphon is a symmetric measurable function
W:[0,1]?> - [0,1]

 Why would you want that?



Compactness of graphons

For every sequence G, Gy, ... of graphs there exists a
graphon W and a subsequence Gi;, Gj> converging to it.

Lovasz—Szegedy ‘04, Szemerédi’s regularity lemma

Diaconis—Janson ‘08, exchangeable arrays (Aldous—Hoover, 1970’s)

Elek—Szegedy ‘12, nonstandard analysis

Dolezal—H. ‘19, Dolezal—Grebik—H.—Rocha—Rozhon ‘21, ‘22
weak* topology
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