Asymptotic Properties of Large Graphs

Jan Hladký

Martin Doležal, Jan Grebík, JH, Israel Rocha, Václav Rozhoň: *Cut distance identifying graphon parameters over weak* limits*

Structure of graphs: information-theoretic perspective

Szemerédi's regularity lemma 1978

For every ε >0 there exists an $M(\varepsilon)$ so that each graph can be ε -approximately represented by a matrix of "densities" of dimensions $M(\varepsilon) \times M(\varepsilon)$.

Szemerédi's theorem about arithmetic progressions 1975 Abel prize 2012

Structure of graphs: information-theoretic perspective

Szemerédi's regularity lemma 1978

For every ε >0 there exists an $M(\varepsilon)$ so that each graph can be ε -approximately represented by a matrix of "densities" of dimensions $M(\varepsilon) \times M(\varepsilon)$.

Structure of graphs: information-theoretic perspective

Szemerédi's regularity lemma 1978

For every ε >0 there exists an $M(\varepsilon)$ so that each graph can be ε -approximately represented by a matrix of "densities" of dimensions $M(\varepsilon) \times M(\varepsilon)$.

Szemerédi's regularity lemma

For every ε >0 there exists an $M(\varepsilon)$ so that each graph can be ε -approximately represented by a matrix of "densities" of dimensions $M(\varepsilon) \times M(\varepsilon)$.

Szemerédi's regularity lemma

For every ε >0 there exists an $M(\varepsilon)$ so that each graph can be ε -approximately represented by a matrix of "densities" of dimensions $M(\varepsilon) \times M(\varepsilon)$.

0	1	1	1
1	0	0	0
1	0	0	0
1	0	0	0

Szemerédi's regularity lemma

For every ε >0 there exists an $M(\varepsilon)$ so that each graph can be ε -approximately represented by a matrix of "densities" of dimensions $M(\varepsilon) \times M(\varepsilon)$.

.5	.5	.5	.5
.5	.5	.5	.5
.5	.5	0	0
.5	.5	0	0

Graphons (a.k.a. graph limits)

Lovász, Szegedy 2004 *Fulkerson Prize 2012* Borgs, Chayes, Lovász, Sós, Vesztergombi, ...

- Main idea: Compactify the space of finite graphs.
- **Definition:** A graphon is a symmetric measurable function

 $W:[0,1]^2 \rightarrow [0,1]$

• Why would you want that?

Compactness of graphons

- For every sequence G_1 , G_2 , ... of graphs there exists a graphon W and a subsequence G_{i1} , G_{i2} converging to it.
- Lovász—Szegedy '04, Szemerédi's regularity lemma Diaconis—Janson '08, exchangeable arrays (Aldous–Hoover, 1970's) Elek—Szegedy '12, nonstandard analysis Doležal—H. '19, Doležal—Grebík—H.—Rocha—Rozhoň '21, '22 weak* topology