Graphons

Jan Hladký Institute of Computer Science Czech Academy of Sciences

Graphons

- 2004 Lovász, Szegedy // Borgs, Chayes, Lovász, Sós, Vesztergombi
- Main idea: Compactify the space of finite graphs.
- **Definition:** A graphon is a symmetric measurable function

 $W:[0,1]^2 \rightarrow [0,1]$

- Graph as graphon via adjacency matrix
- What do values between 0 and 1 represent?
- Cut norm distance (simplified!)

$$d_{\Box}(U,W) := \max_{S,T \subset [0,1]} \left| \int_{S \times T} U - \int_{S \times T} W \right|$$

Graphons

• 2004 Lovász, Szegedy // Borgs, Chayes, Lovász, Sós, Vesztergombi

- Idea I: For each sequence of graphs there is a subsequence and a limit graphon to that subsequence.
- Idea II: Many important parameters are continuous.

Flip processes

• Garbe-Hladký-Šileikis-Skerman fundaments of the theory

• Araújo-Hladký-Hng-Šileikis specific flip processes

• *Hng* uniqueness of trajectories

 $\binom{n}{2}$

• Hladký-Řada, in preparation permutations

Erdos-Renyi random graph process

- G(n,p) binomial Erdos-Renyi random graph
 - n vertices, insert each potential edge with probability p
 - For this talk, $p \in (0,1)$ fixed
- G(n,m) uniform Erdos-Renyi random graph
 - Uniformly random graph with *m* edges.
 - For m=pn²/2; G(*n*,*p*)≈G(*n*,*m*)
- *Erdos-Renyi random graph process* (*n* vertices) G₀, G₁, ..., G_n
 - G_0 is edgeless, G_{r+1} is obtained from by turning a randomly selected nonedge into an edge
- With high probability, everything on this slide is *quasirandom*

Triangle removal process

- Introduced by Bollobas-Erdos'90
- Start with G₀=clique
- In step r, pick a random triangle of G_r and delete it
- Bohman-Frieze-Lubetzky'15: *Triangle removal process typically terminates when there are n*^{3/2+o(1)} *edges left.*
 - Key in the proof: quasirandomness during the evolution

Erdos-Renyi *flip* process

- Start with a graph G_0 (for now the edgeless graph)
- In each step, "replace" a uniformly chosen pair with an edge
- Density computation for G_r , $r=\alpha n^2$:

P[uv is an edge] = 1 - P[uv is not an edge]

...=1-
$$\left(1-\frac{1}{\binom{n}{2}}\right)^{r} \approx 1-\exp(-2r/n^{2})=1-\exp(-2\alpha)$$

Triangle removal *flip* process

- Start with a graph G_0 (for now the complete graph)
- In each step *r* pick three random vertices u_1 , u_2 , u_3 ,
- If $G_r[u_1, u_2, u_3]$ induces a triangle then remove it...

...otherwise $G_{r+1} := G_r$.

• Density computation: G_r , $r=\alpha n^2$, $e(\alpha):=e(G_r)$, $d(\alpha):=e(\alpha) / {n \choose 2}$ $P[u_1 u_2 u_3 is a triangle] \approx d(\alpha)^3$ $e(\alpha + \epsilon) - e(\alpha) \approx -3d(\alpha)^3 \cdot \epsilon n^2$ $\frac{d(\alpha)}{\partial \alpha} = -6d(\alpha)^3 \longrightarrow d(\alpha) = \frac{1}{\sqrt{1+12\alpha}}$

Flip process of order k (here, k=3)

• Rule \mathcal{R}

- Start with a (large) graph G₀
- Step $G_r \Rightarrow G_{r+1}$: Sample *k* vertices and replace the induced graph according to \mathcal{R}

Trajectories

- Fixed rule \mathcal{R} of order k
- We construct time-indexed trajectories $\Phi: \mathcal{W}_0 \times [0,\infty) \to \mathcal{W}_0$

Transference theorem (law of large numbers)

Given ${\mathcal R}$ and corresponding

trajectories $\Phi: \mathcal{W}_0 \times [0, \infty) \to \mathcal{W}_0$,

whenever a large *n*-vertex G_0

is close to *U* (in cut norm)

then w.h.p. G_r is close to $\Phi^t(U)$ for

t:=*r*/*n*²

What is all this good for ?

- No confluences
- Going back in time
- Block structure preservation
- Limits $t \to \infty$:
 - Stable and unstable fixed points (often constants)
 - Periodic trajectory
 - Really complicated trajectories?
- Speed of convergence

More examples of flip processes

- Ignorant flip process
- Removal flip process
- Complement flip process
- Component completion flip process
- The stirring flip process
- The extremist flip process
- The polarizing flip process

Component completion

Polarizing