Graphons

Jan Hladký

Institute of Computer Science Czech Academy of Sciences

Graphons

- 2004 Lovász, Szegedy // Borgs, Chayes, Lovász, Sós, Vesztergombi
- Main idea: Compactify the space of finite graphs.
- Definition: A graphon is a symmetric measurable function

$$
W:[0,1]^{2} \rightarrow[0,1]
$$

- Graph as graphon via adjacency matrix
- What do values between 0 and 1 represent?
- Cut norm distance (simplified!)

$$
d_{\square}(U, W):=\max _{S, T \subset[0,1]}\left|\int_{S \times T} U-\int_{S \times T} W\right|
$$

Graphons

- 2004 Lovász, Szegedy // Borgs, Chayes, Lovász, Sós, Vesztergombi
- Idea I: For each sequence of graphs there is a subsequence and a limit graphon to that subsequence.
- Idea II: Many important parameters are continuous.

Flip processes

- Garbe-Hladký-Šileikis-Skerman fundaments of the theory
- Araújo-Hladký-Hng-Šileikis specific flip processes
- Hng uniqueness of trajectories
- Hladký-Řada, in preparation permutations

Erdos-Renyi random graph process

- $\mathbf{G}(n, p)$ binomial Erdos-Renyi random graph
- n vertices, insert each potential edge with probability p
- For this talk, $p \in(0,1)$ fixed
- G(n,m) uniform Erdos-Renyi random graph
- Uniformly random graph with m edges.
- For $m=\mathrm{pn}^{2} / 2 ; \mathrm{G}(n, p) \approx \mathrm{G}(n, m)$
- Erdos-Renyi random graph process (n vertices) $\mathrm{G}_{0}, \mathrm{G}_{1}, \ldots, \mathrm{G}_{n}$)
- G_{0} is edgeless, G_{r+1} is obtained from by turning a randomly selected nonedge into an edge
- With high probability, everything on this slide is quasirandom

Triangle removal process

- Introduced by Bollobas-Erdos'90
- Start with $\mathrm{G}_{0}=c \mathrm{clique}$
- In step r, pick a random triangle of G_{r} and delete it
- Bohman-Frieze-Lubetzky'15: Triangle removal process typically terminates when there are $n^{3 / 2+o(1)}$ edges left.
- Key in the proof: quasirandomness during the evolution

Erdos-Renyi flip process

- Start with a graph $G_{0} \quad$ (for now the edgeless graph)
- In each step, "replace" a uniformly chosen pair with an edge
- Density computation for $\mathrm{G}_{r}, r=\alpha n^{2}$:
$P[u v$ is anedge $]=1-P[u v$ is not anedge $]$
$\ldots=1-\left(1-\frac{1}{\binom{n}{2}}\right)^{r} \approx 1-\exp \left(-2 r / n^{2}\right)=1-\exp (-2 \alpha)$

Triangle removal flip process

- Start with a graph G_{0}
(for now the complete graph)
- In each step r pick three random vertices u_{1}, u_{2}, u_{3},
- If $\mathrm{G}_{[}\left[u_{1}, u_{2}, u_{3}\right]$ induces a triangle then remove it... ...otherwise $G_{r+1}:=G_{r}$.
- Density computation: $\mathrm{G}_{r}, r=\alpha n^{2}, e(\alpha):=e\left(\mathrm{G}_{r}\right), d(\alpha):=e(\alpha) /\binom{n}{2}$ $P\left[u_{1} u_{2} u_{3}\right.$ is a triangle $] \approx d(\alpha)^{3}$

$$
e(\alpha+\epsilon)-e(\alpha) \approx-3 d(\alpha)^{3} \cdot \epsilon n^{2}
$$

$$
\frac{d(\alpha)}{\partial \alpha}=-6 d(\alpha)^{3} \Longleftrightarrow d(\alpha)=\frac{1}{\sqrt{1+12 \alpha}}
$$

Flip process of order $k \quad$ (here, $k=3$)

- Rule \mathcal{R}

$\dot{2} \cdot \underset{3}{1} \Rightarrow{\underset{2}{2}}_{1}^{1}$			$\dot{6}_{3} \rightarrow \dot{0}$

- Start with a (large) graph G_{0}
- Step $G_{r} \Rightarrow G_{r+1}$: Sample k vertices and replace the induced graph according to \mathcal{R}

Trajectories

. Fixed rule \mathcal{R} of order k

- We construct time-indexed trajectories

$$
\Phi: \mathcal{W}_{0} \times[0, \infty) \rightarrow \mathcal{W}_{0}
$$

$$
\mathcal{W}_{0}=\text { graphons }
$$

Transference theorem (law of large numbers)

Given \mathcal{R} and corresponding
graphons
trajectories $\Phi: \mathcal{W}_{0} \times[0, \infty) \rightarrow \mathcal{W}_{0}$,
whenever a large n-vertex G_{0} is close to U (in cut norm) then w.h.p. G_{r} is close to $\Phi^{\dagger}(U)$ for $t=r / n^{2}$

What is all this good for?

- No confluences
- Going back in time
- Block structure preservation
- Limits $t \rightarrow \infty$:
- Stable and unstable fixed points (often constants)
- Periodic trajectory

- Really complicated trajectories?
- Speed of convergence

More examples of flip processes

- Ignorant flip process
- Removal flip process
- Complement flip process
- Component completion flip process

$$
\underset{3}{2} \cdot \int_{4}^{5} \longrightarrow \underbrace{6}_{3}
$$

Component completion

- The stirring flip process
- The extremist flip process
- The polarizing flip process

Polarizing

