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Outline
● Minimum spanning tree & Kruskal’s algorithm
● Frieze’s Theorem
● Our result
● Dense graph limits
● Inhomogeneous branching processes
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✓ Greedy strategy works

  ✗ e.g. perfect matchings

● Minimum spanning tree
● Kruskal’s algorithm (1956)

Start with T= . ∅ Order the edges 

from the lightest to the heaviest.

Sequentially, include to T each

edge which decreases number of components ( does not ⟺
create a cycle).

Output: minimum spanning tree T
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● Minimum spanning tree
● Kruskal’s algorithm (1956)
● Unweighted graph G≤x
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● Minimum spanning tree
● Kruskal’s algorithm (1956)
● Unweighted graph G≤x
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cc(G≤x)=5 cc(G≤x)=4 cc(G≤x)=3 cc(G≤x)=2 cc(G≤x)=1



  

● Minimum spanning tree
● Kruskal’s algorithm (1956)
● Unweighted graph G≤x
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MST (G)=∫
x=0

∞

(cc (G.≤x)−1)

 Where does the bulk 

of th
e contrib

ution 

come fro
m?



  

Theorem (Frieze, 1985)
Put UNIFORM[0,1] weights on the edges on Kn.
Then MST converges to ζ(3)=1.202 in 
probability as n tends to infinity.



  

Theorem (Frieze, 1985)
Put UNIFORM[0,1] weights on the edges on Kn.
Then MST converges to ζ(3)=1.202 in 
probability as n tends to infinity.
Proof:
 

 Kn
≤x is the Erdős-Rényi random graph G(n,x) 

MST (K n)=∫
x=0

∞

(cc (K n
.≤x)−1)=∫

x=0

1

(cc (Kn
.≤x)−1)

MST (K n)=∫
p=0

1

(cc (G (n , p))−1)≈ ∫
p=0

999/n

(cc (G (n , p))−1)



  

Theorem (Frieze, 1985)
Suppose that D is a probability distribution on 
[0,∞). Let f be its cumulative distribution function 
and suppose C:=f ’(0)>0.
Use D for the weights of the edges of Kn.
Then MST converges to ζ(3)/C in probability as 
n tends to infinity.



  

Theorem (Frieze, 1985)
Suppose that D is a probability distribution on 
[0,∞). Let f be its cumulative distribution function 
and suppose C:=f ’(0)>0.
Use D for the weights of the edges of Kn.
Then MST converges to ζ(3)/C in probability as 
n tends to infinity.

“strength of a distribution”:
derivative of the distribution 

function at 0



  

Theorem (Frieze-McDiarmid, 1989)

n
3

2n
3

UNIFORM[0,2/3] 
strength=3/2

UNIFORM[0,4/3] 
strength=3/4

MST (G)→ζ (3)
all edges

no edges all edges



  

Theorem (H.-Viswanathan, 2023+)

MST (G)→κ(W )

n
3

2n
3

UNIFORM[0,2/3] 
strength=3/2

UNIFORM[0,4/3] 
strength=3/4

all edges

no edges half of the edges
(quasirandom)



  

Theorem (H.-Viswanathan, 2023+)
Suppose that (Gn) is a sequence of graphs.

Each edge of each graph is equipped with a probability 
distribution (+conditions).

(Gn) converge (including strengths) to a graphon/kernel W.

Put random weights on Gn

Then MST(Gn) converges in probability to κ(W).



  

Theorem (H.-Viswanathan, 2023+)
Suppose that (Gn) is a sequence of graphs.

Each edge of each graph is equipped with a probability 
distribution (+conditions).

(Gn) converge (including strengths) to a graphon/kernel W.

Put random weights on Gn

Then MST(Gn) converges in probability to κ(W).

Dense graph limits, starting around 2004
Lovász, Szegedy, Borgs, Chayes, Sós, Vesztergombi



  

Dense graph limits // Cut distance convergence
Four steps:   (1) finite graph,     (2) adjacency matrix

               (3) function on [0,1]2 = graphon/kernel representation,       (4) limit step

n
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2n
3

3/2

1
0 3/4

1/2

n=9
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3/2 .=3 /4
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Dense graph limits // Cut distance convergence
Four steps:   (1) finite graph,     (2) adjacency matrix

               (3) function on [0,1]2 = graphon/kernel representation    (4) limit step
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Dense graph limits // Cut distance convergence
Four steps:   (1) finite graph,     (2) adjacency matrix

               (3) function on [0,1]2 = graphon/kernel representation        (4) limit step

n
3

2n
3

3/2

1
0 3/4

1/2

n=999999999999

0 3/2

3/2

0 10

1

3/8



  

Theorem (Frieze, 1985)
MST( Kn , UNI[0,1] ) →ζ(3)
Proof:
 

MST (K n)=∫
p=0

1

(cc (G (n , p))−1)≈ ∫
p=0

999/n

cc (G(n , p))

cc (H )=∑
k=1

∞

comps of order k

...=n×∑
k=1

∞ proportionof vertices within compsof order k
k



  

Theorem (Frieze, 1985)
MST( Kn , UNI[0,1] ) →ζ(3)
Proof:
 

MST (K n)≈ ∫
p=0

999/n

cc (G (n , p))

cc (H )=n×∑
k=1

∞ proportionof verticeswithin comps of order k
k

What is the component order distribution in G(n, 17/n ) seen 
from a uniform vertex? 



  

Theorem (Frieze, 1985)
MST( Kn , UNI[0,1] ) →ζ(3)
Proof:
 

MST (K n)≈ ∫
p=0

999/n

cc (G (n , p))

cc (H )=n×∑
k=1

∞ proportionof verticeswithin comps of order k
k

What is the component order distribution in G(n, 17/n ) seen 
from a uniform vertex? 

17/n17/n
17/n ...

n-1



  

Theorem (Frieze, 1985)
MST( Kn , UNI[0,1] ) →ζ(3)
Proof:
 

MST (K n)≈ ∫
p=0

999/n

cc (G (n , p))

cc (H )=n×∑
k=1

∞ proportionof verticeswithin comps of order k
k

What is the component order distribution in G(n, 17/n ) seen 
from a uniform vertex? 

Poisson(17)

Poisson(17)

...

...
Galton-Watson branching process 
with offspring distribution Poisson(17) 



  

Theorem (H.-Viswanathan, 2023+)
MST( Gn  ) →κ(W)
Proof:
 

MST (Gn)≈ ∫
p=0

999 /n

cc ( percolate(Gn , p))

What is the component order distribution in percolate(Gn,17/n) 
seen from a uniform vertex? 

cc (H )=n×∑
k=1

∞ proportionof verticeswithin comps of order k
k

Bollobás-Borgs-Chayes-Riordan 2010:

Multitype branching process based on W

17×
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