Jan Hladký Institute of Computer Science, Czech Academy of Sciences

Random minimum spanning tree and dense graph limits

with Gopal Viswanathan arXiv: 2310.11705

Outline

- Minimum spanning tree & Kruskal's algorithm
- Frieze's Theorem
- Our result
- Dense graph limits
- Inhomogeneous branching processes

• Minimum spanning tree

• Minimum spanning tree

- Minimum spanning tree
- Kruskal's algorithm (1956) Start with $T=\emptyset$. Order the edges from the lightest to the heaviest. Sequentially, include to T each

edge which decreases number of components (\Leftrightarrow does not create a cycle). Greedy strategy works
 e.g. perfect matchings

Output: minimum spanning tree T

- Minimum spanning tree
- Kruskal's algorithm (1956)
- Unweighted graph G^{≤x}

- Minimum spanning tree
- Kruskal's algorithm (1956)
- Unweighted graph G^{≤x}

- Minimum spanning tree
- Kruskal's algorithm (1956)
- Unweighted graph G^{≤x}

$$MST(G) = \int_{x=0}^{\infty} (cc(G^{. \le x}) - 1)$$

$$V_{\text{Nere does the bulk}}$$

$$V_{\text{of the come from?}}$$

Put UNIFORM[0,1] weights on the edges on K_n.

Then MST converges to $\zeta(3)=1.202$ in probability as *n* tends to infinity.

Put UNIFORM[0,1] weights on the edges on K_n.

Then MST converges to $\zeta(3)=1.202$ in probability as *n* tends to infinity.

Proof:
•
$$MST(K_n) = \int_{x=0}^{\infty} (cc(K_n^{.\le x}) - 1) = \int_{x=0}^{1} (cc(K_n^{.\le x}) - 1)$$

• $K_n^{\le x}$ is the Erdős-Rényi random graph **G**(*n*,*x*)

•
$$MST(K_n) = \int_{p=0}^{1} (cc(G(n, p)) - 1) \approx \int_{p=0}^{999/n} (cc(G(n, p)) - 1)$$

Suppose that *D* is a probability distribution on $[0,\infty)$. Let *f* be its cumulative distribution function and suppose *C*:=*f* '(0)>0.

Use *D* for the weights of the edges of K_n.

Then MST converges to $\zeta(3)/C$ in probability as *n* tends to infinity.

Suppose that *D* is a probability distribution on $[0,\infty)$. Let *f* be its cumulative distribution function and suppose *C*:=*f* '(0)>0.

Use *D* for the weights

Then MST conv *n* tends to infinit edaes of Kn.

as

"**strength** of a distribution": derivative of the distribution function at 0

Theorem (Frieze-McDiarmid, 1989)

Theorem (H.-Viswanathan, 2023+)

Theorem (H.-Viswanathan, 2023+)

Suppose that (G_n) is a sequence of graphs.

Each edge of each graph is equipped with a probability distribution (+conditions).

(G_n) converge (including strengths) to a graphon/kernel W.

Put random weights on G_n

Then $MST(G_n)$ converges in probability to $\kappa(W)$.

Theorem (H.-Viswanathan, 2023+)

Suppose that (G_n) is a sequence of graphs.

Each edge of each graph is equipped with a probability distribution (+conditions).

(G_n) converge (including strengths) to a graphon/kernel W. Put random weights on G_n

Then MST(G_n) converges in probability to κ (W).

Dense graph limits, starting around 2004 Lovász, Szegedy, Borgs, Chayes, Sós, Vesztergombi

Dense graph limits // Cut distance convergence

Four steps: (1) finite graph, (2) adjacency matrix

(3) function on $[0,1]^2$ = graphon/kernel representation, (4) limit step

Dense graph limits // Cut distance convergence

Four steps: (1) finite graph, (2) adjacency matrix

(3) function on [0,1]² = graphon/kernel representation (4) limit step

Dense graph limits // Cut distance convergence

Four steps: (1) finite graph, (2) adjacency matrix

(3) function on [0,1]² = graphon/kernel representation

(4) limit step

Theorem (Frieze, 1985) MST(K_n , UNI[0,1]) $\rightarrow \zeta(3)$ Proof: • $MST(K_n) = \int_{p=0}^{1} (cc(G(n,p))-1) \approx \int_{p=0}^{999/n} cc(G(n,p))$

•
$$cc(H) = \sum_{k=1}^{\infty} comps of order k$$

...= $n \times \sum_{k=1}^{\infty} \frac{proportion of vertices within comps of order k}{k}$

Theorem (Frieze, 1985) MST(K_n, UNI[0,1]) $\rightarrow \zeta(3)$ **Proof**: 999/n• $MST(K_n) \approx \int cc(\boldsymbol{G}(n,p))$ p=0• $cc(H) = n \times \sum_{k=1}^{\infty} \frac{proportion of vertices within comps of order k}{r}$

What is the component order distribution in G(n, 17/n) seen from a uniform vertex?

What is the component order distribution in G(n, 17/n) seen from a uniform vertex?

What is the component order distribution in G(n, 17/n) seen from a uniform vertex?

What is the component order distribution in *percolate*(G_n,17/n) seen from a uniform vertex?