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* Minimum spanning tree




* Minimum spanning tree




 Minimum spanning tree

* Kruskal’s algorithm (1956)
Start with T=2. Order the edges
from the lightest to the heaviest.

Sequentially, include to T each 5 >

edge which decreases number of components («=»does not
create a cycle).
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* Minimum spanning tree
* Kruskal's algorithm (1956)

* Unweighted graph G=*




* Minimum spanning tree
» Kruskal's algorithm (1956)

* Unweighted graph G=*

cc(G)=5 cc(G)=4 cc(G=9)=3 cc(G)=2 cc(G)=1
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* Minimum spanning tree
» Kruskal's algorithm (1956)
* Unweighted graph G=*




Theorem (Frieze, 1985)

Put UNIFORM]IO0,1] weights on the edges on K..

Then MST converges to ((3)=1.202 Iin
probability as n tends to infinity.



Theorem (Frieze, 1985)

Put UNIFORM]O0,1] weights on the edges on K..

Then MST converges to ((3)=1.202 In
probability as n tends to infinity.

Proof: o 1
® MST(K,)= | (cc(K;)-1)= [ (cc(K;™)-1)

x=0 x=0
® K,*~¥is the Erd6s-Rényi random graph G(n,x)

999/n

o MST(K,)= J (celGln,p))-1)~ | (ce(G(n,p))-1)

0 p=0



Theorem (Frieze, 1985)

Suppose that D is a probability distribution on
[0,0). Let f be its cumulative distribution function
and suppose C:=f’(0)>0.

Use D for the weights of the edges of K,.

Then MST converges to {(3)/C In probability as
n tends to Iinfinity.



Theorem (Frieze, 1985)

Suppose that D Is a probabillity distribution on
[0,0). Let f be its cumulative distribution function
and suppose C:=f’(0)>0..

Use D for the We/ights/‘/ = edaes of K.
Then MST conv as

C o “strength of a distribution”:
n tends to infini derivative of the distribution
function at O




Theorem (Frieze-McDiarmid, 1989)

no edges

)

%

UNIFORM[0,2/3]
strength=3/2

all edges

;X:

all edges /
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UNIFORM][0,4/3]

strength=3/4

MST (G)-&(3)



Theorem (H.-Viswanathan, 2023+)

no edges half of the edges
(quasirandom)

2n
% w

UNIFORM[0,2/3] W strength=3/4
strength=3/2

MST (G)= k(W)

all edges




Theorem (H.-Viswanathan, 2023+)

Suppose that (G,) is a sequence of graphs.

Each edge of each graph is equipped with a probability
distribution (+conditions).

(G,) converge (including strengths) to a graphon/kernel W.
Put random weights on G,
Then MST(G,) converges in probability to k(W).



Theorem (H.-Viswanathan, 2023+)

Suppose that (G,) is a sequence of graphs.

Each edge of each graph is equipped with a probability
distribution (+conditions).

(G,) converge (including strengths) to a graphon/kernel W.
Put random weights on G,
Then MST(G,) converges in probability to k(W).

Dense graph limits, starting around 2004
Lovasz, Szegedy, Borgs, Chayes, Sos, Vesztergombi




Dense graph limits /I Cut distance convergence

Four steps: (1) finite graph, (2) adjacency matrix
(3) function on [0,1]*> = graphon/kernel representation, (4) limit step

1,2,3,4,5,6,7,8,9
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Dense graph limits /I Cut distance convergence

Four steps: (1) finite graph,

(2) adjacency matrix

(3) function on [0,1] = graphon/kernel representation (4) limit step

' 2n
Py 3

3 3/2 ™

1/2

V,

0

0

1

0

3/2

clE

=3/4



Dense graph limits /I Cut distance convergence

Four steps: (1) finite graph, (2) adjacency matrix

(3) function on [0,1]2 = graphon/kernel representation  (4) limit step
OO 1
n /\2? 0| 32
=2 3/4
. 1/2 W
\/ N 3/8
n=999999999999




Theorem (Frieze, 1985)

MST( K,, UNI[0,1]) - {(3)

Proof: 1 09/

o MST(K,ﬂ,>=p£O(cc(G(n,p)>—1>~p{0 cc(G(n, p))

@ cc(H)=) compsof orderk
k=1

— i proportion of vertices within comps of order k
Y - k
k=1




Theorem (Frieze, 1985)
MST( K,, UNI[0,1]) - {(3)

Proof: 099/
e MST(K,)~ [ cc(G(n,p))

® ccC ( H ) " i proportion of vertices within comps of order k
k=1 k

® What is the component order distribution in G(n, 17/n ) seen
from a uniform vertex?



Theorem (Frieze, 1985)

MST( K,, UNI[0,1]) - {(3) 17/n 17/n
17/n

Proof: 999/

® MST(K )~ {0 cc(G(n, p)) n-1

® cc(H )—nxi proportion of vertic
k=1

® What is the component order distribution in G(n, 17/n ) seen
from a uniform vertex?



Theorem (Frieze, 1985)

MST( Kn, UN|[O,1] ) N Z(B) Poisson(17)
Proof: oo
o MST(Kn)N f CC(G(H,p)) Poisson(17)

® cc(H )—nxi proportion of vertic
k=1

Galton-Watson branching process
with offspring distribution Poisson(17)

® What is the component order distribution in G(n, 17/n ) seen
from a uniform vertex?



Theorem (H.-ViswanathanJ Bollobas-Borgs-Chayes-Riordan 2010:

MST( Gn ) . K(W) Multitype branching process based on W
Proof: 099/ o| 32
® MST(G, )~ f cc( percolate(G , 1
=0 17% | oy
] | | N 3/8
o cc(H)=nx Z proportion of vertic 1
k=1

® What is the component order distribution in percolate(G,,17/n)
seen from a uniform vertex?
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