Flip processes Jan Hladký // Czech Academy

Frederik Garbe, J.H., Matas Šileikis, Fiona Skerman:

From flip processes to dynamical systems on graphons,

Ann. inst. Henri Poincare (B) Probab, 2023

Pedro Araújo, J. H., Eng Keat Hng, Matas Šileikis: Prominent examples of flip processes

arXiv: 2206.03884

Eng Keat Hng:

Characterization of flip process rules with the same trajectories

arXiv:2305.19925

Erdos-Renyi random graph process

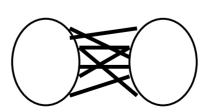
- Erdos-Renyi random graph process (n vertices) $G_0, G_1, ..., G_{\binom{n}{2}}$
 - $-G_0$ is edgeless
 - G_{r+1} is obtained from G_r by turning a randomly selected nonedge into an edge
- For $r=\alpha n^2$, the graph G_r is a.a.s. quasirandom of density 2α .

Quasirandomness

- 1980's (Chung-Graham-Wilson, Szemeredi, ...)
- *Density* of a graph $d=e(G)/\binom{n}{2}$
- A graph is ε -quasirandom if for each set of vertices U

$$\left| e(G[U]) - d\binom{|U|}{2} \right| < \varepsilon n^2$$

A nonquasirandom graph



Triangle removal process

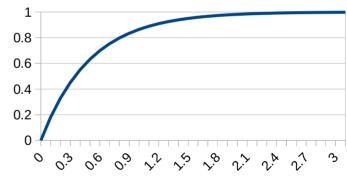
- Introduced by Bollobas-Erdos'90
- Start with G₀=clique
- In step r, pick a random triangle of G_r and delete it
- Bohman-Frieze-Lubetzky'15: Triangle removal process typically terminates when there are $n^{3/2+o(1)}$ edges left.
 - Key in the proof: quasirandomness during the evolution

Erdos-Renyi *flip* process

- Start with a graph G_0 (for now the edgeless graph)
- In each step, "replace" a uniformly chosen pair with an edge
- Density computation for G_r , $r=\alpha n^2$:

P[uv is an edge] = 1 - P[uv is not an edge]

...=1-
$$\left(1-\frac{1}{\binom{n}{2}}\right)^r \approx 1-\exp(-2r/n^2)=1-\exp(-2\alpha)$$



Erdos-Renyi 50:50 flip process

- Start with a graph G₀ on n vertices
- In each step, "replace" a uniformly chosen pair with an edge or an non-edge (50:50)
- "Converges to quasirandom graph of density 0.5", after Cn² steps, C→∞

Triangle removal *flip* process

- Start with a graph G_o (for now the complete graph)
- In each step r pick three random vertices u_1 , u_2 , u_3 ,
- If $G_r[u_1, u_2, u_3]$ induces a triangle then remove it...

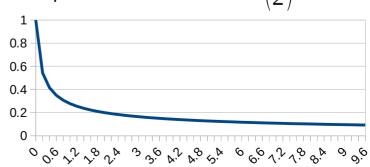
...otherwise $G_{r+1} := G_r$.

• Density computation: G_r , $r=\alpha n^2$, $e(\alpha):=e(G_r)$, $d(\alpha):=e(\alpha) / \binom{n}{2}$ $P[u_1u_2u_3 \text{ is a triangle}] \approx d(\alpha)^3$

$$e(\alpha + \epsilon) - e(\alpha) \approx -3d(\alpha)^3 \cdot \epsilon n^2$$

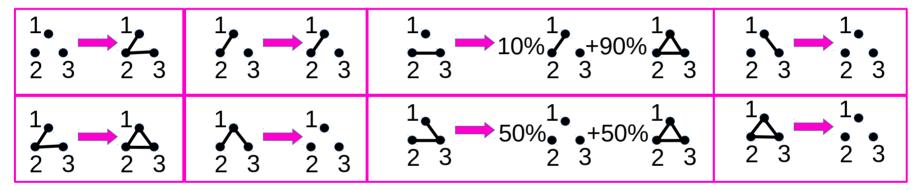
$$\frac{d(\alpha)}{\partial \alpha} = -6d(\alpha)^3 \quad \Longrightarrow \quad d(\alpha) = \frac{1}{\sqrt{1+12\alpha}}$$

Separable first-order ODE



Flip process of order k (here, k=3)

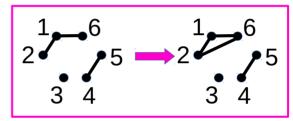
. Rule \mathcal{R}



- Start with a (large) graph G₀
- Step $G_r \Rightarrow G_{r+1}$: Sample k vertices and replace the induced graph according to \mathcal{R}

More examples of flip processes

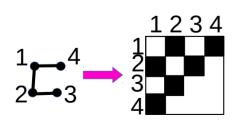
- Ignorant flip process
- F-Removal flip process
- Complement flip process
- Component completion flip process
- The stirring flip process
- The extremist flip process

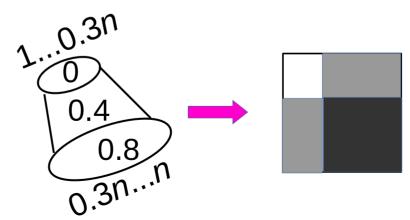


Component completion

Graphons (limits of dense graphs)

- Borgs-Chayes-Lovasz-Sos-Szegedy-Vesztergombi 2004
- Useful framework for extremal and probabilistic questions
- Graphon is a symmetric function W:[0,1]² → [0,1]
- Cut norm measures how similar two graphons are





Trajectories

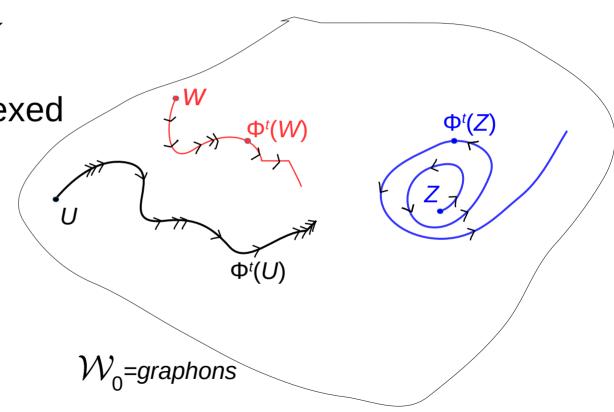
• Fixed rule \mathcal{R} of order k

We construct time-indexed

trajectories

$$\Phi: \mathcal{W}_0 \times [0, \infty) \to \mathcal{W}_0$$

Construction later



Transference theorem

Theorem 5.1. For every $k \in \mathbb{N}$ there is a constant C > 0 so that the following holds. Given a rule \mathcal{R} of order k and a graph G on the vertex set [n], let $(G_i)_{i\geq 0}$ be the flip process starting with $G_0 = G$.

For any T > 0 and $\varepsilon > 0$ have

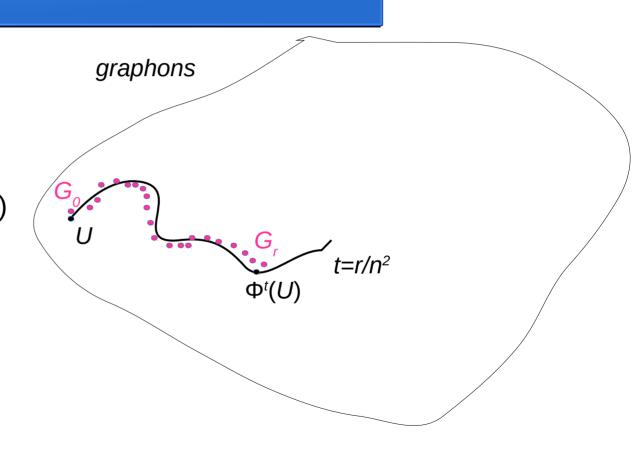
$$\max_{i \in (0, Tn^2] \cap \mathbb{Z}} \left\| W_{G_i} - \Phi^{i/n^2} W_G \right\|_{\square} < \varepsilon$$

 $with\ probability\ at\ least$

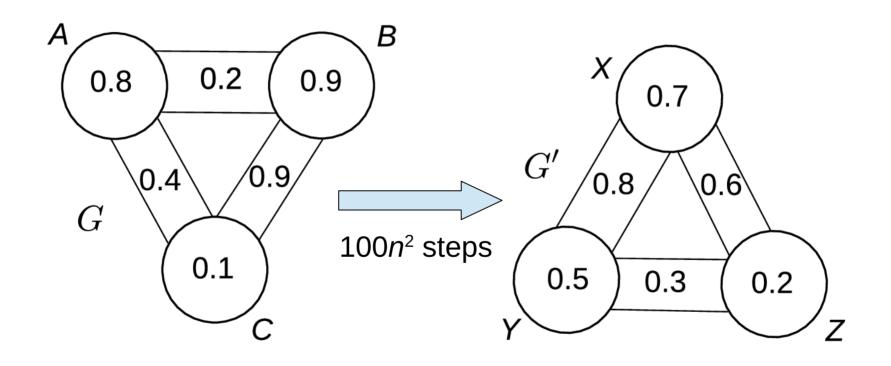
(42)
$$1 - \frac{CTe^{CT}}{\varepsilon} \exp\left((2\ln 2)n - \frac{C\varepsilon^3 n^2}{e^{CT}}\right).$$

Transference theorem

Given \mathcal{R} and corresponding trajectories $\Phi: \mathcal{W}_0 \times [0, \infty) \to \mathcal{W}_0$, whenever a large n-vertex G_0 is close to U (in cut norm) then w.h.p. G_r is close to $\Phi^t(U)$ for $t:=r/n^2$.

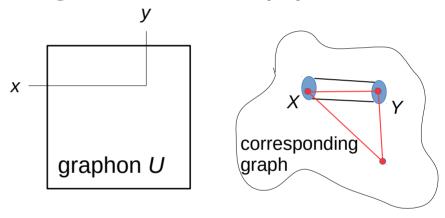


Cut norm, not cut distance



Constructing trajectories I

- In this example, consider the Triangle removal flip process
- $(\Phi^{\varepsilon}(U)-U)(x,y)$ correspondence with a graph $|X|=|Y|=\gamma n$ and εn^2 steps $U(x,y)=e(X,Y)/(\gamma n)^2$



• Number of removed edges between X and Y in εn^2 steps:

$$\epsilon n^2 \cdot \gamma^2 \cdot t_{xy}^{"}(K_{3}, U)$$

Density change at (x,y): $-\epsilon \cdot t_{xy}^{\cdot \cdot}(K_{3},U)$

$$t_{xy}^{"}(K_{3},W) = \int_{z} W(x,y)W(x,z)W(y,z)$$

Constructing trajectories II

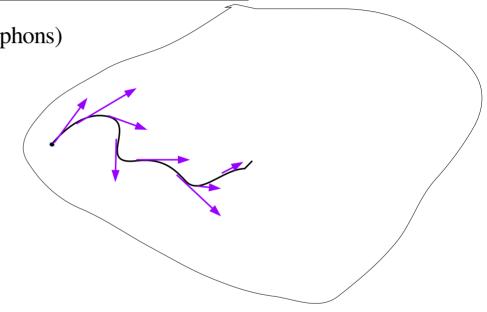
• Velocity field $V: \mathcal{W}_0 \to \mathcal{W}$ (signed graphons)

$$V(W) = \lim_{\epsilon \to 0} \frac{\Phi^{\epsilon}(W) - W}{\epsilon}$$

Integral equation

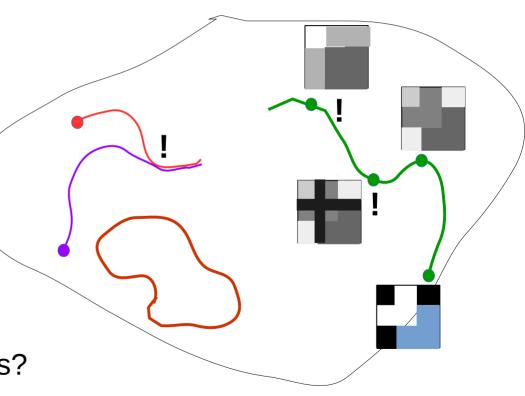
$$\Phi^T W = -W + \oint_{t=0}^T V(\Phi^t W)$$

$$V(W)(x,y) = -W(x,y) \int_{z} W(x,z)W(y,z)$$

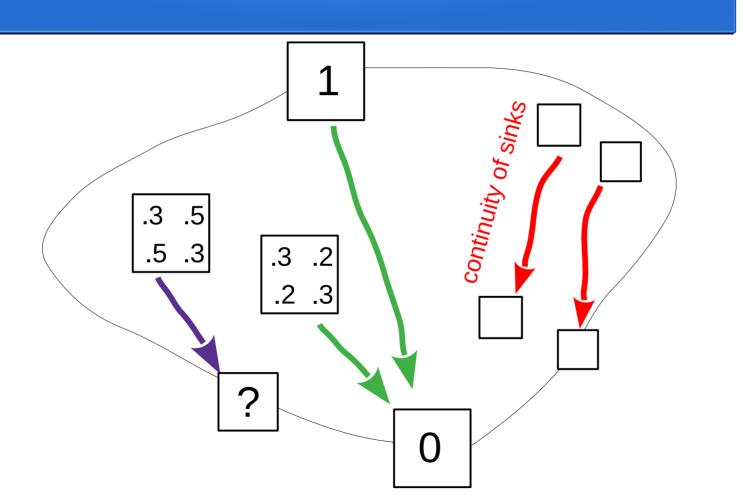


What is all this good for?

- No confluences
- Going back in time
- Block structure preservation
- Limits $t \rightarrow \infty$:
 - Stable and unstable fixed points (often constants)
 - Periodic trajectory
 - Really complicated trajectories?
- Speed of convergence



On the triangle removal process



Behavior of individual trajectories

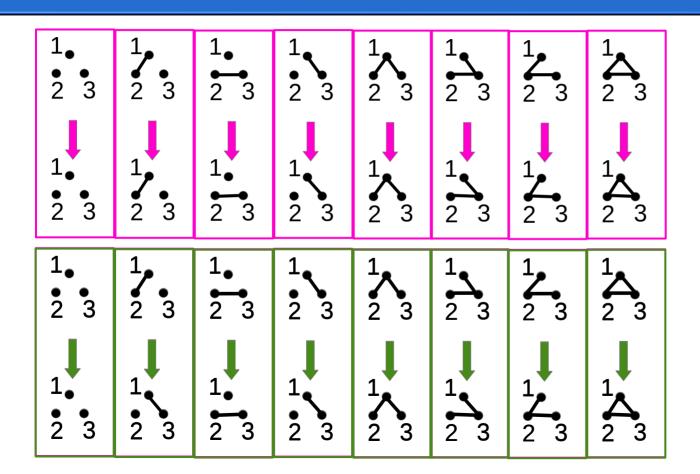
Fix a rule \mathcal{R} . X is a graphon.

- "Typically", trajectory ($\Phi^t(X)$: t) converges to a graphon.
- We have an example of a periodic nonconstant trajectory, $\Phi^{t}(X)=\Phi^{t+7}(X)$
- Does there exist a really complicated trajectory?

$$S:=\{\Phi^{t}(X): t\in [0,+\infty)\}$$

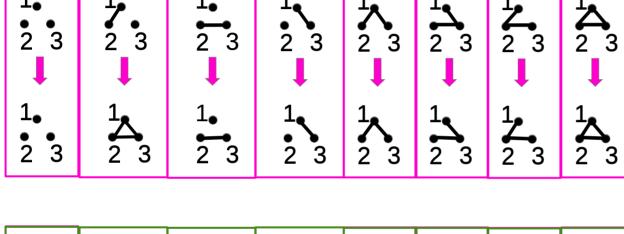
- → Can the set S be totally unbounded?
- \rightarrow Can we have limsup $\Phi^t(X)=1$ and liminf $\Phi^t(X)=0$?

Uniqueness (Eng Keat Hng)



Labels matter!

Uniqueness (Eng Keat Hng)



Theorem:

If there is not an obvious reason for two rules of the same order to have the same trajectories, then (some) trajectories will be different.

