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Erdos-Renyi random graph process

● Erdos-Renyi random graph process  (n vertices) G0, G1, …, G

– G0 is edgeless

– Gr+1 is obtained from Gr by turning a randomly selected 
nonedge into an edge

• For r=αn2, the graph Gr is a.a.s. quasirandom of density 2α.

(n2 )



  

Quasirandomness

● 1980’s (Chung-Graham-Wilson, Szemeredi, ...)
● Density of a graph d=e(G)/
● A graph is ε-quasirandom if for each set of vertices U

● A nonquasirandom graph

(n2)

|e (G [U ])−d (|U|
2

)|<εn2



  

Triangle removal process

● Introduced by Bollobas-Erdos’90
● Start with G0=clique

● In step r, pick a random triangle of Gr and delete it
● Bohman-Frieze-Lubetzky’15: Triangle removal process 

typically terminates when there are n3/2+o(1) edges left.
– Key in the proof: quasirandomness during the evolution



  

Erdos-Renyi flip process

● Start with a graph G0             (for now the edgeless graph)
● In each step, “replace” a uniformly chosen pair with an 

edge
● Density computation for Gr, r=αn2:
P [uv isanedge ]=1−P [uv isnot anedge ]
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Erdos-Renyi 50:50 flip process

● Start with a graph G0  on n vertices           

● In each step, “replace” a uniformly chosen pair with an 
edge or an non-edge (50:50)

● “Converges to quasirandom graph of density 0.5”, after 
Cn2 steps, C→∞



  

Triangle removal flip process

● Start with a graph G0             (for now the complete graph)

● In each step r pick three random vertices u1, u2, u3,

● If Gr[u1, u2, u3] induces a triangle then remove it…

...otherwise Gr+1 := Gr.
● Density computation: Gr, r=αn2, e(α):=e(Gr), d(α):=e(α) /
P [u1u2u3 is a triangle ]≈d (α)3

(n2)
e (α+ϵ)−e (α)≈−3d (α)3⋅ϵn2

d (α)
∂α =−6d(α)3 d (α)= 1

√1+12α
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Flip process of order k     (here, k=3)

● Rule R

● Start with a (large) graph G0

● Step Gr G⇒ r+1: Sample k vertices and replace the induced 
graph according to R
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More examples of flip processes

● Ignorant flip process
● F-Removal flip process
● Complement flip process
● Component completion flip process
● The stirring flip process
● The extremist flip process
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Graphons (limits of dense graphs)

● Borgs-Chayes-Lovasz-Sos-Szegedy-Vesztergombi 2004
● Useful framework for extremal and probabilistic questions
● Graphon is a symmetric function W:[0,1]2→[0,1]
● Cut norm measures how similar two graphons are
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Trajectories

● Fixed rule R  of order k 

● We construct time-indexed
       trajectories
       Φ:W0×[0,∞)→W0

● Construction later



  

Transference theorem



  

graphons

U

Φt(U)

Gr
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t=r/n2

Transference theorem

Given R and corresponding
trajectories Φ:W0×[0,∞)→W0,
whenever a large n-vertex G0

is close to U (in cut norm) 
then w.h.p. Gr is close to Φt(U) 
for t:=r/n2.



  

Cut norm, not cut distance

100n2 steps
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Constructing trajectories I

● In this example, consider the Triangle removal flip process
● (Φε(U)-U) (x,y)

correspondence with a graph
   |X|=|Y|=γn and εn2 steps
   U(x,y)=e(X,Y)/(γn)2

● Number of removed edges between X and Y in εn2 steps:
                                      Density change at (x,y): ϵn2⋅γ2⋅t xy

•• (K3,U ) −ϵ⋅t xy
•• (K3,U )



  

Constructing trajectories II

• Velocity field V:W0→W   (signed graphons) 

● Integral equation

● Triangle removal flip process

V (W )=limϵ→0
Φϵ(W )−W

ϵ

V (W )(x , y )=−W (x , y )∫z
W (x , z)W ( y , z)

ΦTW=−W +∮
t=0

T

V (ΦtW )
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What is all this good for ?

● No confluences
● Going back in time
● Block structure preservation
● Limits t→∞:

– Stable and unstable fixed
points (often constants)

– Periodic trajectory
– Really complicated trajectories?

● Speed of convergence



  

On the triangle removal process
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Behavior of individual trajectories

Fix a rule R. X is a graphon.

● “Typically”, trajectory (Φt(X): t) converges to a graphon.
● We have an example of a periodic nonconstant trajectory,   

                Φt(X)=Φt+7(X)
● Does there exist a really complicated trajectory? 

S:={Φt(X): t [∈ 0,+∞) }
➔ Can the set S be totally unbounded?
➔ Can we have limsup Φt(X)=1 and liminf Φt(X)=0 ?



  

Uniqueness (Eng Keat Hng)
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Labels matter!



  

Uniqueness (Eng Keat Hng)
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Theorem: 
If there is not an obvious 
reason for two rules of the 
same order to have the 
same trajectories, then 
(some) trajectories will be 
different.
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