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Abstract

The theory of graphons has proven to be a powerful tool in many areas of graph theory. In this

paper, we introduce several foundational aspects of the theory of digraphons — asymmetric two-variable

functions that arise as limits of sequences of directed graphs (digraphs). Our results address their decom-

position into strongly connected components, periodicity, spectral properties, and asymptotic behaviour

of their large powers.

1 Introduction

The theory of limits of dense graph sequences, developed by Borgs, Chayes, Lovász, Sós, Szegedy, and

Vesztergombi [24, 2], has proven to be a powerful framework in modern combinatorics. A typical application

begins with a sequence of finite graphs and uses the Compactness Theorem of Lovász and Szegedy [23] to

transfer a given problem to the analytic setting of graphons. Graphons, which are measurable functions

representing limits of dense graphs, provide a versatile and robust language for addressing a wide range of

problems. The richer the analytic tools available for handling graphons, the stronger and more flexible the

theory becomes. Throughout the paper, given a probability space (Ω, µ) (with an implicit sigma-algebra), a

graphon is a measurable function W : Ω2 → [0, 1] which is symmetric (that is, W (x, y) =W (y, x)).

The original theory of graph limits focuses on simple, undirected finite graphs. Since its inception, the

scope of the theory has expanded significantly, encompassing limits of various combinatorial structures, in-

cluding hypergraphs of fixed uniformity [9], permutations [17], and Latin squares [10], among others. All

these limit theories retain core features of dense graph limits, such as compactness of the limit space and

homomorphism densities, but they vary in how closely they adhere to the broader toolkit of graph limit

theory. Even within the realm of graphs, several natural extensions have been studied. When the assump-

tion of simplicity is relaxed to allow uniformly bounded edge multiplicities, the theory remains essentially

unchanged. However, permitting unbounded edge multiplicities introduces new challenges and leads to more

intricate limit objects, as explored in [21].

In this paper, we focus on directed graphs (digraphs), where each pair of vertices {u, v} may exhibit

one of four configurations: no directed edge, a single directed edge (u, v), a single directed edge (v, u), or
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a bidirectional edge pair (u, v) and (v, u). Many core elements of the dense graph limit theory extend to

digraphs mutatis mutandis. The limit objects in this setting, called digraphons, are naturally defined: just

as the adjacency matrix of a digraph need not be symmetric, a digraphon is simply a graphon without

the symmetry condition, that is, any measurable function Γ : Ω2 → [0, 1]. The analog of the Compactness

Theorem holds as well, with the main technical difference being the use of a variant of the Regularity Lemma

adapted for digraphs. Many other key notions need only minimal adaptations. This includes the notion of

homomorphism densities.

The focus of this work is to develop tools for digraphons that differ significantly from the graphon setting.

We arrived at this topic while studying a variant of the classical random 2-SAT problem. In this variant,

the inclusion probabilities of individual clauses over variables {v1, . . . , vn} are governed by a graphon W ,

which serves as a parameter of the model. The central result of the corresponding paper [16] identifies a

critical threshold ρ∗(W ), such that the behavior of the random formula transitions from being asymptotically

almost surely satisfiable when ρ∗(W ) < 1 to unsatisfiable when ρ∗(W ) > 1. Although the original model

uses a symmetric graphon to reflect the symmetry between clauses (li∨ lj) and (lj∨ li), the analysis naturally
evolves into an asymmetric framework of digraphons. In fact, ρ∗(W ) turns out to be a spectral parameter

associated with a digraphon derived from W . This led us to realize that many fundamental properties of

digraphons had not been previously studied. Thus, several of the general results developed in this work

were in fact originally motivated by the technical demands of [16], but clearly stand as contributions of

broad interest. Previous work on digraphons includes [4], which develops the theory of exchangeability in

the directed setting and the corresponding Bayesian nonparametric statistical framework. Limits of directed

graphs were also successfully employed to address extremal problems. Several papers in this direction, such

as [11, 15] do not employ digraphons but rather the more abstract framework of Razborov’s flag algebras.

We note that among the three digraphon notions discussed in this paper — connectivity, periodicity, and

spectrum — the first two can be formulated within the framework of flag algebras, albeit not in a particularly

explicit manner, whereas the third cannot. Digraphons were used for extremal analysis in [14, 32, 25]. As a

matter of fact, these three papers deal with limits of tournaments, which lead to particular digraphons, called

‘tournamentons’ in [14] and ‘tourneyons’ in [32]. For us, paper [14] is particularly relevant as it features

prominently spectral techniques, which are also the main focus of our paper. A certain auxiliary step in [14]

was handled in a somewhat artificial way. Very recently, Greb́ık, Král’, Liu, Pikhurko, and Slipantschuk [13]

proved that the eigenvalues of digraphons are continuous in the cut distance. This statement allows replacing

the artificial step in [14] with a natural and compact argument.

Last, we mention [31], which deals with the decomposition of tournamentons into components. Our

results about the decomposition of digraphons into strong components generalize this result.

2 Our results

2.1 Connectivity

In Definition 2.1 below, we introduce a collection of related connectivity concepts for digraphons. While for

graphons, connectivity was introduced by Janson [19] and extensively studied since, for digraphons these
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notions are new. To motivate them with the finite setting, recall that a nonempty set of vertices C in digraph

is strongly connected if for every partition A ⊔B = C into two nonempty sets, there is at least one directed

edge going from A to B. Maximal strongly connected sets are called strong components. The last notion

in Definition 2.1 is of ‘fragmented sets’. This concept does not make any sense in finite digraphs. That is,

one way to decompose a digraph into strong components is to start with an initial one-cell partition of the

entire vertex set. If there is at any moment a cell violating the above condition on strong connectedness, we

subdivide that cell accordingly. In a finite graph, this process must eventually terminate (since single vertices

cannot be subdivided), resulting in the unique decomposition into connected components. In a digraphon,

the regions where this process continues to split sets of positive measure into ever smaller ones constitute its

fragmented sets.

Definition 2.1 (strongly connected set, strong component, fragmented set). Suppose that Γ is a digraphon

on a probability space (Ω, µ), and a set X ⊆ Ω is of positive measure.

(i) We say that X is strongly connected in Γ if for every partition A ⊔ B = X with µ(A), µ(B) > 0 we

have that
∫
A×B Γ > 0.

(ii) We say that X is a strong component in Γ if X is strongly connected and for every Y ⊆ Ω with

µ(X ∩ Y ) > 0 and µ(Y \X) > 0 we have that Y is not strongly connected.

(iii) We say that X is fragmented in Γ if every subset Y ⊆ X of positive measure is not strongly connected.

Recall that each digraph can be decomposed in a unique way into maximal strong components. Theo-

rem 2.2 below is a digraphon counterpart. See Figure 1 for an illustration.

Theorem 2.2. Suppose that Γ is a digraphon on Ω. Then there exists a finite or a countable set I not

containing 0 and a decompositition Ω = X0 ⊔
⊔
i∈I Xi so that X0 is either an empty set or is fragmented in

Γ and each Xi is a strong component.

Further, this decomposition is unique in the sense that if partitions {Xi}i∈I∪{0} and {X ′
i}i∈I′∪{0} are two

decompositions of Γ into strong components as above, then there exists a bijection π : I → I ′ such that X ′
π(i)

equals Xi modulo a nullset for each i ∈ I, and X0 equals X ′
0 modulo a nullset.

We prove Theorem 2.2 in Section 4. In Section 4.5 we establish further properties of decompositions into

strong components. For example, these properties imply, that there is a natural digraphon counterpart of

the notion of ‘condensation digraph’ known from decompositions of digraphs into strong components.

Theorem 2.2 generalizes one of the main results of [31]. More specifically, Theorem 6.11 of [31] proves

Theorem 2.2 for ‘tournamentons’, that is, for digraphons Γ satisfying the condition Γ(x, y) + Γ(y, x) = 1.

2.2 Spectral properties

The main contribution of this paper lies in developing the spectral theory of digraphons. While some of our

results follow from general principles in functional analysis, we have endeavored to present them in a manner

accessible to researchers whose primary expertise is in graph theory.
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Figure 1: An example of a digraphon Γ with its decomposition into strong components X1, . . . , X4 and the

remaining fragmented set X0. Arbitrary strongly connected parts can be placed in the hatched parts. The

white part is zero while the coloured parts are arbitrary (zero or positive). The digraphon Γ should be

thought of as a limit representation of a large digraph D. The three coloured sets are (subgraphs of) three

transitive tournaments.

Spectral graph theory traditionally studies the spectral properties of matrices associated with graphs,

most notably the adjacency matrix.1 Specifically, given an adjacency matrix A of a graph with n vertices,

one studies the properties of the linear operator A : Cn → Cn, defined for a row vector v by v 7→ vA. This

framework extends naturally to the setting of graphons in a way we recall below.

Throughout the paper, we work within the complex Hilbert space L2(Ω), where Ω is a probability space

equipped with a measure µ (and an implicit sigma-algebra). A graphon Γ defined on Ω induces an integral

kernel operator TΓ : L2(Ω) → L2(Ω), defined for f ∈ L2(Ω) as g := TΓf by

g(x) :=

∫
Ω

f(y)Γ(y, x) dµ(y), for all x ∈ Ω. (1)

This operator-theoretic perspective on graphons was initiated in [3] and further developed in [30]. A com-

prehensive overview of spectral aspects of graphons can be found in Section 11.6 of [22]. We summarize all

basic spectral notions.

Definition 2.3 (eigenvalues, eigenfunctions, spectrum, spectral radius). Suppose that Γ is a graphon on

Ω. A complex number τ and a function f ∈ L2(Ω) are called an eigenvalue and an eigenfunction of Γ,

respectively if Γ(f) = τf . The collection of all eigenvalues is called the spectrum of Γ, and denoted Spec(Γ).

The spectral radius of Γ, denoted ρ(Γ) is the supremum of moduli over all the eigenvalues of Γ (and is

defined as ρ(Γ) = 0 if Spec(Γ) = ∅).
1Spectral graph theory also considers other matrices such as the Laplacian; however, these are not the focus of this work.
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The definitions and the properties implicitly implied in Definition 2.3 are standard, see P7.3-5 in [20].

In particular, it is well-known TΓ is a compact Hilbert–Schmidt operator, its spectrum is at most countable

with the only possible accumulation point at 0, and each eigenvalue is real and of modulus at most ∥Γ∥∞.

We do not need precise definitions at this moment and refer to [22, Section 7.5]. Also, it is easy to check

that the fact that Γ is symmetric implies that TΓ is self-adjoint, that is, for every f, g ∈ L2(Ω) we have the

equality of the inner products, ⟨f, TΓg⟩ = ⟨TΓf, g⟩. Self-adjointness ensures powerful results, in particular,

Γ admits a spectral decomposition,

Γ(x, y) =
∑
i

λifi(x)fi(y) , , (2)

where {λi}i are the eigenvalues of TΓ (which are all real), and {fi}i ⊆ L2(Ω) are the corresponding orthonor-

mal eigenfunctions (which are also all real).

The spectral definitions used for graphs can be used verbatim for digraphs. Likewise, (1) and all notions

from Definition 2.3 extend to the case when Γ is a digraphon. However, since digraphons are not necessarily

symmetric, the operator TΓ is no longer self-adjoint, and thus the spectral decomposition (2) does not apply

— just as it does not hold for general digraphs. Further, the eigenvalues and eigenfunctions may have a

nontrivial imaginary part.

We now summarize our main spectral results.

Theorem 6.2 establishes a link between spectral properties and periodicity of a digraphon. The latter

concept, defined in Definition 6.1, is a natural counterpart to that known in finite digraphs and the theory

of Markov chains; it concerns decomposing the ground space into ‘cyclic sets’ so that all the arrows go only

between cyclically consecutive cyclic sets. We prove that the periodicity of a strongly connected digraphon

is equal to the number of peripheral eigenvalues (that is, eigenvalues whose modulus is the spectral radius,

see Section 3.3.1).

In Proposition 5.1, we prove that the spectral radius of a digraphon is equal to the maximum of spectral

radii over all strong components.

Our third main result about spectral properties of concerns the asymptotic growth of the powers of a

digraphon. Namely, in Theorem 7.1 we prove that for a strongly connected aperiodic digraphon Γ and k

large, for the k-th power of Γ (see Definition 3.5) we have Γk(x, y) ≈ ρ(Γ)k · vleft(x)vright(y), where vleft and
vright are the unique (see Theorem 3.16(iv)) left and right eigenfunction of Γ corresponding to eigenvalue

ρ(Γ).2, and also give an extension to the periodic case. Theorem 7.1 in fact applies to digraphons of nontrivial

periodicity, too. This theorem is the most important ingredient needed in [16], but we expect that it will have

many additional applications. Indeed, as Definition 3.5 tells us, Γk expresses the homomorphism density of

paths of length k, a quantity of obvious importance.

For the proof of Theorem 7.1, we introduce Proposition 6.5. It asserts that if Γ is strongly connected

D-periodic, then the D cyclic classes of Γ are exactly strong components of ΓD, and that ΓD is aperiodic.

Further, it links the spectral properties of each component of ΓD to those of Γ.

2The eigenfunction in Definition 2.3 is the left eigenfunction. The right eigenfunction is the eigenfunction of the transposed

digraphon Γ⊤(x, y) = Γ(y, x). See Section 3.3.3 for more.
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3 Preliminaries

3.1 Measure theory

All subsets of measure spaces are assumed measurable, and all constructed subsets are evidently so. We

use a measure space Ω equipped with a probability measure µ to this end. That is, the measure µ always

implicitly underlies the space Ω. For measurable subsets A and B in a measure space, we write A =0 B

and A ⊆0 B for equality and containment modulo a nullset, respectively. Suppose that f : Ω → C is a

function on a measure space (Ω, µ). We write supp f for the support of f , supp f = {x ∈ Ω : f(x) ̸= 0}.
When f is real-valued, we write ess inf f and ess sup f for the essential infimum and essential supremum of

f , ess inf f = sup{t ∈ R : µ(f−1((−∞, t)) = 0}, ess sup f = inf{t ∈ R : µ(f−1((t,+∞)) = 0}.

3.2 Digraphons

We first introduce fundamental notions of the cut distance, digraphon representation of finite digraphs,

subgraphons, degrees, and homomorphism densities within the digraphon framework. These definitions

either exist in the literature or are direct analogues of their well-established counterparts in the symmetric

(graphon) setting. For a comprehensive treatment of the graphon framework, see [22].

First, we introduce the cut norm distance, the cut distance and a digraphon representation of a finite

digraph. Given two digraphons U and W on ground space Ω, their cut norm distance is defined as

d□(U,W ) = sup
S,T⊆Ω

∣∣∣∣∫
S×T

U −
∫
S×T

W

∣∣∣∣ .
Note that in the case of graphons, often it is convenient to work with a different definition which involves

only symmetric integrals
∫
S×S . It is well-known that for graphons the alternative definition differs from the

original one by a factor of at most 4. This is however not true for digraphons, and only the non-symmetric

definition is reasonable. To see this, consider two digraphons A,B on ground set [0, 1], A ≡ 1
2 and B(x, y) =

1x≤y. Taking S = [0, 12 ] and T = [ 12 , 1], we see that d□(U,W ) ≥ 1
8 but supS⊆Ω

∣∣∣∫S×S A−
∫
S×S B

∣∣∣ = 0. The

cut distance is defined as

δ□(U,W ) = inf
π

d□(U,W
π) , (3)

where π ranges over measure preserving bijections on Ω and Wπ is a digraphon on Ω defined by Wπ(x, y) =

W (π(x), π(y)).

Next, we introduce digraphon representations of a finite digraph.

Definition 3.1. Suppose that G is a finite nonempty digraph. Partition the space Ω into v(G) many sets of

measure 1
v(G) , Ω =

⊔
v∈V (G) Ωv. A digraphon representation of G is a digraphon on ground space Ω which

is constant on each part Ωv × Ωw, and whose value on that part is either 1 or 0, depending on whether vw

is a directed edge or not.

A digraphon representation of a digraph is not unique as it depends on the choice of the partition

Ω =
⊔
v∈V (G) Ωv. By the cut distance between a finite digraph G and a digraphon W , we mean the cut

distance of a digraphon representation of G and W . Even though the digraphon representation is not unique
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as it depends on the choice of the partition Ω =
⊔
v∈V (G) Ωv, this does not change the cut distance due to

the fact that (3) involves measure preserving bijections.

We will use two ways of restricting a digraphon to subset of the ground set.

Definition 3.2. For a digraphon U on Ω and for A ⊆ Ω, let UJAK be a digraphon on Ω defined by

UJAK(x, y) =

U(x, y) if x, y ∈ A, and

0 otherwise.

Next, if A has positive measure, we write U↾A×A for the restriction of U to A × A. We view U↾A×A as

a digraphon, that is, we assume that A is a probability space equipped with the natural probability measure

µA(·) = µ(·∩A)
µ(A) .

Suppose Γ is a digraphon on Ω. For x ∈ Ω, the indegree and outdegree of x are defined as deginΓ(x) :=∫
y∈Ω

Γ(y, x)dµ(y) and degoutΓ(x) :=
∫
y∈Ω

Γ(x, y)dµ(y), respectively. There are variants of the indegree

and outdegree relative to a given set A ⊆ Ω, deginΓ(x,A) :=
∫
y∈A Γ(y, x)dµ(y) and degoutΓ(x,A) :=∫

y∈A Γ(x, y)dµ(y). The minimum indegree, minimum outdegree, maximum indegree, and maximum out-

degree of Γ are defined by mindegin(Γ) := ess infx deg
in

Γ(x) and maxdegin(Γ) := ess supx deg
in

Γ(x), and

similarly for mindegout(Γ) and maxdegout(Γ).

Suppose that D is an oriented graph on vertex set [n]. The homomorphism density of D in Γ is defined

as

t(D,Γ) =

∫
x1

∫
x2

. . .

∫
xn

∏
(i,j)∈E(D)

Γ(xi, xj)dµ
n . (4)

The Counting lemma for graphons asserts that graphons that are close in the cut distance have similar

homomorphism densities of smallish graphs. Here, we include a digraphon counterpart. We omit the

proof, since it follows by the same telescoping argument (see e.g. Lemma 10.23 in [22]). However, as we

remark below, the version of the counting lemma holds only for oriented graphs, that is, digraphs without

counterparallel edges.

Lemma 3.3. Suppose that U and W are two digraphons, and D is an oriented graph. Then |t(D,U) −
t(D,W )| ≤ e(D) · δ□(U,W ).

Remark 3.4. Consider n large. Let G1 be a random orientation of the complete graph Kn. Let G2 be

a digraph created from the Erdős–Rényi random graph with edge probability 1
2 by replacing every edge with

directed edges in both directions. In is easy to show that digraphon representations W1 and W2 of G1 and G2

have the cut distance o(1) asymptotically almost surely. Yet, obviously for the 2-cycle we have t(C2,W1) = 0

and t(C2,W2) =
1
2 + o(1) with high probability. This example shows that the restriction to oriented graphs

in Lemma 3.3 is necessary.

Suppose that k ∈ N. Write Pk for the directed path 1, 2, 3, · · · , k, k + 1, and P ••
k for the directed path

rooted at its two terminal vertices. Write Ck for the directed cycle 1, 2, 3, · · · , k and C•
k for Ck rooted at

vertex 1. We define t••x1,xk+1
(P ••
k ,Γ) as a function of x1, xk+1 ∈ Ω by disintegrating t(Pk,Γ) with respect to
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x1 and xk+1. Likewise, we define t•x1
(C•

k ,Γ) as a function of x1 ∈ Ω by disintegrating t(Ck,Γ) with respect

to x1. That is,

t••x1,xk+1
(P ••
k ,Γ) =

∫
x2

∫
x3

. . .

∫
xk

k∏
i=1

Γ(xi, xi+1) dµ
k−1 , (5)

t•x1
(C•

k ,Γ) =

∫
x2

∫
x3

. . .

∫
xk

k−1∏
i=1

Γ(xi, xi+1) · Γ(xk, x1) dµk−1 .

Last, we introduce the power of a digraphon. This definition is similar to the definition of matrix powers.

Definition 3.5 (Power of a digraphon). Suppose that Γ is a digraphon on Ω, and let k ∈ N. Define Γk as

digraphon on Ω by Γk(x, y) := t••x,y(P
••
k ,Γ).

It is straightforward to verify that the definition is consistent with operator powers, that is, for every

f ∈ L2(Ω) and every k ∈ N we have

Γkf = ΓΓ · · ·Γ︸ ︷︷ ︸
k times

f . (6)

We highlight an important notational difference: Γk(x, y) refers to Definition 3.5 whereas Γ(x, y)k means

taking the real number Γ(x, y) and rising it to the k-th power. When written without parameters, Γk always

refers to Definition 3.5.

3.2.1 Calculus of reachability

A central question in the study of finite digraphs is whether a directed path exists between two vertices, and

if so, how many. In this section, we introduce tools for investigating the analogous problem in the setting of

digraphons.

Suppose that Γ is a digraphon on Ω. Let x, y ∈ Ω. We say that x is reachable from y if for some

k ∈ N we have Γk(y, x) > 0. The reachability sequence from x to y is the set of all such numbers k.

We write ReachoutΓ(y) ⊆ Ω for all x’s that are reachable from y. We write ReachinΓ(x) ⊆ Ω for all

y’s so that x ∈ ReachoutΓ(y). For a set Y we write ReachoutΓ(Y ) ⊆ Ω for the set of all x’s such that

µ({y ∈ Y : x ∈ ReachoutΓ(y)}) > 0. The set ReachinΓ(Y ) is defined similarly.

The next lemma is a natural transitivity principle for reachability.

Lemma 3.6. Suppose that Γ is a digraphon on Ω, x ∈ Ω, and Y ⊆ Ω, and c ∈ [0, 1). Define a function

h : Ω → [0, 1] by h(z) := µ(ReachoutΓ(z) ∩ Y ). Suppose that for a positive measure of y’s that are reachable

from x we have that h(y) > c. Then we have h(x) > c.

Proof. Let T ⊆ ReachoutΓ(x) be the set of y’s with h(y) > c. By the assumption, µ(T ) > 0. Let

S := {s ∈ Y : µ(T ∩ Reachin(s)) > 0} .

Let us use Fubini’s Theorem to express the measure µ2({(y, s) ∈ T × S : s ∈ ReachoutΓ(y)}). On the one

hand, for almost every y ∈ T , we have µ({s ∈ S : s ∈ ReachoutΓ(y)}) > c. On the other hand, for each

s ∈ S, we trivially have µ({y ∈ T : s ∈ ReachoutΓ(y)}) ≤ µ(T ). Hence,

µ(T )c < µ2({(y, s) ∈ T × S : s ∈ ReachoutΓ(y)}) ≤ µ(T )µ(S) ,

which gives µ(S) > c. It is easy to see that S ⊆0 ReachoutΓ(x). The claim follows.
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3.2.2 Regularity Lemma

Szemerédi’s Regularity Lemma has played pivotal roles in graph theory for several decades. Slight variants

tailored for different purposes exist. Here, we include a minimum outdegree variant of the Weak Regularity

Lemma for digraphons. Its proof follows the same line as the original proof.

Definition 3.7. Suppose that Γ is a digraphon on Ω. Suppose that Ω = Z1 ⊔Z2 ⊔ . . .⊔Zt is a partition into

sets of measures 1
t . Suppose that d, ε > 0 are given. We say that a digraph D on vertex [t] is a (d, ε)-cluster

digraph for partition Ω = Z1 ⊔ Z2 ⊔ . . . ⊔ Zt and digraphon Γ, if the following conditions hold:

(i) For each edge ij of D, the average value pi,j := t2
∫
Zi×Zj

Γ of Γ on Zi × Zj is at least d.

(ii) For each edge ij of D, consider two digraphons Γi,j and Γavgi,j on Ω, defined as follows: We have

Γi,j(x, y) = Γavgi,j (x, y) := 0 for (x, y) ̸∈ Zi × Zj. For (x, y) ∈ Zi × Zj, we define Γi,j(x, y) := Γ(x, y)

and Γavgi,j (x, y) := pi,j. Then we have that d□(Γi,j ,Γ
avg
i,j ) < ε · t−2.

(iii) The minimum outdegree of D is at least (mindegout(Γ)− d− ε)t.

The regularity lemma asserts that digraphons have cluster digraphs of bounded order.

Theorem 3.8. Suppose that ε > 0 is given. Then there exists a number t0 ∈ N so that for every d ∈ [0, 1]

and for every digraphon on Ω there exists a partition Ω = Z1⊔Z2⊔ . . .⊔Zt into sets of measures 1
t for some

t ≤ t0 and a (d, ε)-cluster digraph for this digraphon and partition.

3.3 Spectral theory

As explained in Section 2.2, each digraphon can be viewed as an integral kernel operator via (1). In this

section, we introduce spectral tools tailored to the study of digraphons. To the best of our knowledge, spectral

methods for digraphons had previously been only used in [14, 5], where their use was rather elementary, and

recently, in a focused way in [13], which proves continuity of the spectra of digraphons with respect to the

cut distance. In contrast, our approach relies on more sophisticated techniques drawn from the theory of

Banach lattices. While the results presented in this section are are mostly drawn literature, assembling and

adapting them to the setting of digraphons has been a nontrivial task — especially for us, as non-specialists

in functional analysis. In fact, translating abstract functional analytic language into a form applicable to

digraphons proved to be one of the most challenging aspects of this work. It is somewhat paradoxical that

this translation process is circular in nature. That is, the development of Hilbert space theory in the early

20th century, as well as the emergence of Banach lattice theory in the 1940s and 1950s, were both originally

motivated by the study of integral kernel operators. Yet, most modern treatments of these topics adopt

an abstract perspective, requiring us to reinterpret them back in the concrete setting of digraphons (which

are themselves integral kernel operators). Throughout this section, we aim to make the relevant functional

analytic tools as accessible as possible to readers who, like us, may not be specialists in the area.

As we said earlier, all our Hilbert and Banach spaces are complex. This reflects the well-known fact that

in the non-self-adjoint setting (which necessarily comes with non-symmetric digraphons), real Hilbert spaces

lack many favorable features. We write i for the imaginary unit.
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3.3.1 Spectrum

In Definition 2.3 we defined the spectrum of a graphon and subsequently we extended the same definition

to digraphons. Here, we repeat these definitions from a broader perspective of bounded operators. If

T : L2(Ω) → L2(Ω) is a bounded linear operator, then its spectrum is defined as the set of λ ∈ C such that

T − λ1 is not invertible within the algebra of bounded linear operators. This is known as the ‘resolvent’

definition of the spectrum. There is an equivalent definition using ‘approximate eigenvalues’. While not all

operators in this paper will be digraphons, all of them will be compact. It is a fundamental property of any

compact operator T that its spectrum, possibly except its element 0, can be expressed using eigenvalues and

corresponding eigenfunctions,

Spec(T ) \ {0} =
{
λ ∈ C \ {0} : ∃f ∈ L2(Ω) \ {0}, T f = λf

}
.

Then the spectral radius is defined as ρ(T ) := sup{|λ| : λ ∈ Spec(T )}. An eigenvalue λ and its corresponding

eigenfunction f are peripheral if |λ| = ρ(T ).

If λ is an eigenvalue, then its algebraic multiplicity is

mT (λ) := dim

( ∞⋃
n=1

ker ((T − λ1)n)

)
(7)

We say that an eigenvalue λ is simple if its algebraic multiplicity equals 1.

We shall use one of the main results of a recent paper of Greb́ık, Král’, Liu, Pikhurko, and Sli-

pantschuk [13], which expresses the homomorphism density of a cycle in terms of its spectrum. Let us

note that for graphons, the same formula has been known (see Equation (7.23) in [22]).

Proposition 3.9. For any digraphon Γ and k ≥ 3 we have

t(Ck,Γ) =
∑

λ∈Spec(Γ)

mΓ(λ)λ
k .

3.3.2 Kernels

A kernel is an arbitrary (complex) function U ∈ L∞(Ω). We will use kernels in the proof of Theorem 7.1;

those kernels will be of the form U = W1 − W2, where W1 and W2 are digraphons. The definitions of

homomorphism densities (4), (5), as well as of powers (Definition 3.5 and property (6)) extend to kernels.

3.3.3 Duality

Suppose that X is a Banach space. Recall that X∗ denotes the dual of X, which is a Banach space comprising

of all continuous linear functionals X → C. If T : X → X is a bounded linear operator on X, then the dual

operator T ∗ : X∗ → X∗ is defined (T ∗ψ)(x) = ψ(Tx) for all ψ ∈ X∗ and x ∈ X. The relevant setting for us

will be when X = L2(Ω). In that case, the Riesz Representation Theorem asserts that for each continuous

functional ψ ∈ X∗ there exists gψ ∈ L2(Ω) so that ψ(f) =
∫
f(y)gψ(y)dµ(y) for every f ∈ L2(Ω). This

allows us to identify (L2(Ω))∗ = L2(Ω). With this identification it is easy to see that if Γ is a digraphon

viewed as an integral kernel operator TΓ : L2(Ω) → L2(Ω), then the dual operator T ∗
Γ : L2(Ω) → L2(Ω) is an

10



integral kernel operator for the transposed digraphon Γ⊤, Γ⊤(x, y) = Γ(y, x). Eigenfunctions and eigenvalues

of Γ⊤ are sometimes called right eigenfunctions and right eigenvalues of Γ. To emphasize the difference, the

original eigenfunctions and eigenvalues of Γ may be referred to as left.

3.3.4 Gelfand’s formula for the spectral radius

We use the famous Gelfand’s formula (see P7.5-5 in [20]). Recall that the operator norm ∥R∥op of an operator

R on a Banach space with norm ∥ · ∥ is defined ∥R∥op := supx:∥x∥≤1 ∥Rx∥.

Proposition 3.10 (Gelfand’s formula for the operator norm). Suppose that T is a bounded operator on a

complex Banach space. Then we have

ρ(T ) = lim
k→∞

k

√
∥T k∥op . (8)

Gelfand’s formula (8) holds not only for the operator norm, but also for many other norms. The version

we need here is for the L2-norm.

Proposition 3.11 (Gelfand’s formula for the L2-norm). Suppose that Γ ∈ L2(Ω2) is given. Then,

ρ(Γ) = lim
k→∞

k

√
∥Γk∥2 . (9)

This statement may be standard, but we were not able to find it in literature. We include a proof

communicated to us by Vladimı́r Müller.

Proof. In the proof, we are going to work with the Hilbert–Schmidt norm ∥ · ∥HS, which is defined for some

bounded operators on L2(Ω). As we are concerned with digraphons, we shall need the Hilbert–Schmidt norm

only in the case of integral kernel operators, and thus we introduce it only in this particular setting. All the

properties of the Hilbert–Schmidt norm we shall need can be found on page 267 of [6]. In particular, the

Hilbert–Schmidt norm is always (when it is defined) an upper-bound on the operator norm, ∥ · ∥op ≤ ∥ · ∥HS.

Also, for integral kernel operators, the Hilbert–Schmidt norm is equal to the L2-norm of the corresponding

kernel. Combining this with (8), we have ρ(Γ) ≤ lim infk→∞
k
√

∥Γk∥HS = lim infk→∞
k
√
∥Γk∥2. So, it remains

to establish the other inequality. The last fact from page 267 of [6] we use is that ∥A ·B∥HS ≤ ∥A∥op · ∥B∥HS.

Applying this with A = T k−1 and B = T , we have

lim sup
k→∞

k

√
∥Γk∥HS ≤ lim sup

k→∞

k

√
∥Γk−1∥op · lim

k→∞
k
√
∥Γ∥HS .

The first term tends to ρ(Γ) by (8). The second term tends to 1. Hence, the proof follows.

We shall use the well-known fact that the spectral radii of a bounded operator and its dual are the same,

see e.g. Proposition 6.1 in [6].

Proposition 3.12. If T is a bounded operator on a Hilbert space and T ∗ is its dual, then ρ(T ) = ρ(T ∗).

The next lemma concerns L∞-boudnedness of eigenfunctions of digraphons.

Lemma 3.13. Suppose that Γ is a digraphon on Ω, and f an eigenfunction for eigenvalue γ ̸= 0. Then

∥f∥∞ ≤ ∥Γ∥∞∥f∥1

|γ| .
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Proof. We have γf = Γf . Fix an arbitrary x ∈ Ω. Thus, |γf(x)| = |
∫
y
f(y)Γ(y, x)| ≤ ∥Γ∥∞ · ∥f∥1.

Our last result of this section concerns powers (in the sense of Definition 3.5) of a kernel. Namely, it

asserts that the L∞-norm of a high power of a kernel does not grow much faster than the corresponding

power of its spectral radius.

Proposition 3.14. Suppose that W ∈ L∞(Ω2) is a kernel, and α > ρ(W ). Then, as k → ∞, we have

∥W k∥∞ = O(αk).

Proof. For each (x, y) ∈ Ω and k ≥ 2, we have,

W k(x, y) =

∫
Ω2

W (x, z)W k−2(z, t)W (t, y)dzdt ,

and therefore

|W k(x, y)| ≤
∫
Ω2

|W (x, z)| |W k−2(z, t)| |W (t, y)|dzdt .

Since W is bounded, we have uniformly over (x, y) and k,

|W k(x, y)| = O

(∫
Ω2

|W k−2(z, t)|dzdt
)

= O
(
∥W k−2∥1

)
∥ · ∥1 ≤ ∥ · ∥2 on a probability space = O

(
∥W k−2∥2

)
by (9), k large = O(αk) ,

as was needed.

3.3.5 Banach lattices

Banach lattices are partially ordered Banach spaces. We do not need to recall the general axioms here, as

we work exclusively with the Banach space L2(Ω) in which the order is given by f ≤ g if f(x) ≤ g(x) for

every x ∈ Ω. The second lemma connects the notion of strongly connected graphons with the concept of

irreducible operators in the theory of Banach lattices. We give necessary definitions from [27], but only in

the specific setting of the Banach lattice L2(Ω). For f ∈ L2(Ω), we write |f | for the pointwise absolute

value. A set I ⊆ L2(Ω) is an ideal if it is a closed subspace of L2(Ω) such that for every f ∈ I and for every

g ∈ L2(Ω) with |g| ≤ |f | we have g ∈ I. Fortunately, ideals in L2(Ω) have a simple structure. Namely (see

e.g., [8, Theorem 7.10]), every ideal is of the form IZ = {f ∈ L2(Ω) : f↾Z ≡ 0} for some measurable Z ⊆ Ω.

An operator T on L2(Ω) is irreducible if the only ideals I for which TI ⊆ I are I = {0} and I = L2(Ω).

Below, we connect this concept to digraphons by proving that strongly connected digraphons are irreducible.

The converse also holds and is straightforward to show, but we will not need it here.

Lemma 3.15. Suppose that Γ is a strongly connected digraphon on Ω. Then Γ is irreducible.

Proof. Let I be an ideal. Assume at I is of the form IZ as above. There is nothing to prove if µ(Z) ∈ {0, 1},
so assume µ(Z) ∈ (0, 1). By the definition of strong connectedness, we have

∫
(Ω\Z)×Z Γ > 0. That means

that for the characteristic function 1Ω\Z ∈ IZ we have that the support of Γ1Ω\Z nontrivially intersects Z.

Thus, Γ1Ω\Z /∈ IZ . We have concluded that the only ideals with ΓI ⊆ I are the two trivial ones.
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3.3.6 The Krĕın–Rutman theorem and beyond

The Perron–Frobenius Theorem asserts that a real square matrix with nonnegative entries has a unique

non-negative eigenvector, and that this eigenvector corresponds to the eigenvalue of the largest eigenvalue

in absolute value. The Krĕın–Rutman Theorem is often considered a counterpart of the Perron–Frobenius

Theorem for nonnegative operators. For main results of this paper regarding periodicity of digraphons

(Theorem 6.2) and asymptotic growth (Theorem 7.1) we need a somewhat strengthened version of the

Krĕın–Rutman Theorem which we give in Theorem 3.16 below. While we could not find Theorem 3.16 in

this form in literature, it is just a slight variation of known results, as we show later. Given a digraphon Γ

on Ω, write ground(Γ) = {x ∈ Ω :
∫
Ω
Γ(x, y)dµ(y) > 0} ∪ {y ∈ Ω :

∫
Ω
Γ(x, y)dµ(x) > 0}.

Theorem 3.16. Suppose that Γ is a digraphon on Ω with ρ(Γ) > 0 and such that ground(Γ) is strongly

connected. Then for some d ∈ N, we have the following.

(i) The set of eigenvalues of modulus ρ(Γ) is {exp(−2πik/d)ρ(Γ) : k = 0, . . . , d− 1}. Each of these eigen-

values is simple.

(ii) There are right and left non-negative eigenfunctions vright and vleft for the eigenvalue ρ(Γ).

(iii) We have supp(vright) =0 supp(vleft) =0 ground(Γ).

(iv) The eigenvalue ρ(Γ) is the only one with a real and non-negative eigenfunction.

(v) If f ∈ L2(Ω) is nonnegative such that Γf ≥ ρ(Γ)f then f is equal to vright (up to constant multiple).

Two results that will be used to derive Theorem 3.16. The first one is the original Krĕın–Rutman

Theorem.

Theorem 3.17. Suppose that T is a compact operator on L2(Ω) which is nonnegative. Suppose that T has

a non-zero eigenvalue. Then there exists a nonnegative f ∈ L2(Ω) such that Tf = ρ(T )f .

The second one is Theorem V.5.2 in [27]. We rephrase this result in Theorem 3.18 below in our language,

expanding necessary definitions. We also narrow the statement down to the Banach space L2(Ω) even though

the original statement is for a general Banach lattice, and to integral kernel operators. Since our integral

kernel operators come from digraphons (which are nonnegative), they are automatically ‘positive’ in the

sense of Definition II.2.4 in [27]. This is a basic assumption for the whole theory of Banach lattices in [27].

Theorem 3.18. Suppose that Γ is a digraphon on Ω of spectral radius ρ(Γ) > 0. Suppose that Γ is an

irreducible operator. Suppose that the dual operator Γ∗ of Γ possesses an eigenfunction ψ ∈ (L2(Ω))∗ for

eigenvalue ρ(Γ) such that its Riesz representation gψ is a nonnegative function.3. The following assertions

are true:

(i) The eigenvalues of Γ of modulus ρ(Γ) are a subgroup of the circle group.

(ii) Each eigenvalue γ of Γ of modulus ρ(Γ) is simple. Further, Spec(Γ) = γ · Spec(Γ) including algebraic

multiplicities.

3This part is a translation of ‘possesses an invariant form’ in Theorem V.5.2 in [27] to our setting
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(iii) The only eigenvalue of Γ with a nonnegative eigenfunction is ρ(Γ).

Proof of Theorem 3.16. First we apply Theorem 3.17 on Γ to find its eigenfunction vright for the eigenvalue

ρ(Γ). The theorem also asserts that vR is non-negative. We then switch to the dual operator Γ∗. Recall

that by Proposition 3.12, its spectral radius is the same. We again find its eigenfunction vleft for eigenvalue

ρ(Γ). By the discussion above this is the left eigenvalue of Γ.

We now prove that supp(vright) = ground(Γ). First, let us prove that supp(vright) ⊆ ground(Γ). Indeed,

if x /∈ ground(Γ), then in the identity ρ(Γ)f(x) =
∫
y
Γ(x, y)f(y), the term Γ(x, y) is 0 almost every. Hence,

f(x) = 0. Now, suppose that A := supp(vright) has measure strictly less than (on the other hand, obviously,

the measure of A is positive) µ(ground(Γ)). Take B := ground(Γ) \ A. Since by strong connectedness,∫
A×B Γ(x, y) > 0, we also have

∫
A×B Γ(x, y)f(x) > 0. This means that

∫
B
f(y) > 0, a contradiction.

Part (iii) follows from Theorem 3.18. Last, we turn to Part (v), which is also standard. Set g :=

Γf − ρ(Γ)f . We have g ≥ 0. Consider the inner product

⟨g, vleft⟩ = ⟨TΓf − ρ(Γ)f, vleft⟩ = ⟨TΓf, vleft⟩ − ⟨ρ(Γ)f, vleft⟩ = ⟨f, T ∗
Γvleft⟩ − ⟨ρ(Γ)f, vleft⟩

= ρ(Γ)⟨f, vleft⟩ − ρ(Γ)⟨f, vleft⟩ = 0 .

Since vleft is strictly positive, we conclude that g is constant-0. That is, g is an eigenfunction of Γ for

eigenvalue ρ(Γ). By ((i)), that means that g is a multiple of vright.

An easy combination of Gelfand’s formula and the nonnegativity of the leading eigenfunction is the

following fact.

Lemma 3.19. Suppose that Γ1 and Γ2 are two digraphons with Γ1 ≤ Γ2 (pointwise). Then ρ(Γ1) ≤ ρ(Γ2).

Proof. There is nothing to prove if ρ(Γ1) = 0, so assume ρ(Γ1) > 0. Let f be an eigenfunction of Γ1

corresponding to eigenvalue ρ(Γ1). By Theorem 3.16(ii), f is nonnegative. For every k ∈ N, we have(
Γ1

ρ(Γ1)

)k
f = f .

Since Γk2 ≥ Γk1 , and since Γk2 and f are nonnegative, we have(
Γ2

ρ(Γ1)

)k
f ≥ f ,

and so the operator norm of
(

Γ2

ρ(Γ1)

)k
is at least 1. By Proposition 3.10, the spectral radius of Γ2

ρ(Γ1)
is at

least 1, as was needed.

4 Proof of Theorem 2.2

4.1 Reduction to graphons

We reduce the problem of the decomposition of digraphons into strong component to the problem of the

decomposition of graphons into connected components, a concept introduced by Janson in [19]. We recall

Janson’s terminology and one of his main results. Note that if W is a graphon on Ω, then for every x ∈ Ω,

we have deginW (x) = degoutW (x), and we call this quantity the degree of x, degW (x).
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Definition 4.1. Let I be a finite or countable set which does not contain 0. For a graphon W on a probability

space (Ω, µ) we say that a decomposition Ω = X0 ⊔
⊔
i∈I Xi is a decomposition into connected components

of W with isolated elements X0 if the following hold.

(i) For almost every x ∈ X0 we have degW (x) = 0.

(ii) For every i ∈ I we have µ(Xi) > 0. If A ⊔ B = Xi is a decomposition of Xi into two sets of positive

measure we have
∫
A×BW > 0.

(iii) For every i ∈ I we have
∫
Xi×(Ω\Xi)

W = 0.

The sets Xi (i ∈ I) are called the components of W . We say that W is connected if X0 is a nullset and

|I| = 1.

One of the main results of [19] is that a decomposition into connected components exists and is unique

modulo nullsets. We state this result for later reference.

Theorem 4.2. Suppose that W is a graphon on a probability space Ω. Then there exists a decomposition

Ω = X0 ⊔
⊔
i∈I Xi into connected components and isolated elements X0 of the graphon W . Further, this

decomposition is unique in the same sense as in Theorem 2.2.

Recall that in a finite graph, each two vertices in one connected component can be connected by a path.

The next easy lemma is a graphon counterpart to this.

Lemma 4.3. Suppose that U is a graphon on Ω and X is a connected component in it. Let g : Ω2 → {0, 1}
be the indicator of reachability, that is, g(x, y) = 1 if and only if y ∈ ReachoutU (x).

4 Then g is constant-1

almost everywhere on X.

Proof. We introduce a function h : X → [0, µ(X)] as follows: for x ∈ X, let h(x) :=
∫
y∈X g(x, y)dy. We

need to prove that h is constant-µ(X) almost everywhere on X. For a contradiction, suppose otherwise. We

distinguish two cases.

• h is not a constant function.

Then there exists c ∈ (0, µ(X)) such that the sets A := h−1([0, c)) and B := h−1([c, µ(X)]) have

positive measure. As X is connected, we have
∫
A×BW > 0. In particular, the set A∗ := {x ∈ A :

degW (x,B) > 0} has positive measure. Take y ∈ A∗ arbitrary. On the one hand, h(x) < c since x ∈ A.

On the other hand, x is connected to a positive measure of y’s with h(y) ≥ c, and so h(x) ≥ c (see

Lemma 3.6), a contradiction.

• h is a constant-c function, for some c ∈ [0, µ(X)).

There exists ε > 0 so that the set Z := {x ∈ X : degW (x) ≥ ε} we have µ(Z) ≥ ε. Reachable vertices

from a given vertex are a superset of the neighborhood of that vertex, which is of measure at least ε

for every x ∈ Z. Hence, h(x) ≥ ε for every x ∈ Z. We conclude that c > 0. Take x ∈ X such that

h(x) = c. Let A ⊆ X be the set of vertices reachable from x, µ(A) = c. We have that the sets A and

4Note that since graphons are symmetric, this is equivalent to y ∈ ReachinU (x).
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B := X \ A have positive measures. As X is connected, we have
∫
A×BW > 0. In particular, the set

B∗ := {y ∈ B : degW (y,A) > 0} has positive measure. But obviously, all these elements from B∗ are

reachable from x, a contradiction.

Lemma 4.4. Suppose that U is a graphon on Ω and X is a connected component in it. Suppose that A ⊆ X

is a set of positive measure. For each k ∈ N, define

Fk :=

{
x0 ∈ X :

∫
(x1,...,xk)∈Xk−1×A

k∏
i=1

U(xi, xi−1) > 0

}
. (10)

Then
⋃∞
k=1 Fk =0 X.

Proof. This follows from Lemma 4.3.

With these preparations, we can begin our decomposition of the digraphon Γ. Define a graphon W by

W (x, y) :=

( ∞∑
ℓ=1

2−ℓΓℓ(x, y)

)
︸ ︷︷ ︸

(T1)

( ∞∑
ℓ=1

2−ℓΓℓ(y, x)

)
︸ ︷︷ ︸

(T2)

. (11)

Indeed, this definition gives a function which is nonnegative, bounded by 1, and symmetric.

Let Ω = X0 ⊔
⊔
i∈I Xi be the decomposition of W into connected components given by Theorem 4.2.

The main step of the proof of Theorem 2.2 is to show that X0 is a fragmented set in Γ and all Xi (i ∈ I)

are strong components. The next lemma about restricting Γ to one connnected component Xi is useful.

Lemma 4.5. Suppose that i ∈ I is given. Define a digraphon Γ∗ by Γ∗ := ΓJXiK. Then for each ℓ ∈ N and

almost all pairs (x, y) ∈ Xi we have Γℓ(x, y) = (Γ∗)
ℓ(x, y).

Proof. In the proof, we shall use the following trivial step: if f and g are two nonnegative functions on the

same measure space, then ∫
f = 0 implies

∫
fg = 0 . (12)

Since we have Γ ≥ Γ∗ pointwise, it is clear that Γℓ(x, y) ≥ (Γ∗)
ℓ(x, y). So, to finish the proof, we need to

prove that ∫
(x0,x1,...,xℓ)∈Υ

ℓ∏
j=1

Γ(xj−1, xj) = 0 , (13)

where Υ ⊆ Xi × Ωℓ−1 × Xi is the set of those (ℓ + 1)-tuples which have at least one coordinate outside

of Xi. Given s, k ∈ N with s + k ≤ ℓ, let Υs,k ⊆ Υ be the set of those (ℓ + 1)-tuples (x0, x1, . . . , xℓ) for

which the first s many coordinates lie in Xi, the next k many coordinates lie in Ω \ Xi, the (s + k + 1)st

coordinate lies in Xi, and the remaining coordinates are unrestricted. Obviously, the sets {Υs,k}s,k∈N,s+k≤ℓ

cover the set Υ. To prove (13), it is hence enough to prove that for each s, k ∈ N with s + k ≤ ℓ,∫
(x0,x1,...,xℓ)∈Υs,k

∏ℓ
j=1 Γ(xj−1, xj) = 0. To this end, we follow the proof scheme from (12). In particular, the

function f is set to f :=
∏k+s
j=s Γ(xj−1, xj), while the function g includes the remaining terms. Hence, the

proof is finished by the following claim.
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Claim A. For every k ∈ N, we have
∫
(y0,y1,...,yk)∈Xi×(Ω\Xi)k−1×Xi

∏k
j=1 Γ(yj−1, yj) = 0.

Proof of Claim A. Suppose that this is not true. Let

Y :=

y1 ∈ Ω \Xi :

∫
(y0,y2,y3,...,yk)∈Xi×(Ω\Xi)k−2×Xi

k∏
j=1

Γ(yj−1, yj) > 0

 .

Put equivalently, Y consists of those y1 ∈ Ω \Xi for which∫
y0∈Xi

Γ(y0, y1) > 0 and (14)

∫
(y2,y3,...,yk)∈(Ω\Xi)k−2×Xi

k∏
j=2

Γ(yj−1, yj) > 0 . (15)

By the above assumption, Y has positive measure. We claim that for every y1 ∈ Y we have∫
x∈Xi

W (x, y1) > 0 . (16)

Once we show this, we will get a contradiction to the fact that Xi is a connected component. Indeed,∫
Xi×(Ω\Xi)

W ≥
∫
Xi×Y W > 0, a contradiction with Definition 2.1(iii).

To show (16), we will show for the given y1 ∈ Y , in the formula (11) for W (x, y1),

the term (T1) is positive for a positive measure of elements x ∈ Xi, and (17)

the term (T2) is positive for almost all elements x ∈ Xi. (18)

Observe that (14) readily implies (17). So, it remains to argue (18). Let A consist of those yk ∈ Xi for which∫
(y2,y3,...,yk−1)∈(Ω\Xi)k−2

k∏
j=2

Γ(yj−1, yj) > 0 .

By (15) has positive measure. Let {Fh}∞h=1 be given by Lemma 4.4 for the graphon W , the component Xi

and the set A. Now, observe that if x ∈ Xi is such that it is contained in Fh, then Γ(k−1)+h(y1, x) > 0. The

way to think about this is that there is a positive density of paths of length k − 1 from y1 to each point of

A, and from points from A there is (aggregately, but not necessarily from each point individually) positive

density of paths of length h to x. Since
⋃
h Fh =0 X, we have that (18) follows.

4.2 Sets Xi are strong components

Take i ∈ I. First, we shall show that Xi is strongly connected in Γ. Let A⊔B = Xi be as in Definition 2.1(i).

Suppose for a contradiction that ∫
A×B

Γ = 0 . (19)
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Let {Fk}∞k=1 be defined as in (10) (for the graphon W , the component Xi and the initial set A). Since

µ(∪kFk \ A) > 0, by sigma-additivity there exists k ∈ N so that µ(Fk ∩ B) > 0. Extracting the term (T1)

from (11), we have that∫
(x0,x1,...,xk)∈A×(Xi)k−1×(Fk∩B)

k∏
j=1

 ∞∑
ℓj=1

2−ℓjΓℓj (xj−1, xj)

 > 0 .

By Lemma 4.5, we have that for the restriction Γ∗ of Γ on the component Xi that∫
(x0,x1,...,xk)∈A×(Xi)k−1×(Fk∩B)

k∏
j=1

 ∞∑
ℓj=1

2−ℓj (Γ∗)
ℓj (xj−1, xj)

 > 0 .

By sigma-additivity of the integral, there exist numbers ℓ1, . . . , ℓk ∈ N so that∫
(x0,x1,...,xk)∈A×(Xi)k−1×(Fk∩B)

k∏
j=1

(Γ∗)
ℓj (xj−1, xj) > 0 . (20)

We now expand the terms (Γ∗)
ℓj ; each such term involves an internal (ℓj − 1)-dimensional integration over

Xi because Definition 3.5 involves (5). Hence, we can rewrite (20) as∫
(x0,x1,...,x∑

j ℓj
)∈A×(Xi)

∑
j ℓj−1×(Fk∩B)

∑
j ℓj∏
t=1

Γ∗(xt−1, xt) > 0 . (21)

For L ∈ N, let ΥL consist of those tuples (x0, x1, . . . , x∑
j ℓj

) ∈ A × (Xi)
∑

j ℓj−1 × (Fk ∩ B) for which the

first L+ 1 many components lie in A and the (L+ 1)-st lies in Fk ∩ B. Obviously, the sets {ΥL}∞L=1 cover

A× (Xi)
∑

j ℓj−1 × (Fk ∩B). For a given L ∈ N, (19) can be rewritten as∫
(x0,x1,...,x∑

j ℓj
)∈ΥL

Γ∗(xL, xL+1) = 0 .

Summing over all L and using the proof scheme (12) gives a contradiction with (21). So, Xi is indeed

strongly connected.

Let us now verify Definition 2.1(ii). Suppose that i ∈ I and Y ⊆ Ω is such that µ(Xi∩Y ), µ(Y \Xi) > 0.

We need to show that Y is not strongly connected. Let A := Xi ∩ Y . Let B− := ReachoutΓ(A) ∩ (Y \Xi),

and B+ := ReachinΓ(A) ∩ (Y \Xi).

Claim B. The set B− ∩B+ is null.

Proof of Claim B. Indeed, it is obvious from (11) that for each b ∈ B−∩B+ we have degW (b, A) > 0. Recall

that B− ∩B+ is disjoint from the component Xi, and thus
∫
(B−∩B+)×Xi

W = 0. The claim follows.

To verify Definition 2.1(ii), we need to find a partition Y = A∗ ⊔ B∗ into sets of positive measures so

that
∫
A∗×B∗ Γ = 0. In order to ensure that A∗ and B∗ have positive measures, we need to distinguish three

cases.

• If µ(B+) > 0, then set A∗ := Y \ B+, B∗ := B+. The set A∗ contains A, and so A∗ and B∗ have

positive measures. Suppose for contradiction that
∫
A∗×B∗ Γ > 0. That means that there is a set

Z ⊆ A∗ of positive measure so that for every z ∈ Z we have degoutΓ(z,B
+) > 0. But for each such z

lies in ReachinΓ(A), a contradiction.
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• If µ(B−) > 0, then set A∗ := B−, B∗ := Y \B−. The argument is the same as in the previous case.

• If µ(B+) = µ(B−) = 0 then set A∗ := A and B∗ := Y \ A. A∗ and B∗ have positive measures. It is

clear that
∫
A∗×B∗ Γ = 0.

4.3 Set X0 is fragmented

Let Y ⊆ X0 of positive measure be as in Definition 2.1(iii). For x ∈ Y , let f(x) ∈ [0, µ(Y )] be the measure

of the set of points in Y which can be reached from x. We distinguish three cases.

• f is constant-0 almost everywhere on Y .

In that case we partition Y = A ⊔ B into two arbitrary sets of positive measure. Obviously, we have∫
A×B Γ = 0. Definition 2.1(iii) is satisfied.

• f is constant-c almost everywhere on Y , for some c > 0.

We will show a contradiction. Let us take x ∈ Y with f(x) = c. Let Z ⊆ Y be those points that can

be reached from x, µ(Z) = c. We claim that for almost every point z ∈ Z, the set of points that can

be reached from z is equal to Z up to a nullset. Indeed, suppose otherwise. That is, for there is a set

C ⊆ Z of positive measure of points z with µ(ReachoutΓ(z) \Z) > 0. But the Lemma 3.6 tells us that

µ(ReachoutΓ(x) \ Z) > 0, a contradiction.

We concluded that for almost all the pairs (z, z′) ∈ Z2, z can be reached from z′ and z′ can be reached

from z. In particular W (z, z′) > 0. So, the degrees of the vertices Z in the graphon W are positive, a

contradiction with Definition 4.1(i).

• f is not constant almost everywhere on Y .

Take c ∈ [0, µ(Y )) such that A := f−1([0, c]) and B := f−1((c, µ(Y )]) are two sets of positive measure.

We claim that
∫
A×B Γ = 0. Indeed, by Lemma 3.6, for every x ∈ A, we have

∫
y∈B Γ(x, y) = 0. Hence,

Definition 2.1(iii) is satisfied.

4.4 Uniqueness

Suppose that {X ′
i}i∈I′∪{0} is another decomposition of Γ into strong components and a fragmented set. First,

observe that Definition 2.1(ii) implies that if for some i ∈ I and i′ ∈ I ′ we have that µ(Xi ∩X ′
i′) > 0 then

Xi =0 X
′
i′ . That is, the only thing left to rule out are potential strong components Xi with the property

Xi ⊆ X ′
0 or X ′

i′ with the property X ′
i′ ⊆ X0. But these cannot exist by the antagonistic properties of

Definition 2.1(ii) and Definition 2.1(iii).

4.5 Useful additional properties

Given the fundamental nature of the decomposition into strong components and the fragmented set, here we

establish additional useful properties of this decomposition. Proposition 4.6 asserts that almost all pairs of

points in a strong component are connected in both directions. In Propososition 4.7 we propose a counterpart

of the well-known notion of the ‘condensation digraph’ for digraphons. In subsequent comments, we extend
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this to ‘enhanced condensation digraph’ which captures also connectivity properties outside of the fragmented

set. Proposition 4.8 deals with the fragmented set. The original Definition 2.1(iii) is not a very descriptive

one. In Proposition 4.8 we for example show that the fragmented set can be linearly ordered so that for x

and y in the fragmented set, we have Γ(x, y) > 0 only if x precedes y. We also show that the spectral radius

of the fragmented set is 0. Last, in Proposition 4.10, we show that all directed cycles are confined to strong

components.

Proposition 4.6. Suppose that Xi is a strong component of a digraphon Γ. Then for almost every x ∈ Xi,

almost all points of Xi are reachable from x, and for almost every x ∈ Xi, x can be reached from almost

every point of Xi.

Proof. We proved that strong components of Γ correspond to components of W . Also, from the way W was

defined in (11), we have that if x and y are reachable in W the x is reachable from y in Γ and also that y is

reachable from x in Γ. Hence, the claim follows from Lemma 4.3.

Recall that decomposing a finite digraph into its strong components leads to the notion of a condensation

digraph. This is a digraph whose vertices correspond to the strong components, and in which a directed edge

between two such vertices indicates the existence of at least one directed edge between the corresponding

components in the original digraph. A crucial property of a condensation digraph is that it is acyclic. Here,

we establish an analogue for digraphons.

Proposition 4.7. Suppose that Γ is a digraphon and Ω = X0 ⊔
⊔
i∈I Xi is its decomposition into strong

components. Create a (finite or countable) digraph on D vertex set I as follows. A pair of distinct vertices

(i, j) ∈ I2 is a directed edge if and only Γ is not constant-0 on Xi×Xj. We call D the condensation digraph

of Γ.

(i) Suppose that ℓ ∈ N and i1i2 . . . iℓ is a directed walk in D. Then for almost every pair of vertices

(x, y) ∈ Xi1 ×Xiℓ , we have that y is reachable from x in Γ.

(ii) The condensation digraph D is acyclic, that is, it contains no finite directed cycle. In particular,

applying this for directed cycles of length 2, the digraphon Γ is constant-0 on at least one of Xi ×Xj

and Xj ×Xi for each pair of distinct i, j ∈ I.

Proof. We first prove (i). We prove the claim by induction on ℓ. First, we deal with the base case ℓ = 1.

That is, we need to prove that for almost every pair (x, y) ∈ Xi1 ×Xi1 , x is reachable from y. This is the

subject of Proposition 4.6.

Let us now deal with the induction step. Let i1i2 . . . iℓ+1 be a directed walk in D. We know that Γ is not

constant-0 on Xiℓ ×Xiℓ+1
. In particular, there is a set Z ⊆ Xiℓ+1

of positive measure, each element of which

has positive in-degree from the set Xiℓ . By the induction hypothesis, for almost all pairs (x, y) ∈ Xi1 ×Xiℓ

we have that y is reachable from x. By Lemma 3.6, for almost all pairs (x, z) ∈ Xi1 ×Z, z is reachable from

x. Combined with Proposition 4.6, we conclude that for almost all (x,w) ∈ Xi1 ×Xiℓ+1
, w is reachable from

x, as was needed.

We can now prove (ii). Suppose that C is a directed cycle in the condensation digraph. Then we can

take two vertices of it, say, i and j, and use C to find a directed path from i to j and from j to i. Part (i)
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X1 X0

X2

Γ D

X2

X1

Figure 2: An example of a digraphon Γ, and digraph D which approximates Γ. The condensation digraph

of Γ consists of two isolated vertices. Also, note that any directed path from X1 to X2 needs to go through

several vertices in X0.

tells us that for almost every pair (x, y) ∈ Xi × Xj we have that x is reachable from y and y is reachable

from x. That means that in (11), we have W (x, y) > 0. But then Xi and Xj are not different connected

components of W , a contradiction.

Proposition 4.7 introduced the bare condensation digraph on the strong components {Xi}i∈I but did not

treat the set X0. For finite digraphs, Proposition 4.7(i) can be reversed: if u ∈ Ci and v ∈ Cj are vertices

in two strongly connected components Ci and Cj of a digraph, and there is no directed walk from Ci to

Cj . This is not true for the condensation digraph. Indeed, Figure 2 shows a digraphon with two strong

components X1 and X2 whose condensation digraph consists of two isolated vertices. Points of X2 can be

reached from X1, though only using the fragmented sets X0. Hence, for some scenarios, there is a more

telling notion of extended condensation digraph D+. D+ is a supergraph of D on the same vertex set I. A

pair (i, j) which is not an edge is added to D+ if there is a positive density of paths (of any length) from Xi

to Xj whose internal vertices are only in X0. It is easy to show, that with this definition, Proposition 4.7(i)

can be reversed: if (i, j) ∈ I2 are such that there is a directed walk from i to j in D+, then for almost every

pair of vertices (x, y) ∈ Xi ×Xj , y is reachable from x. If, on the other hand, such a directed walk from i

to j does not exist, then the assertion holds for almost no pair (x, y) ∈ Xi ×Xj .

Proposition 4.8 is our main technical statement about the fragmented set in a decomposition of a di-

graphon into strong components. While the first three items may seem little technical, the last two show

how they are useful. In particular, Item (iii) tells use that the set X0 (or an arbitrary subset of it) can be

linearly ordered so that there are no edges going from bigger elements to smaller elements.

Proposition 4.8. Suppose that Γ is a digraphon and Ω = X0 ⊔
⊔
i∈I Xi is its decomposition into strong

components. Let X ⊆ X0 be arbitrary of positive measure. Let g : X → [0, µ(X)] be defined by g(x) :=

µ(ReachoutΓ(x) ∩X). For a ∈ [0, 1], let Fa := g−1([a, 1]).

(i) Let a ≥ 0 be arbitrary. Then for almost every x ∈ Fa we have µ(ReachoutΓ(x) ∩X \ Fa) ≥ a.

(ii) Let a ≥ 0 be arbitrary. Then we have µ(Fa) ≤ µ(X)− a.
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(iii) Γ is constant-0 almost everywhere on the set {(x, y) ∈ X2 : g(x) ≥ g(y)}.

(iv) We have ρ(ΓJXK) = 0.

For the proof, we shall need a lemma which we might call ‘a qualitative Caccetta–Häggkvist Conjecture

for digraphons’. Recall that the Caccetta–Häggkvist Conjecture assert if D is an n-vertex digraph with

minimum outdegree at least n/k for some k ∈ N, then D contains an oriented cycle of length at most k.

While the question is wide open, qualitative relaxations are known. As an example which will be useful for

us, Shen [29] proved that any such digraph contains a cycle of length at most k+73. Below we give a similar

results for digraphons. We do not require any bound on the length of the cycles (even though our proof

easily gives one), but we require positive density of them (which is the only reasonable counterpart to the

existence of a subdigraph in finite digraphs).

Lemma 4.9. Suppose that Ψ is a digraphon on ground space Ξ with mindegout(Ψ) > 0. Then there exists

k ≥ 2 so that t(Ck,Ψ) > 0.

Proof. This is almost exactly the result of Shen mentioned above. The only difference is that Shen’s result is

for finite digraphs whereas our claim is about digraphons. Our derivation is standard, using the Regularity

lemma.

Suppose that the probability measure on Ξ is ξ. Let a := mindegout(Ψ). We apply Theorem 3.8, with

error parameter ε = (d/4)2000·d
−2

and density d := a/3 on the digraphon Ψ. Theorem 3.8 outputs a partition

Ξ = Z1 ⊔ · · · ⊔ Zt and a digraph D on [t]. The minimum out-degree of D is at least at/2. For i, j ∈ [t] we

will refer to densities pi,j and digraphons Ψavgi,j from Definition 3.7. Shen’s result [29] asserts that D contains

a directed cycle C = v1v2 . . . vk of length k ≤ 2
d + 73. The product p :=

∏k
i=1 pvi,vi+1

(with the notation

vk+1 = v1) satisfies

p ≥ (d/3)
2
d+73 . (22)

We recall Definition 3.2. Let Z := ∪kℓ=1Zvℓ , and Γ := Ψ↾Z×Z , and Γavg :=
(∑k

ℓ=1 Ψ
avg
vℓ,vℓ+1

)
↾Z×Z

. That

is, Γ zooms on the part of Ψ containing cycle C, and Γavg is the averaged version. By summing up k many

times the cut distances in Definition 3.7(ii) (and taking into the account the rescaling of the measure by a

factor of t
k from Definition 3.2), we have d□(Γ,Γ

avg) < k · (ε · t−2) · ( tk )
2 = ε/k.

The definining product for p is what appears in (4) for t(Ck,Γ
avg) except that in the latter only when

the elements tuple (x1, . . . , xk) are confined to consecutive cells of the partition Z = Zv1 ⊔ Zv2 ⊔ . . . ⊔ Zvℓ .
Hence,

t(Ck,Γ
avg) ≥ p · (1/k)k

(22)

≥ (d/3)
2
d+73 · (1/k)k > ε .

Hence, by Lemma 3.3, t(Ck,Γ) ≥ t(Ck,Γ
avg) − e(Ck) · d□(Γ,Γavg) > 0. Since Γ is contained in a rescaled

version of Ψ, we conclude that t(Ck,Ψ) > 0.

Proof of Proposition 4.8(i). Suppose that this fails for some a. That means that there exists ε > 0 so that

the set

Z :=
{
x ∈ Fa : µ(ReachoutΓ(x) ∩X \ Fa) ≤ a− ε

}
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has positive measure. By Lemma 3.6, almost every vertex y reachable from a given vertex x ∈ Z has itself

µ(ReachoutΓ(y)∩X \ Fa) ≤ a− ε. In particular, if y is in addition in Fa, then y ∈ Z. Since x ∈ Z ⊆ Fa, we

know that

µ(ReachoutΓ(x) ∩ Z) ≥ ε . (23)

Construct a digraphon Ψ on ground space Z equipped with the natural rescaling of measure µ, µZ(·) :=
µ(·∩Z)
µ(Z) , as follows. For (x, y) ∈ Z2, Ψ(x, y) is 1 or 0, depending on whether y ∈ ReachoutΓ(x) or not. Then,

by (23), we have mindegout(Ψ) ≥ ε
µ(Z) (the denominator takes care of rescaling between µ and µZ). By

Lemma 4.9, we have t(Ck,Ψ) > 0 for some k ≥ 2. That is, the set P ⊆ Z2 of pairs (x1, x2) ∈ Z2 such that,

writing xk+1 = x1, ∫
x3∈Z

∫
x4∈Z

. . .

∫
xk∈Z

k∏
i=1

Ψ(xi, xi+1) > 0

has positive measure (either with respect to µ or with respect to µZ , this is equivalent since we only care about

positivity). For each such (x1, x2) ∈ P we have that x2 ∈ ReachoutΓ(x1) by the definition of Ψ. But also,

using paths via x3x4 . . . xk, we see that x1 ∈ ReachoutΓ(x2). This means that in (11), we haveW (x1, x2) > 0.

As P 2 ⊆ X2, we deduced that W is not constant-0 almost everywhere on X2, a contradiction.

Proof of Proposition 4.8(ii). Set Ga := X \Fa. The proof proceeds by double-counting pairs (x, y) ∈ Fa×Ga
such that (*1) y ∈ ReachoutΓ(x) or equivalently, (*2) x ∈ ReachinΓ(y). To get a lower-bound on the measure

of y’s that satisfy (*1) for a given x, we use Part (i). To get an upper-bound on the measure of x’s that

satisfy (*2) for a given y, we use that µ(ReachinΓ(y) ∩ Fa) ≤ µ(Fa). That is,

µ(Fa)a ≤ µ2 ({(x, y) ∈ Fa ×Ga : (x, y) satisfies (*1) and/or (*2)}) ≤ µ(Fa)µ(Ga) .

This yields µ(Fa) = 0 or µ(Ga) ≥ a. Either case suffices to conclude the statement.

Proof of Proposition 4.8(iii). We need to check that for every c ∈ [0, µ(X)], Γ is constant-0 on g−1([c, µ(X)])×
g−1([0, c]). This follows by Lemma 3.6 for the set g−1([c, µ(X)))× g−1([0, c]) ∪ g−1([c, µ(X)])× g−1([0, c)).

So, in the rest we prove that Γ is constant-0 on Z × Z, where Z := g−1({c}). Assume that Z has positive

measure as there is nothing to prove otherwise. For x ∈ Z, we decompose the value g(x), g(x) = f(x)+h(x),

f(x) := µ(ReachoutΓ(x)∩Z), h(x) := µ(ReachoutΓ(x)∩X \Z). If f is constant-0 on Z, then Γ is constant-0

on Z × Z and we are done. If f is constant-c′ for some c′ > 0, we get a contradiction with Lemma 4.9 in

the same way as we did in the proof of Part (i), this time on the ground set Z. Hence, it remains to deal

with the case that for some c′′ > 0 we have the sets S1 := f−1([0, c′′]) and S2 := f−1((c′′, c]) have positive

measures. Note that equivalently, S1 := h−1([c− c′′, c]) and S2 := h−1([0, c− c′′)). Lemma 3.6 tells us that

for x ∈ S2, Reach
out

Γ(x) ∩ S1 is null. Hence,

µ(ReachoutΓ(x) ∩ S2) = µ(ReachoutΓ(x) ∩ Z) = f(x) > c′′ .

Therefore, we get a contradiction with Lemma 4.9 in the same way as we did in the proof of Part (i), this

time on the ground set S2.
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Proof of Proposition 4.8(iv). Rescale X to be a probability space, µX(·) := µ(·)
µ(X) . Consider the lower-

triangular digraphon T ∈ L∞(X2), defined by T (x, y) = 1{g(x)<g(y)}. Let B : X → [0, µ(X)] be defined by

B(t) := µX(Ft). Simple inductive calculations show that for each k ∈ N and for each x, y ∈ [0, 1] we have

T k(x, y) ≤ 1

(k − 1)!
· 1{g(x)<g(y)}(B(y)−B(x))k .

Since, in general ∥ · ∥op ≤ ∥ · ∥∞, we have ∥T k∥op ≤ 1
(k−1)! for each k ∈ N. By Proposition 3.10, we

have ρ(T ) ≤ limk→∞ k

√
1

(k−1)! = 0. By the monotonicity of the spectral radius (Lemma 3.19), we have

ρ (Γ↾X×X) ≤ ρ(T ) = 0. Hence, ρ (ΓJXK) = 0.

Last useful property suggests that directed cycles are confined to strong components.

Proposition 4.10. Suppose that Γ is a digraphon and Ω = X0 ⊔
⊔
i∈I Xi is its decomposition into strong

components. Let k ∈ {2, 3, . . .} be arbitrary. Then we have t(Ck,Γ) =
∑
i∈I t(Ck,ΓJXiK).

Proof. We need to prove that in the integral
∫
x1,...,xk

defining t(Ck,Γ) there is no contributions of tuples

(x1, x2, . . . xk) ∈ Xi1 ×Xi2 × . . . ×Xik with {i1, i2, . . . , ik} ⊆ I being not all the same, and also that there

is no the contribution of tuples
⋃k
ℓ=1{(x1, x2, . . . xk) : xℓ ∈ X0}.

As for the first part, we see that this is clearly the case for the given tuple (i1, i2, . . . , ik) as above if

for some s ∈ [k] we have that isis+1 (using the cyclic notation) is not a directed edge of the condensation

digraph of our partition. But Proposition 4.7 tells us that such a nonedge always exists.

As for the second part, suppose for a contradiction that Z = {x1 ∈ X0 : t•x1
(C•

k ,Γ) > 0} has positive

measure. Let Y ⊆ Ω be defined as those points x2 where∫
x1∈Z,x3∈Ω,x4∈Ω,...,xk∈Ω

∏
s∈[k]

Γ(xi, xi+1) > 0 .

Obviously, Y has positive measure. We see that the above definition of Y is equivalent to

Y = {x2 ∈ Ω : µ({x1 ∈ Z : Γ(x1, x2) > 0 and Γk−1(x2, x1)}) > 0)} .

We now recall the definition of the graphon W in (11). In particular, the above tells us that
∫
Z×Y W > 0,

a contradiction to the fact that X0 was created as elements of zero degree in W .

5 Spectral radius of digraphons and strong components

The main result of this section, Proposition 5.1, connects spectral properties of a digraphon with the structure

of its strong components. Here, we work with the convention that the supremum of an empty set is 0 (rather

than the more common sup ∅ = −∞).

Proposition 5.1. Suppose that Γ is a digraphon on Ω. Let Ω = X0 ⊔
⊔
i∈I Xi be its decomposition into

strong components.

(i) We have ρ(Γ) = supi∈I ρ(ΓJXiK). The supremum supi∈I ρ(JXiK) is in fact a maximum.

(ii) We have ρ(Γ) = 0 if and only if I = ∅.
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Remark 5.2. As can be seen from the proof below, Proposition 5.1 holds even in a somewhat more general

setting. Namely, suppose that p ∈ [1,∞), and that Γ is nonnegative and such that as an integral kernel

operator on Lp(Ω) it is bounded and compact. In that case, the correct key formula in Proposition 5.1 is

ρp(Γ) = supi∈I ρp(ΓJXiK), where ρp is the spectral radius when Γ is viewed as an operator on Lp(Ω). This

extension is useful in [16].

Proof of Proposition 5.1(i). The case I = ∅ is handled by Proposition 4.8(iv). We will assume that I ̸= ∅.
The inequality ρ(Γ) ≥ supi∈I ρ(ΓJXiK) is trivial. Indeed, each digraphon on the right-hand side is a

sub-digraphon of Γ, and so the inequality follows from monotonicity of the spectral radius (Lemma 3.19).

The proof of the inequality ρ(Γ) ≤ supi∈I ρ(ΓJXiK) has two steps. First, we prove the proposition when I is

finite. Then we use the finite case to cover the infinite case as well.

The case when I is finite. Consider the condensation digraph D on I as in Proposition 4.7. Order the

vertices I as I = {t1, . . . , tℓ} so that for each i ∈ [ℓ] there are no directed edges going to ti from {ti+1, . . . , tℓ}.
This is possible as D is acyclic (Proposition 4.7(ii)). Further, for each i ∈ {0, 1, . . . , ℓ}, let Zi := X0 \
ReachoutΓ

(⋃ℓ
j=i+1Xtj

)
. We have Z0 ⊆ Z1 ⊆ . . . ⊆ Zℓ = X0.

The core of the proof is the following claim.

Claim C. Suppose that f is an eigenfunction of Γ corresponding to eigenvalue ν. Then the following is

true.

(i) f is constant-0 on Z0.

(ii) If for some i ∈ [ℓ], f is constant-0 on Zi−1 ∪
⋃i−1
j=1Xtj , then either f is constant-0 on Xti or 1Xti

f is

an eigenfunction of ΓJXtiK corresponding to eigenvalue ν.

(iii) If some some i ∈ [ℓ], f is constant-0 on Zi−1 ∪
⋃i
j=1 ∪Xtj , then f is also constant-0 on Zi.

Proof of Claim C. All the parts of the claim follow the same idea, namely that the chain

∅ , Z0 , Z0 ∪Xt1 , Z1 ∪Xt1 , Z1 ∪Xt1 ∪Xt2 , Z2 ∪Xt1 ∪Xt2 , . . . , Zℓ ∪
ℓ⋃
j=1

Xtj

has the property that each term T of this chain is disjoint (modulo a nullset) from ReachoutΓ(T
−) of the

previous term T−. Note that in such a setting, if g ∈ L2(Ω) is such that g is constant-0 almost everywhere on

T−, then for almost every x ∈ T , we have (Γg)(x) =
(
(ΓJT \ T−K)g

)
(x). Applying this to our eigenfunction

f corresponding to eigenvalue ν, we see if f were constant-0 on T− then 1T\T−f is either an eigenfunction of

ΓJT \T−K corresponding to eigenvalue ν or it is constant-0. This reasoning alone yields Part (ii). For Parts (i)

and (iii) (which correspond to cases when T \T− = Zi \Zi−1) we need to combine it with Proposition 4.8(iv)

which asserts that ΓJT \ T−K admits no nontrivial eigenfunction.

Let us now use Claim C to conclude the statement. Suppose that f is a (nonzero) eigenfunction of Γ

corresponding to eigenvalue ρ(Γ). Let i ∈ [ℓ] be the smallest such that f is not constant-0 on Xti . Claim C

asserts that such an i exists (that is, the nonzero part of f cannot be confined to X0), and that 1Xi
f is an

eigenfunction of ΓJXtiK corresponding to eigenvalue ρ(Γ). Thus, ρ(ΓJXtiK) ≥ ρ(Γ), as was needed.
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The case when I is infinite. Let I1 ⊆ I2 ⊆ . . . ⊆ I be an increasing chain of finite sets that exhaust I.

For k ∈ N, define Γk := Γ
q
X0 ∪

⋃
i∈Ik Xi

y
.

Claim D. Digraphons Γk converge to Γ in the operator norm.

Proof of Claim D. Recall that the operator norm is bounded from above by the the Hilbert–Schmidt norm,

and that for integral kernel operators on L2(Ω), the latter is equal to the L2-norm of the corresponding

kernel. Hence, the claim follows from the obvious fact that ∥Γ− Γk∥2 → 0.

We recall a well known fact that the spectrum (and hence also the spectral radius) is continuous with

respect to the operator norm, when all the operators involved are compact (which digraphons are). Since

by the above finite case we have ρ(Γk) = supi∈Ik ρ(ΓJXiK) ≤ supi∈I ρ(ΓJXiK) for each k ∈ N, the above

continuity yields ρ(Γ) ≤ supi∈I ρ(ΓJXiK).
The supremum is achieved. This follows from a well-known fact that the only possible accumulation point

of the spectrum of a compact operator is 0.

Proof of Proposition 5.1(ii). The case I = ∅ is handled by Proposition 4.8(iv). In view of Proposition 5.1(i),

it only needs to be proven that one digraphon ΓJXiK (i ∈ I) has a nonzero eigenvalue. Of course, the choice

of i ∈ I will not be important and we will prove the assertion for every choice of i ∈ I.

By Proposition 4.7(i) (applied on the 1-vertex walk i), for almost every pair (x, y) ∈ Xi×Xi there exists

a positive density of paths within Xi of certain length, say ℓx,y from x to y. By sigma-additivity of measure,

there exists a pair (L+, L−) ∈ N2 so that µ2({(x, y) ∈ X2
i : ℓx,y = L+, ℓy,x = L−}) > 0. This means that

t(CL++L− ,ΓJXiK) > 0. Applying Proposition 3.9 for k = L+ + L−, we see that ΓJXiK has at least one

non-zero eigenvalue.

Let us remark that a more direct proof would be using a theorem of de Pagter (see Theorem 4.2.2 in [26]),

which says that non-negative, irreducible (c.f. Lemma 3.15) compact operator has nontrivial spectrum.

6 Peripheral and graphic periodicity of digraphons

In this section, we study the connection between spectral properties of a digraphon and periodicity. While the

latter notion, which we formally introduce in Definition 6.1, is new for digraphons, it is a natural counterpart

to the well-known notions appearing in the theory of digraphs and even more often in the theory of Markov

chains. That is, in a strongly connected digraph H, the following features are known to be equivalent for

any given d ∈ N (see e.g.. Theorem 8.8.1 in [12] and Theorem 1.7 in [28]):

• All directed cycles in H are of lengths divisible by d.

• The vertex set V (H) can be partitioned into sets P0, P1, . . . , Pd−1 so that each edge of H goes from

Pk−1 to Pk (for some k ∈ [d], using the cyclic notation Pd = P0). The sets P0, . . . , Pd−1 are often called

‘cyclic sets’.

• If γ is a largest eigenvalue in the absolute value of the adjacency matrix of H, then the numbers

{exp(−2πki/d)γ}d−1
k=1 are also eigenvalues.
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• The entire spectrum of H is symmetric (including algebraic multiplicities) under a rotation by angle

2π/d.

The counterpart of this concept for digraphons is as follows.

Definition 6.1. Suppose that Γ is a digraphon on Ω. For d ∈ N, we say that Γ is graphically d-periodic

if there exists a partition Ω = P0 ⊔ P1 ⊔ . . . ⊔ Pd−1 such that (using the cyclic notation Pd = P0) for every

j = 0, . . . , d−1 we have Γ↾Pj×(Ω\Pj+1) = 0 (almost everywhere). The sets P0, . . . , Pd−1 are called cyclic sets.

We say that Γ is aperiodic if the only integer for which this condition holds is d = 1.

A digraphon can be graphically d-periodic for several values of d. Indeed, if a digraphon is graphically

d-periodic and p divides d, then the partition Ω = Y0 ⊔ Y1 ⊔ . . . ⊔ Yp−1, Yj :=
⋃
t:t≡j mod p Pt shows that it

is also graphically p-periodic. It follows from Theorem 6.2 below that, if Γ is strongly connected, there is a

largest graphic periodicity d, and all the graphic periodicities are just divisors of d. More importantly, this

number d is the peripheral multiplicity of Γ.

Suppose that S ⊆ N, and that D ∈ N and s ∈ Z are given. We say that S is eventually D-periodic with

shift s if S − s ⊆ DZ and for some k ∈ N we have (S − s)∩ {k, k+1, k+2, . . .} = DN∩ {k, k+1, k+2, . . .}.
For example, the set {32, 62, 72, 82, 92, 102, 112, . . .} is eventually 10-periodic with shift 2, while the sequence

{23, 32, 62, 72, 82, 92, 102, 112, . . .} is not.

With these preparations, we are ready to present the main result of this section which gives a link between

graphical periodicity and spectral properties. This result is accompanied by Propositions 6.4 and 6.5 which

establish additional connections.

Theorem 6.2. Suppose that Γ is a strongly connected digraphon on Ω. Suppose that the peripheral multi-

plicity of Γ is D.

(i) Suppose that Γ is graphically d-periodic. Then the number exp(−2πi/d)ρ(Γ) is an eigenvalue of Γ. In

particular, by Theorem 3.16, the number d divides D.

(ii) The digraphon Γ is graphically D-periodic. Furthermore, there exists a partition Ω = P0⊔P1⊔. . .⊔PD−1

as in Definition 6.1 such that for every i, j ∈ {0, 1, . . . , D − 1} and almost every pair (x, y) ∈ Pi × Pj,

the reachability sequence from x to y is eventually D-periodic with shift j − i.

Actually, we shall use the following corollary.

Corollary 6.3. Suppose that Γ is a strongly connected digraphon on Ω. Suppose that the peripheral multi-

plicity of Γ is D. Let k ≥ 3 be arbitrary. Then t(Ck,Γ) > 0 if and only if k is divisible by D.

Proof. Theorem 3.18(ii) tells us that Spec(Γ) is symmetric by rotation by angle 2π/D, including algebraic

multiplicities. We can than write
∑
λ∈Spec(Γ) mΓ(λ) · λk in D different ways by applying this symmetry,

t(Ck,Γ)
P3.9
=

∑
λ∈Spec(Γ)

mΓ(λ) · λk =
1

D

D−1∑
ℓ=0

∑
λ∈Spec(Γ)

mΓ(λ) (exp(−2πℓi/D)λ)
k

=
1

D
·

(
D−1∑
ℓ=0

exp(−2πℓki/D)

)
·

 ∑
λ∈Spec(Γ)

mΓ(λ) · λk
 .
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If k is not divisible by D,
∑D−1
ℓ=0 exp(−2πℓki/D) = 0. On the other hand, if k is divisible by D, then∑D−1

ℓ=0 exp(−2πℓki/D) = D. The statement follows.

The proof of Theorem 6.2 has three parts. In Section 6.1, we prove Item (i). In Section 6.2 we prove the

main part of Item (ii), that is, the existence of a decomposition as in Definition 6.1. Last, in Section 6.3, we

prove the statement about reachability sequences.

In Proposition 6.5, we state an easy consequence of Theorem 6.2(ii), namely that the partition Ω =

P0 ⊔ P1 ⊔ . . . ⊔ PD−1 as in Definition 6.1 is essentially unique in the case of a strongly connected digraphon

of peripheral multiplicity D. The proof of Proposition 6.4 is given in Section 6.4.

Proposition 6.4. If Γ is a strongly connected digraphon of peripheral multiplicity D, then the partition

Ω = P0⊔P1⊔. . .⊔PD−1 as in Definition 6.1 is unique up to a cyclic shift. That is, if Ω = Q0⊔Q1⊔. . .⊔QD−1

is as in Definition 6.1, then for some s ∈ Z we have that for all i, j ∈ {0, . . . , D − 1} that Pi =0 Qj if and

only if i ≡ j + s mod D.

The last major feature we derive in this section concerns the D-th power of a peripherally D-periodic

strongly connected digraphon. This feature will be used to reduce the proof of Theorem 7.1 only to the

aperiodic case. A proof of this proposition is given in Section 6.5.

Proposition 6.5. Suppose that Γ is a strongly connected digraphon on Ω. Suppose that the peripheral

multiplicity of Γ is D. Let Ω = P0 ⊔ P1 ⊔ . . . ⊔ PD−1 be the partition provided by Theorem 6.2(ii) for the

digraphon Γ. Suppose further that vL and vR are the real eigenfunctions for the eigenvalue ρ(Γ).

Then the decomposition of the digraphon ΓD into strong components (as in Theorem 2.2) consists of an

empty fragmented set and of strong components P0, P1, . . . , PD−1. Further, for each i ∈ {0, 1, . . . , D − 1},
the digraphon (ΓD)↾Pi×Pi

is aperiodic and we have ρ((ΓD)↾Pi×Pi
) = ρ(Γ)D

µ(Pi)
, and (vL)↾Pi

and (vR)↾Pi
are the

left and right eigenfunctions for the eigenvalue ρ((ΓD)↾Pi×Pi
).

Remark 6.6. The issue of periodicity is particularly simple for those digraphons that are symmetric, that

is, for graphons. Indeed suppose that Γ is a connected graphon. Then by (2), its spectrum is real. That

is, either the set of peripheral eigenvalues is {−ρ(Γ), ρ(Γ)} or {ρ(Γ)}. In the former case, we say that Γ is

‘bipartite’. Several equivalent definitions of bipartiteness known from finite graph theory carry over to the

graphon setting, see [7].

6.1 Proof of Theorem 6.2, part (i)

Let Ω = X0 ⊔ X1 ⊔ . . . ⊔ Xd−1 be as in Definition 6.1. We also use the cyclic notation Xd = X0 and

X−1 = Xd−1. Let f ∈ L2(Ω) be the eigenfunction for the eigenvalue ρ(Γ). Define a function g ∈ L2(Ω) by

g :=

d−1∑
j=0

1Xj · f · exp
(
−2πi · j

d

)
.

In words, g is obtained by taking f and shifting the phase by − 2πj
d on every part Xj .

We claim g is an eigenfunction for eigenvalue exp(−2πi/d)ρ(Γ), which will prove the theorem. Indeed,

let x ∈ Ω be arbitrary. Let j ∈ {0, 1, . . . , d − 1} be such that x ∈ Xj . Recall that by the key property of

28



Definition 6.1, except for a nullset of exceptional x ∈ Xj , we have that

Γ(·, x) is zero almost-everywhere on Ω \Xj−1 . (24)

Then

(Γg)(x) =

∫
z∈Ω

Γ(z, x)g(z)dz
(24)
=

∫
z∈Xj−1

Γ(z, x)g(z)dz

=

∫
z∈Xj−1

Γ(z, x) · f(z) · exp
(
−2πi · (j − 1)

d

)
dz

= exp

(
−2πi · (j − 1)

d

)
·
∫
z∈Xj−1

Γ(z, x) · f(z)dz

(24)
= exp

(
−2πi · (j − 1)

d

)
·
∫
z∈Ω

Γ(z, x) · f(z)dz

f eigenfunction = exp

(
−2πi · (j − 1)

d

)
ρ(Γ) · f(x) = exp

(
−2πi · (j − 1)

d

)
ρ(Γ) · g(x) exp

(
2πi · j
d

)
= exp

(
2πi

d

)
ρ(Γ)g(x) ,

as was needed.

6.2 Proof of Theorem 6.2, the main part of (ii)

We will a use trivial inequality for complex numbers. Recall that the angular component of the polar

coordinates of a complex number is called the phase. The phase is uniquely defined except for number 0

which can have every phase.

Fact 6.7. Suppose that α is a finite measure on a measure space Ξ, f : Ξ → C is a bounded function, and

we have
∣∣∫ fdα∣∣ = ∫ |f | dα. Then the phase of f(x) is constant α-almost everywhere.

Let f be an eigenfunction corresponding to eigenvalue τ := exp(− 2πi
D )ρ(Γ). That is, for almost every

x ∈ Ω, we have ∫
y

Γ(y, x)f(y)dµ(y) = τf(x) . (25)

Define a function g : Ω → R, g(x) := |f(x)|. Take an arbitrary x ∈ Ω. We have

(Γg) (x) =

∫
y

Γ(y, x)g(y)dµ(y) ≥
∣∣∣∣∫
y

Γ(y, x)f(y)dµ(y)

∣∣∣∣ = |τf(x)| = ρ(Γ)g(x) . (26)

So, Theorem 3.16(v) tells us that g is an eigenfunction for eigenvalue ρ(Γ), that is, Γg = ρ(Γ)g. That is, for

almost every x ∈ X, there is an equality between the second and the third term of (26),∫
y

Γ(y, x) |f(y)| dµ(y) =
∣∣∣∣∫
y

Γ(y, x)f(y)dµ(y)

∣∣∣∣ . (27)

The next claim it crucial. It asserts that for a given x, f(x) differs in phase by − 2π
D from f(y) for almost all

inneighbors y of x.
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Claim E. Suppose that x ∈ Ω is given and that it satisfies (25) and (27). Then for almost all y ∈ Ω with

Γ(y, x) > 0, the number f(y) has the phase of f(x) shifted by − 2π
D .

Proof of Claim E. Define a measure α on Ω by α(T ) :=
∫
y∈T Γ(y, x)dy. We can rewrite (27) as

∣∣∫ fdα∣∣ =∫
|f | dα. In particular, Fact 6.7 tells us that for α-almost all y’s, f(y) has the same phase (note that this

does not say anything about y’s with Γ(y, x) = 0).

The rest follows from (25). Indeed, the right-hand side has the has the phase of f(x) shifted by − 2π
D . As

for the left-hand side, we already proved that all contributing terms Γ(y, x)f(y) have the same phase (recall

that Γ(y, x) > 0, and this factor does not change the phase), say θ. It follows that this phase θ has to be

the phase appearing on the right-hand side.

Fix x that satisfies (25) and (27). It follows by induction on ℓ = 1, 2, . . . that for almost all y with x

reachable from y in ℓ steps, the values f(y) has phase of f(x) shifted − 2πℓ
D (these shifts are D-periodic).

Theorem 3.16(iii) tells us that g is strictly positive, almost everywhere. In other words, f is not zero almost

everywhere, and hence the phase of f(y) is unique for almost all y. Since for almost every y, x can be reached

from y in a finite number of steps (recall Proposition 4.6), we conclude that for almost y ∈ Ω, the phase of

f(y) differs from the phase of f(x) by − 2πℓ
D for some ℓ = 0, 1, . . . , D − 1. We partition almost all elements

of Ω according to this phase shift, Ω =0 P0 ⊔ . . . ⊔ PD−1. We now need to verify that this partition satisfies

Definition 6.1. Pick j ∈ {0, 1 . . . , D − 1}. It is our task to show that for almost all x̃ ∈ Pj+1 we have that

almost all the inneighbors of x̃ lie in Pj . But this is precisely what Claim E tells us.

6.3 Proof of Theorem 6.2, reachability sequences

We use the partition Ω =0 P0 ⊔ . . .⊔PD−1 obtained in Section 6.2 The proof has two parts. In the first (and

easy) part, we prove that for almost every (x, y) ∈ Pi × Pj we have that if k ∈ N is such that k − (j − i)

is not divisible by D, then Γk(x, y) = 0. In the second (and longer) part, we will prove that eventually all

reachability lengths of one congruence class modulo D occur between x and y.

6.3.1 First part: reachability lengths of wrong congruences do not appear

Equivalently, the first part amounts to proving that
∫
(x,y)∈Pi×Pj

Γ(x, y) = 0.

We have ∫
(x,y)∈Pi×Pj

=

∫
(x0,x1,...,xk)∈Pi×Ωk−1×Pj

k∏
ℓ=1

Γ(xℓ−1, xℓ) .

We split the domain Pi×Ωk−1 ×Pj into 2k−1 parts, Pi×Ωk−1 ×Pj = Pi×
(⋃

a1,...,ak−1∈{⊕,⊖}
∏k−1
ℓ=1 A

aℓ
ℓ

)
×

Pj , where A⊕
ℓ := Pi+ℓ (with cyclic notation of indices) and A⊖

ℓ = Ω \ Pi+ℓ. Definition 6.1 tells us

that Γ is constant-0 on Pi × A⊖
1 and also A⊕

ℓ−1 × A⊖
ℓ on for every ℓ ∈ [k]. We also have that Γ is

constant-0 on A⊕
k × Pj . Put together, we conclude that for every choice of a1, . . . , ak−1 ∈ {⊕,⊖}, we

have
∫
(x0,x1,...,xk)∈Pi×

∏k−1
ℓ=1 A

aℓ
ℓ ×Pj

∏k
ℓ=1 Γ(xℓ−1, xℓ) = 0, as was needed for the first part.
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6.3.2 Second part: reachability lengths of the right congruences eventually all appear

By Corollary 6.3, we have t(CD,Γ) > 0. For each i ∈ {0, 1, . . . , D − 1}, let P ∗
i ⊆ Pi consist of those x with

t•x(C
•
k ,Γ) > 0. By Fubini’s theorem, the sets P ∗

0 , P
∗
1 , . . . , P

∗
D−1 have positive measures.

Now, suppose that i and j are given and that x ∈ Pi and y ∈ Pj . Find a number ℓ ∈ N so that∫
z∈P∗

0
t••x,z(Pℓ,Γ) > 0. Such a number exists by Proposition 4.6. Let P ∗∗

0 ⊆ P ∗
0 be the set of z’s such that

t••x,z(Pℓ,Γ) > 0. Hence, P ∗∗
0 is of positive measure. Find a number h ∈ N so that

∫
z∈P∗∗

0
t••z,y(Ph,Γ) > 0.

Such a number exists by Proposition 4.6.

Claim F. For every j ∈ N0, we have t••x,y(Pℓ+h+jD,Γ) > 0.

Before proving Claim F, let us show that this implies the statement. Indeed, Claim F asserts that the

reachability sequence from x to y is eventually D-periodic with some shift. But Section 6.3.1 tells us that

the only available shift is j − i.

Proof of Claim F. Indeed, we have a positive density of paths from x to P ∗∗
0 . From each element of P ∗∗

0 ,

wrap j many cycles of length D around that vertex, and finally, use paths of length from P ∗∗
0 to y.

6.4 Proof of Proposition 6.4

We need to prove that if Ω = P0⊔P1⊔ . . .⊔PD−1 provided by Theorem 6.2(ii), and Ω = Q0⊔Q1⊔ . . .⊔QD−1

is another partition with of Ω which is not a cyclic shift of P0 ⊔ P1 ⊔ . . . ⊔ PD−1. We need to prove that

Ω = Q0⊔Q1⊔. . .⊔QD−1 does not satisfy the properties of Definition 6.1. Below, we formalize the assumption

that Q0 ⊔Q1 ⊔ . . . ⊔QD−1 is not a cyclic shift of P0 ⊔ P1 ⊔ . . . ⊔ PD−1 but here we mention that the reason

could be twofold: (i) there exist i, j, k with j ̸= k so that both Pi ∩Qj and Pi ∩Qk have positive measures,

or (ii) the unordered partitions {P0, . . . , PD−1} and {Q0, . . . , QD−1} are the same (modulo nullsets) but the

bijection between these two partitions is not a cyclic shift.

Since Q0 ⊔ Q1 ⊔ . . . ⊔ QD−1 is not a cyclic shift of P0 ⊔ P1 ⊔ . . . ⊔ PD−1 then there exist indices (not

necessarily distinct) i, j, h, k ∈ {0, . . . , D − 1} with

j − i ̸≡ h− k mod D (28)

and the property that both S := Pi ∩ Qk and T := Pj ∩ Qh have positive measures. Then on the one

hand, Theorem 6.2(ii) tells us that for almost every (x, y) ∈ S × T , the reachability sequence from x to y is

eventually D-periodic with shift j − i. In particular, for some

L ≡ j − i mod D (29)

we have ∫
(x,y)∈S×T

t••x,y (P
••
L ,Γ) > 0 . (30)

On the other hand, the claim below shows that the assumption that Q0 ⊔ Q1 ⊔ . . . ⊔ QD−1 satisfies

Definition 6.1 would lead to a contradiction.
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Claim G. If Q0 ⊔ Q1 ⊔ . . . ⊔ QD−1 satisfied Definition 6.1, and we would have for a number r ∈ N and a

sequence k =: t1, t2, . . . , tr ∈ {0, . . . , D − 1} that
∫
x1∈Qt1

∫
x2∈Qt2

· · ·
∫
xr∈Qtr

∏r−1
q=1 Γ(xq, xq+1) > 0, then we

have that t2 ≡ k + 1 mod D, tr ≡ k + r − 1 mod D.

Before we prove Claim G, let us show that the assumption that Q0⊔Q1⊔. . .⊔QD−1 satisfied Definition 6.1

would lead to a contradiction. Indeed, in that case we would have∫
(x,y)∈S×T

t••x,y (P
••
L ,Γ) ≤

∫
x1∈Qk

∫
x2∈Ω

· · ·
∫
xL∈Ω

∫
xL+1∈Qh

L∏
q=1

Γ(xq, xq+1)

=

D−1∑
t2=0

D−1∑
t3=0

· · ·
D−1∑
tL=0

∫
x1∈Qk

∫
x2∈Qt2

· · ·
∫
xL∈QtL

∫
xL+1∈Qh

L∏
q=1

Γ(xq, xq+1) .

Note that (28) and (29) imply that h ̸≡ k+L mod D. Thus, Claim G yields that for every choice of t2, . . . , tL

we have
∫
x1∈Qk

∫
x2∈Qt2

· · ·
∫
xL∈QtL

∫
xL+1∈Qh

∏L
q=1 Γ(xq, xq+1) = 0. Hence,

∫
(x,y)∈S×T t

••
x,y (P

••
L ,Γ) = 0, a

contradiction to (30).

Proof of Claim G. This easily follows by induction on r = 1, 2, . . . and the key property of Definition 6.1.

6.5 Proof of Proposition 6.5

Two proof consists of two complementing parts concerning strong connectivity and aperiodicity (namely an

argument about disconnectedness in Lemma 6.8 and an argument about connectedness in Lemma 6.9), and

Lemma 6.10 which covers the spectral part of the statement.

Lemma 6.8. In the setting of Proposition 6.5, we have for each i ∈ {0, 1, . . . , D − 1} that
∫
Pi×(Ω\Pi)

ΓD =∫
(Ω\Pi)×Pi

ΓD = 0.

Lemma 6.9. In the setting of Proposition 6.5, we have for each i ∈ {0, 1, . . . , D−1} and for almost every pair

(x, y) ∈ Pi × Pi that the reachability sequence from x to y in the digraphon ΓD↾Pi×Pi
is eventually 1-periodic.

Lemma 6.10. In the setting of Proposition 6.5, we have for each i ∈ {0, 1, . . . , D−1} that ρ((ΓD)↾Pi×Pi) =
ρ(Γ)D

µ(Pi)
, and (vL)↾Pi

and (vR)↾Pi
are the left and right eigenfunctions for the eigenvalue ρ((ΓD)↾Pi×Pi

).

It is easy to see that Proposition 6.5 follows. Indeed the fact implied by Lemma 6.9 that between almost

every pair (x, y) ∈ Pi×Pi, y is reachable from x in ΓD implies that Pi is strongly connected. Lemma 6.8, on

the other hand, shows that Pi also satisfies Definition 2.1(ii). It remains to argue that ΓD↾Pi×Pi
is aperidic.

Indeed, if ΓD↾Pi×Pi
were d-periodic for some d > 1, then by Theorem 6.2, for almost every (x, y) ∈ Pi×Pi, the

reachability sequence from x to y would be eventually d-periodic (with a certain shift sx,y), a contradiction

with the eventual 1-peridicity given by Lemma 6.9. The spectral part of Proposition 6.5 is covered by

Lemma 6.10. Hence, Proposition 6.5 is proven.

Crucial to our proofs of Lemmas 6.8 and 6.9 will be the following two simple observations. The first one

follows directly from Definition 3.5: For every k ∈ N and (x, y) ∈ Ω2, we have

t••x,y(P
••
k ,ΓD) = t••x,y(P

••
Dk,Γ) . (31)
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The second one combines (31) with Theorem 6.2. Namely, the furthermore part of Theorem 6.2(ii) tells us

that if x ∈ Pi then expressing t••x,y(P
••
k ,ΓD) as (5), the integrand is nonzero only if x2, . . . , xk, y ∈ Pi. Thus,

for (x, y) ∈ Pi × Pi,

t••x,y(P
••
k ,ΓD↾Pi×Pi

) = (
1

µ(Pi)
)k · t••x,y(P ••

Dk,Γ) . (32)

where the term ( 1
µ(Pi)

)k comes from the renormalization of the measure as in Definition 3.2.

Proof of Lemma 6.8. Equivalently, we need to prove that for almost every (x, y) ∈ Pi × (Ω \ Pi) we have

t••x,y(P
••
1 ,ΓD↾Pi×Pi

) = t••y,x(P
••
1 ,ΓD↾Pi×Pi

) = 0. Thanks to (31), this is equivalent to asking whether the reacha-

bility sequence from x to y and from y to x in the digraphon Γ exclude the number D. Theorem 6.2(ii) tells

us that this is indeed the case (since the shift is nonzero).

Proof of Lemma 6.9. Theorem 6.2(ii) tells us that for almost every (x, y) ∈ Pi×Pi, the reachability sequence

from x to y in the digraphon Γ is eventually D-periodic with zero shift. We use (32), and see that the

reachability sequence from x to y in the digraphon ΓD↾Pi×Pi
is eventually 1-periodic. This also implies the

statement about strong connectedness.

Proof of Lemma 6.10. The claim that ρ((ΓD)↾Pi×Pi
) = ρ(Γ)D

µ(Pi)
is equivalent to ρ((ΓDJPiK) = ρ(Γ)D. The

≤-inequality follows from Proposition 5.1. For the ≥-inequality, it suffices to show that (vL)↾Pi and (vR)↾Pi

are the left and right eigenfunctions for the eigenvalue ρ((ΓD)↾Pi×Pi). We show the argument for (vL)↾Pi ;

the argument for (vR)↾Pi
is verbatim. This claim amounts to proving that for the function f ∈ L2(Ω),

f := vL · 1Pi
we have ΓDf = ρ(Γ)D · f . This is obvious.

7 Asymptotics for values of high powers of a digraphon

In this section, we present one of the main theorems of the paper. It asserts that high powers Γk of a strongly

connected digraphon Γ can be approximately expressed in terms of the spectral radius, and the corresponding

left and the right eigenfunctions. The theorem is a functional-analytic counterpart to well-known results

from the Perron–Frobenius theory. Namely, if A is an square matrix with positive entries and k is large,

then Ak ≈ λkvrightvleft, where λ is the largest eigenvalue of A, vleft and vright are the unique left and right

eigenvectors corresponding to it, and the product vrightvleft is a matrix of the same dimensions as A. See

for example Theorem 8.2.8(f) in [18].

Theorem 7.1. Suppose that Γ is a strongly connected digraphon on ground set Ω. We assume that there

are left and right real eigenfunctions vL, vR for the eigenvalue ρ(Γ) satisfying ⟨vL, vR⟩ = 1.

Let the peripheral multiplicity of Γ be D. Suppose that Ω = P0 ⊔ P1 ⊔ . . . ⊔ PD−1 is a decomposition as

in Theorem 6.2(ii).

Let ρ := ρ(Γ). There exists a number α ∈ (0, ρ) with the following property: For every i, j ∈ {0, . . . , D−1}
and almost every (x, y) ∈ Pi × Pj we have

Γℓ(x, y) =

ρℓvR(x)vL(y) +O(αℓ) if ℓ ≡ j − i mod D, or

0 otherwise,
(33)
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as ℓ→ ∞. The term in O(·) does not depend on x and y.

The proof of Theorem 7.1 has two parts. First, we prove it in the aperiodic case, which is stated in

Proposition 7.2. We give a proof of Proposition 7.2 in Section 7.1. Then, in Section 7.2, we show that the

aperiodic case implies the full Theorem 7.1.

Proposition 7.2. Suppose that W is a strongly connected aperiodic digraphon on ground set Ω. We assume

that there are left and right real eigenfunctions wL, wR for the eigenvalue ρ(Γ) satisfying ⟨wL, wR⟩ = 1.

Let τ := ρ(W ). There exists a number β ∈ (0, τ) such that for almost every (x, y) ∈ Ω2 we have

W ℓ(x, y) = τ ℓwR(x)wL(y) +O(βℓ) as ℓ→ ∞. The term in O(·) does not depend on x and y.

Remark 7.3. Theorem 7.1 is much easier and had been widely used when Γ is a graphon. Indeed, in

that case one can use the spectral decomposition (2), Γ(x, y) =
∑
i λifi(x)fi(y), where {fi(x)}i are or-

thonormal eigenfunctions of Γ (the symmetricity of Γ gives that each eigenfunction is left and right at the

same time), and {λi}i are the corresponding eigenvalues. Orthonormality means that for each k ∈ N,
Γk(x, y) =

∑
i λ

k
i fi(x)fi(y). That is, we have an explicit description of the error term in (33). Recall that

Remark 6.6 tells us that the issue of periodicity is particularly simple for graphons.

7.1 Proof of Proposition 7.2

Let T be the integral kernel operator corresponding to digraphon W . Our goal is to decompose the operator

T as T = T1 + T2 where T1 is a rank one operator with spectral radius ρ(T ) and the spectral radius of T2 is

strictly less than ρ(T ). This will be done using a reducing pair of invariant subspaces. See the last paragraph

before Theorem 2.22 from [1] for a definition. Since T1 has rank one, the invariant subspace of T where T1

operates has dimension 1.

The conclusion of Theorem 4.2.13 from [26] for T/r(T ) can be reformulated in terms of T as follows.

Proposition 7.4. The peripheral elements of the spectrum of T are eigenvalues of algebraic multiplicity 1

and have the form αir(T ) where αd = 1 for an integer d ≥ 1 and αi ̸= 1 for i = 1, . . . , d− 1. In particular,

if λ = αir(T ), then ker(λI − T ) = ker(λI − T )2 and dim ker(λI − T ) = 1.

The first part of the conclusion is a part of the conclusion of Theorem 4.2.13 from [26]. The second part

of the conclusion makes the first part more explicit and one can verify in the proof of the statement in [26]

that it is correct.

Denote λ = ρ(T ). Using Definition 2.20 from [1] (whereN is used to denote nullspace) and Proposition 7.4

above we can conclude that λI − T has both ascent and descent equal to 1. Theorem 6.39 from [1] then

implies that λ is a pole of order 1 of the resolvent of T .

Denote σ = {λ}. This set is a spectral set, since it is both open and closed in the spectrum Spec(T ).

Hence, Theorem 6.34 from [1] with σ = {λ} implies that there is a reducing pair (Yλ, Zλ) of the operator

T such that Spec(T |Yλ
) = {λ} and Spec(T |Zλ

) = Spec(T ) \ {λ}. Moreover, since λ is a pole of order

1, Corollary 6.40 from [1] implies that Yλ = ker(λI − T ) and Zλ = image(λI − T ). In particular, by

Proposition 7.4, the dimension of Yλ is 1.
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Let P1 = P{λ} and P2 = PSpec(T )\{λ} in the notation from Definition 6.33 and Theorem 6.34 from [1].

Hence, P1 is the projection to Yλ along Zλ and P2 is the projection to Zλ along Yλ.

Let T1 = T ◦ P1 and T2 = T ◦ P2. We have T = T1 + T2 and T1 ◦ T2 = T2 ◦ T1 = 0. Hence, for every

k ≥ 1, we have

T k = T k1 + T k2 .

By construction, the spectrum of T1 is {λ}, and the spectrum of T2 is Spec(T )\{λ}. Since we assume d = 1,

λ is the only eigenvalue of T of maximal absolute value, so we have ρ(T2) < ρ(T1).

Let v1 be an eigenvector of T and v2 an eigenvector of T ′, both with eigenvalue λ. In particular, both are

positive and bounded, since T and T ′ are non-negative irreducible operators with a bounded kernel. Clearly,

v1 ∈ Yλ. Since the dimension of Yλ is 1, v1 is its generator. For every f ∈ L2(Ω), we have

⟨λf − T (f), v2⟩ = λ⟨f, v2⟩ − ⟨f, T ′(v2)⟩ = λ⟨f, v2⟩ − λ⟨f, v2⟩ = 0 .

Since Zλ = image(λI − T ), this implies v2 ∈ Z⊥
λ .

Lemma 7.5. We have ⟨v1, v2⟩ ≠ 0.

Proof. Since Yλ ⊕ Zλ = L2(Ω), there are functions y ∈ Yλ and z ∈ Zλ such that v2 = y + z. Since v2 is

non-zero and orthogonal to z, we have ⟨v2, y⟩ = ⟨v2, v2⟩ ≠ 0. Since y is a multiple of v1, the statement

follows.

By Lemma 7.5, v1 and v2 can be chosen so that ⟨v1, v2⟩ = 1. Then, we have

Pλ(f) = ⟨f, v2⟩v1

and

T1(f) = ρ(T )⟨f, v2⟩v1 .

Importantly, by induction, we obtain

T k1 (f) = ρ(T )k⟨f, v2⟩v1 .

So, we have

T1(f)
k(x) = ρ(T )kv1(x)

∫
Ω

f(y)v2(y)dµ(y) . (34)

Hence, T k1 is a kernel operator with the kernel ρ(T )kv1(x)v2(y).

Since T = T1 + T2, and T and T1 are kernel operators, also T2 is a kernel operator. Let us denote W1

and W2 the kernel of T1 and T2, respectively. Since v1 and v2 are positive and bounded, (34) implies the

same for W1 as a function of two variables. Since W = W1 +W2, also W2 is bounded as a function of two

variables, however, it may not be non-negative.

7.2 Deducing Theorem 7.1 from Proposition 7.2

Suppose the setting of Theorem 7.1. Rather than proving (33) for a universal constant α < ρ, we will find

one number αi,j ∈ (0, ρ) for each i, j ∈ {0, . . . , D − 1} so that (33) holds with error term O(αℓi,j). This is
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sufficient, as then we can take α := maxi,j αi,j . The ‘otherwise’ part of (33) is trivial. So, ℓ = MD + j − i,

for large M ∈ N.
First, we prove the statement when i = j. In that case, for each (x, y) ∈ Pi × Pi,

Γℓ(x, y) = µ(Pi)
M−1 ·

(
(ΓD)↾Pi×Pi

)M
(x, y) , (35)

where the factor µ(Pi)
M−1 comes from the rescaling of the probability space µPi

as in Definition 3.2. Define

W := ΓD. Let τ := ρ(W ). By Proposition 6.5, for we have that (ΓD)↾Pi×Pi
is strongly connected, aperiodic,

ρ((ΓD)↾Pi×Pi
) = ρD

µ(Pi)
, and with left and right eigenfunctions wL :=

√
µ(Pi) · (vL)↾Pi

and wR :=
√
µ(Pi) ·

(vR)↾Pi . The rescaling by the factor
√
µ(Pi) is chosen so that we have ⟨wL, wR⟩Pi = 1 for the inner product

⟨·, ·⟩Pi
in the Hilbert space L2(Pi, µPi

).

By Proposition 7.2, we have

(
(ΓD)↾Pi×Pi

)M
(x, y) =

(
ρD

µ(Pi)

)M
wR(x)wL(y) +O(βM ) =

ρMD

µ(Pi)M−1
vR(x)vL(y) +O(βM ) ,

for some β ∈ (0, ρD

µ(Pi)
). Thus, the statement follows by substituting into (35). Here, αi,i =

D
√
βµ(Pi) < ρ.

Next, we prove the case when i ̸= j. Suppose that (x, y) ∈ Pi×Pj . Set M
∗ :=M − 1 and r := D+ j− i.

Define a function F ∈ L2(Ω) by F (z) := ΓM
∗D(x, z). This function is 0 if z ̸∈ Pi. If z ∈ Pi, then the

previously established part applies. Thus, for the functions G,H ∈ L2(Ω),

G(z) :=

ρM
∗DvR(x)vL(z) if z ∈ Pi, and

0 otherwise,

and H := F − G, we have ∥H∥∞ = O(αM
∗D

i,i ). Below, we express Γℓ(x, y) using the operator Γr acting on

the function F ,

Γℓ(x, y) = ((Γr)(F )) (y) = ((Γr) (G+H)) (y) = ((Γr) (G)) (y) + ((Γr) (H)) (y) ,

by linearity. We deal with both summands separately. The term ((Γr) (G)) (y) will lead to the main term

of (33), while the term ((Γr) (H)) (y) will be the error term.

Let us look at the term ((Γr) (G)) (y). The function G is the ρM
∗DvR(x)-multiple of the eigenfunction

vL on Pi and is 0 on other cyclic sets. The periodicity of Γ means, that when for some f ∈ L2(Ω) we want

to evaluate Γf at some cyclic set Pk, only the values of f on the previous cyclic set Pk−1 are relevant. This

demonstrates particularly nicely if f coincides with some eigenfunction fλ (whose eigenvalue is λ ∈ C) on

Pk−1. In that case (Γf)↾Pk
= λf↾Pk

. Of course, the relevant eigenfunction for us is ρM
∗DvR(x) vL. Using

the above iteratively r many times with k ≡ i+1, i+2, . . . , i+ r− 1 mod D, we have that ((Γr) (G)) is the

ρr-multiple of ρM
∗DvR(x) vL. That is, ((Γ

r) (G)) (y) = ρr · ρM∗DvR(x) vL = ρℓvR(x) vL, as appears in (33).

To deal with the term ((Γr) (H)) (y) is simple. We have ∥Γ∥∞ ≤ 1. That is, the operator Γ is contractive

with respect to the L∞-norm. Thus, ∥(Γr) (H) ∥∞ ≤ ∥H∥∞ = O(αM
∗D

i,i ) = O(αℓi,i).
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[16] Hladký, J., and Savický, P. Inhomogeneous random 2SAT. preprint.

[17] Hoppen, C., Kohayakawa, Y., Moreira, C. G., Ráth, B., and Menezes Sampaio, R. Limits
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