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1. Density Functional Theory

1. 1. Theoretical Basis

The state of a quantum mechanical system is determined by it’s Hamil-
tonian H that gives us all the possible information about the system.
The eigenstates of H are the stationary states. We suppose that at zero
temperature the system is in the ground state, the eigenstate of H with
the lowest energy.

The physical systems we study are bodies with an infinite periodic lattice
with three basis vectors (in a 3D space) and translation symmetry. The
sites are occupied by a finite number of atomic species.

The task of finding the eigenstates of the Hamiltonian is too complicated
in systems with several particles (including nuclei, electrons and their
spins) to be solved exactly. The first approximation to be mentioned is
the Born-Oppenheimer approximation. It separates the wave function
(R, 7;) in a product of a nuclei wave function u(R,) and an electron
wave function vig,}(r;), which depends parametrically on the nuclei po-
sitions R,. In this work we treat the nuclei as classical particles with
well-defined trajectory and assume that there exist an electron Hamilto-
nian H{g,}, where {R,} are the positions of the nuclei. We also assume
that the nuclei are not moving in the ground state and their kinetic
energy is zero.

The variational principle can be used to find the positions { R,} which
minimize the appropriate ground state energy of the system. This energy
is the sum of the potential energy of the nuclei (created mostly by the
coulomb interactions) and the lowest eigenvalue of the appropriate elec-
tron Hamiltonian Hz,}. This state is (in our approximation) the ground
state of the system at zero temperature.

We assume in all the further text that the positions of the nuclei are fixed
and we denote the electron Hamiltonian H instead of Hg,}.

We usually know the positions of the nuclei from observations. The vari-
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ational principle is practically used only to find a small number of pa-
rameters (as the lattice constants, assuming we know the type of the
lattice).

The task of many programs is to calculate the ground state of H. The
quantum state of the electrons in the system we usually call The Elec-
tronic Structure (ES). The most common way to calculate it is based on
the one-electron approximation using the Density Functional Theorem,
proved by Hohenberg and Kohn in 1964 [1,2]:

Theorem (DFT). The ES of a non-degenerate ground state of an
electron system and it’s external potential are both determined by it’s
single-particle density p(r), defined by

p(r) = N/v,b*(r,rg, e TrN)U(r, T rN)drs . dry,

where 1 is the normalized wave function of the ES and N the number of
electrons.

This justifies the definition of the total energy as a functional £[p] of the
single-particle density. We use the variational principle for minimizing &
with respect to p under the condition [ p(r)dr = N and p > 0.

It can be shown that the variational principle leads to equations that are
equivalent to solving the problem of N non-interacting particles with the
Hamiltonian H,;r = —A + Vs, the effective potential [1]

dExc(p]
op(r)

Vers(r) = Veur(r) +/ |ip_(r;),|d3r + (1.1)

Here V., is the external potential of our electron system (it includes the
coulomb electrostatic field of the nuclei) and Ex¢ is called the exchange-
correlation energy and is caused by non-classical energy components. The
last equation is to be understood as a functional equation: we identify
f(r) with a functional g(r) — [ f(r)g(r)dr. The expression M;—)pm is the
differential of the Ey¢ in the point p (which is a functional). The density
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p is given by
N
p(r) = |i(r)] (1.2)
i=1
where 1; are the N lowest eigenfunction of this effective Hamiltonian.

If we know the functional Ex¢c we can find the density p(r) of our system
so that the eigenfunction of the effective Hamiltonian satisfy (1.1) and
(1.2). The knowledge of p determines the total energy of ES and can be
calculated by a simple formula.

This is solved by iterations in the numerical implementations. We choose
some starting effective potential Ve(fl}, compute the orbitals ¢§1’ and the

density pM). Using p(*) and (1.1) we obtain a new potential ‘Zz(;} Now
we let Vg} = eV, ff® + (1-— e)Ve(;} We call € the mixing parameter. It
can be proved that for € small enough this iterations will converge to a
self-consistent effective potential V.

There are several methods to determine Exc. The simplest one is called
Local Density Approximation: it approximates

Exol] ~ / p(F)exc(p(r))dr

where €x¢ is a function. In this approximation the exchange-correlation
energy depends on the density locally. For exc we usually take the
exchange-correlation energy of the homogeneous electron gas. We are
able to compute this function to a high degree of accuracy. This approx-
imation is suitable for systems where the electron density doesn’t varies
much. A better approximation called GGA (General Gradient Approxi-
mation) improves this by including the density gradient into the function

exc = exc(p(r), Vp(r)).

If we include the electron spin to our observation we get two electron
densities: p; and p, for spin +1/2 and —1/2. The approximation

Exclpr p] = /ﬂ(T)EXC(PTa py)dr

is called Local Spin Density Approzimation (LSDA). The models within
LDA and LSDA are based on the homogeneous electron gas model.
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1. 2. Other Approximations and Techniques Used by Calculat-
ing the Ground State ES

Many difficulties arise by solving the self-consistent Schrodinger equa-
tions with the potential (1.1) and density (1.2). One technique often used
is to distinguish between the core electrons and valence electrons. We as-
sume that the core electrons are localized inside their atomic spheres and
that they don’t interact with other atoms. Therefore we treat them inde-
pendently and their total energy is the sum of the core electron energies
over all the atoms. We use a technique of the Hamiltonian resolvents
defined by
G(z)=(z—H)*

to calculate the energy of valence electrons. This operator in the space
representation is called Green function (GF):

pi(r) i (r')
G " 2) = {(r'|G = — 1.3
(ror'2) = (PGl = 30 ST (13)
where 1);(r) are the eigenfunctions of H and ¢; it’s eigenvalues. We assume
that H = —A + Voss(r), Vs is the effective potential from (1.1).

We use now the distributional identity

1 1 .
T —P; —imo(x) (1.4)
where 0 is the dirac distribution, [ ¢(z)d(x)dz = ¢(0) and (P) means

the principal value. From (1.3) and (1.4) we have

me%:—%MG@mJH4®:z]mWWME—m (1.5)

From the knowledge of the GF for an electron system the quantity w can
be calculated and from (1.5) we easily derive the energy resolved density
of state (DOS) and the electron density:

mm:/memE (1.6)
n(E) = /w(r,E)dr (1.7)



The point is that we can calculate the density p without the knowledge of
the orbitals ¢;(r). If we integrate in (1.6) from —oo to the Fermi energy
Er, we obtain the total density of electrons. If we need the density
of valence electrons only, we integrate in (1.6) over the energies of the
valence electrons.

One important quality of the GF is that it is analytic in the upper com-
plex half-plane. Therefore we can compute the integral (1.6) by integrat-
ing over a circle in the upper complex half-plane what is more convenient
from the numerical point of view.

The density p(r) can be determined from the GF for the effective Hamil-
tonian with the potential (1.1) using (1.6) and this density determines a
new potential V,rr and a new effective Hamiltonian.

The problem we still have is to find the Green function G for some
potential V.

Here other approximation are used. The first one to mention is the
Atomic Sphere Approzimation (ASA) where we approximate the poten-
tial Vorr(r) by a potential V' that is spherically symmetric inside non-
overlapping spheres and constant in the interstitial region outside the
spheres. We assume that the atomic spheres have all the same radius,
the nuclei are in their centers and the potential inside the Rth sphere
depends only on the distance from the center. We assume that the wave
functions solve the Laplace equation (not Schrddinger) in the intersti-
tial region what corresponds to the demand for zero kinetic energy. The
energy contribution from the interstitial region is zero in this approxima-
tion and we solve the Schrodinger equation with the potential (1.1) only
in the region of the atomic spheres.

If starting with a spherically symmetric potential, we obtain an electron
density that is no more spherically symmetric but we symmetrize it tak-
ing p(rr) to be the average of p(rg) on the sphere {rg = rg}. We
also approximate the external potential V., in (1.1) by it’s spherically
symmetric part and obtain a new potential that is spherically symmetric
inside the atomic spheres.



It can be derived that the GF for the points r + R, ' + R', where r + R
lies in the Rth sphere and 7'+ R’ lies in the R'th sphere, can be expressed
as [1]

) ¢OrL(TR 2)PRL(TR, 2)
Glr + R, T+ R, ?) = Onm Z {eri(Tr, 2), PrRI(TR, 2) }

+> ¢ri(TR, Z)GRLR’L’ (2)er 1 (r'R 2)
L

(1.8)

where 7 = r — R for all » and R, rg resp. rg is that one from rg, 7' g
with the larger resp. smaller absolute value, gy (TR, 2) resp. ¢rr (TR, 2)
is the regular resp. irregular solution of the Schrodinger equation (—A +
Verr — ) = 0 in the Rth sphere with the angular momentum L = (I, m),
©rL (TR, 2) is the radial part of gL (TRL, 2), {} is the Wronskian of the
radial functions defined by {f(r),g(r)} :=r*(f(r)g'(r) — f'(r)g(r)) and
the constants Ggrrr/(2) defined by (1.8) can be computed from the

equation
G(z) = —§§E§ VEOPE - s P )

z

where

s {Em(r) or(r2)}
PRL,R'L'(Z) =driRr {JRl( ) SDRz(T z)} |r Sy

Kpg; and Jg(r) are the irregular and regular solutions of the Laplace
equation, s, is the radius of the atomic spheres in ASA, the dot over P
is the energy derivation and the matrix S is defined by

(1.10)

KL("“R Z Sk ,R'L' JL'(T'R')

Ll

The matrix S is called canonical structure constants matrix and it de-
pends only on the atomic positions { R, }. For an ideal crystal it is a non
random matrix.

This way the Green function can be determined and from the GF all the
one-electron properties of the system can be calculated using (1.1) and
LDA or LSDA.
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1. 3. Numerical Results

Most of the existing programs for calculating the ground state energies
are based on the LSDA and Greens function technique described shortly
in the previous paragraph. Other approximation are used by solving the
one-electron Schrédinger equation with H = —A 4 V,;¢(r) even within
ASA. One common way is the using of the variational principle and
finding the approximate solution in a subspace generated by some set
of special functions. The Schrodinger equation then leads to a system
of linear equations. The quality of the method depends on the choice of

the generating functions. One common method is the technique of linear
muffin-tin orbitals (LMTO) described in [1].

One interesting fact is that in order to obtain reasonable results we have
to treat the f-electrons in lanthanides as core electrons, although their
energy is high. Several calculations have been performed showing that
the f-electrons are more localized then the valence d-electrons and that
f-electron interactions between various lattice sites are negligible.

I used existing programs of RNDr. Ilja Turek to calculate the energies
of europium and vanadium as a function of the Wigner-Seitz radius s
defined by (4/3)ws® = Q, Q is the volume per atom. Both europium and
vanadium have the bce structure with 2 atoms in each lattice cell. There
are no f-electrons present in vanadium and it’s Wigner-Seitz radius is
2.81 a.u. (1 a.u.~ 0.0529177 nm). I obtained FIG. 1.1 for the total atomic
energy (using LDA).

The numerical result is about 2.75 a.u. as we see from the picture, what
is, compared with the experimental value 2.81 a.u. an error of about 2%.
A good illustration of an f-electron system is europium (bce structure).
FIG. 1.2 shows the dependence of it’s atomic energy on the Wigner-Seitz
radius. The magnetic properties are not negligible in europium and we
have to use the spin polarized LSDA approximation. FM means the fer-
romagnetic europium with all atoms having the same magnetic moment
(we denote it’s projection onto the magnetization axis J). AFM is the
anti-ferromagnetic europium. It is a solid with 2 different europium atoms
in each primitive cell: one atom having the projection of the magnetic
moment onto the magnetization axis +.J and one atom having this pro-
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FIG. 1.1 The total ground state energy of vanadium within LDA and ASA for various

Wigner-Seitz radii. The zero energy is set to be the ground state energy.
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FIG. 1.2 The total ground state energy of FM, AFM and DLM europium within
LSDA and ASA for various Wigner-Seitz radii. The minimum energy is here about
4.2 a.u.



jection —.J (where J is the total magnetic moment of an atom). Finally,
DLM means disordered local moments and it is an europium with random
magnetic moments (in this case the CPA approximation have to be used,
see chapter 5). We see that in all this cases the radius s corresponding
to the minimal energy is approximately the same, about 4.2 a.u.

We can conclude from this example that the atomic radius is almost
independent of the configuration of the magnetic moments. The real con-
figuration of europium ground state is a spin spiral. The experimental
value is s = 4.238 a.u. In this calculations the f-electrons are core elec-
trons and the results are good. If we treat them as valence electrons, we
obtain a larger error, as can be seen from FIG. 1.3.

Total energy (mRy/atom)
O B N W » 01 O

3.5 3.7 3.9 4.1 4.3
s (a.u.)

FIG. 1.3 The total ground state energy of europium depending on the Wigner-Seitz
radius s. The black circles and squares denote two various calculations within LSDA
and the empty squares are GGA calculations (see 1.1). Here the f-electrons are treated

as valence electrons.

Another interesting result is the energy resolved density of states that we
obtain from (1.7). Some results for Eu are shown in FIG. 1.4 and FIG.
1.5. We see in FIG. 1.4 a sharp peak in the DOS of f-electrons.
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FIG. 1.4 Spin polarized density of states for FM europium (s = 4.19 a.u.) total (full
lines), spd-projected (dashed) and f-projected (dotted).
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-0.3 -0.2 -0.1 0 01 0.2

E-Er (RY)

FIG. 1.5 Spin polarized density of states for FM europium, f-electrons in the core.
The dashed line marks the position of the occupied 4 f-level.
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2. Ferromagnets and Curie Temperature

2. 1. The Heisenberg Hamiltonian

The magnetism we observe in real solids is due to the spin and orbital
momentum of the valence electrons. Each atom has a total magnetic
moment depending on it’s electronic configuration. This configuration in
the ground state is determined by the Hund rules. In a crystal the spin
magnetization density within LSDA is

m(r) = p(r) — py(r)

and the total spin per atom within ASA we obtain by integrating m over
one atomic sphere.

Let as assume that there is one atom in each primitive cell ¢ creating a
non-zero magnetic moment J; = (J7,J7, J?). In the following text we
denote the lattice cells by 4, j instead of R, R’ etc.

The magnetic energy of a non-interacting system of magnetic moments
is W =—yB Zj J7, where v > 0 and z is the axis of the external field
B (the Zeeman energy term). We get a more realistic Hamiltonian after
considering the dipole-dipole interactions between various lattice sites.

The Heisenberg Hamiltonian is defined [3,4,5,6]

M=) JJiJ;—vBY J; (2.1)
J

i’j

This model Hamiltonian operates only on the momentum space and we
consider now all the other energy components as constants.

The constants J;; are called Heisenberg exchange parameters. In the fur-
ther text we assume that we have an ideal infinite lattice with translation
symmetry, Jj; = J;; = Joj—; and J;; = 0. In the quantum mechanical de-
scription J are the spin operators, J;J; = JJ7 + szyJ;-/ + J7J7. If there
are many valence electrons present and the spin is high, we treat the
momentum as a classical vector and the product J;J; as a scalar vector

15



product. In this classical description we normalize this vector J? = J?,
where J is the total magnetic moment per atom.

The system is in it’s ground state at zero temperature, which can be in
particular cases (depending on the J;; constants) a ferromagnetic state
(i.e. all the moments have the same direction).

At nonzero temperatures the system is in a statistical mixture of differ-
ent states with the density operator p = e ?* 8 = 1/(kgT), T is the
temperature and kg the Boltzmann constant. The statistical mean value
of an observable A is defined by

Tr(pA)
Tr(p)
The constants J;; can be obtained from the knowledge of the spin resolved

GF and the (spin resolved) potential functions (1.10) within LSDA, ASA,
and TB-LMTO (see eq. (3) in [4] and [9]).

(4) =

It can be shown that the amplitude of .J;; for distant lattice sites ¢, j
decreases to zero like d— where d = |i — j| is the distance between the
lattice sites. A finer approximation is J;; ~ Asin(kd + ¢)/d®. FIG. 2.1
shows the dependence of the exchange coefficients on the distance.

2. 2. Langevin Paramagnetism

Let us derive an equation for the average magnetization @ := (J7) =
(J.) (independent of ¢) if the Hamiltonian is just H = —yB ). J7 (the
Zeeman term) and assume that the spins JZ € (—J, J) as in the classical
description. The partition function can be computed [4]

Z = / dQy ... Qe 2% = ( / dQePrBIcos N — (5(a))N
where ¢; is the angle between the z-axis and the direction of Jj,
T .
z(a) = — sinh(a), (2.2)

a
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FIG. 2.1 The J;; constant from the Heisenberg Hamiltonian for bce europium and
their dependence on the distance d = |i — j| without and with a prefactor d®. Here a

is the lattice constant.

N is the number of atoms and a = SBJ~v. The magnetization is

~_ Llof
(J?) = Y (2.3)

where f is the Gibbs free energy per particle. From the statistical physics
we know f = —(1/5)log z(a). From (2.3) and (2.2) can be easily derived
that the

i/J = L(a) (2.4)
where we define the Langevin function
L(a) := coth(a) — 1/a (2.5)

(2.4) is an equation for the magnetization. It describes a phenomenon
called Langevin paramagnetism. This equation is exact for noninteracting
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classical magnetic moments (the approximation was used only in the
choice of the Hamiltonian and the classical treatment of the magnetic
moment as a vector).

2. 3. Mean Field Approximation

Each of the moments J; creates it’s own magnetic field that interact
with all other magnetic moments. In the Mean Field Approximation we
assume that each magnetic moment is affected only by an average field
from all other moments. A natural assumption is that the created field
is proportional to the magnetization @ = (J?):

Bioe = \ii (2.6)

We assume that the average magnetization doesn’t depend on the lattice
cell 7.

Let us consider a system of magnetic moments with the Heisenberg
Hamiltonian (2.1). If we choose an “unperturbed” Hamiltonian H, close

to H, then the appropriate free energy per particle can be approximated
by

[~ fo+ (H—Ho)o
We denote (A), the mean value of A with respect to the density operator
py = e~ Mo,

This equation can be derived from the perturbation theory and the error
is of order (H — H,)3.

The following theorem has been proved:

Theorem. [3,4] If F, is the free energy of the system, corresponding to
some Hamiltonian Hy then for the free energy F' corresponding to H the
following inequality holds:

F < Fy+ (H —Hoo (2.7)

In the Mean Field Approximation approximate the Hamiltonian by

Ho = —vBeyy Z J;:
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where B.sr = B + By,., Bess is the projection of B.g; onto the z-axis,
B is the external field and B.sf is chosen so that the expression Fp +
(H — Ho)o is minimal. The approximate Hamiltonian H is a function of
B.sr. We denote the right hand side of (2.7) by ¢. We obtain from (2.7)
that in order to obtain the best approximation for the free energy of the
system ¢ must be minimal and the derivations of ¢ with respect to it’s
free parameters must be zero.

This is the way how to obtain the B.s in the MFA.

It is easy to verify
<H0>0 = _V(Bloc + B)ﬁN
(HYy = —(Joi* — yBE)N

where Jy = ). Joi, B = (J?)p and N is the number of magnetic moments
in the system. We don’t know the relation between B, and 7 so far
but we treat them as independent parameters of ¢ = ¢(Byye, #). The
dependence By,.(7z) will be determined from the condition of minimizing

o.

The free energy is Fy = —1/8log Zy. We have computed Z; in the
previous paragraph (see (2.2)). We see that Z; doesn’t depend explicitly
on the magnetization, Z, = Zy(, Beyy). If we want to find the minimum
of ¢ with respect to 7z and use (2.8) we obtain the condition

(2.8)

op  O(H—Ho), O L _
AR 2y Bioci) = 0

o7 o oo+ Y Buackt)

Therefore B, = (2Jy/v)p and A = 2Jy /v (see (2.6)).

We have estimated the mean field Hamiltonian Hy = —y(B+ i) Y. J7.

This is the same Hamiltonian as that described in the previous paragraph
2.2 and we derive the same way that z/J = L(a), a = pvy(B + Xi)J.

Assume now that the external field B is zero. Then B.ss = Bjoe = A1
and we get

7i/J = L(2JoBJIT) (2.9)
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This is a self-consistent equation for the magnetization f. It has a nonzero
solution if Jy > 0 for some B > BMF4 The magnetization I and the
argument of the Langevin function in (2.9) goes to zero as 3\, fMF4,
The Langevin function can be approximated

L(a) =~ a/3 + O(a?) (2.10)

Substituting (2.10) into (2.9) the Mean Field Curie temperature can be
determined

1 2

So far we have considered only one atom in each primitive cell. Let us have
a system with translation symmetry and n atoms in each cell. We denote
them by the index B € {0,...,n — 1}. The Heisenberg Hamiltonian is

H=— Z JipjpJipdip — ’YBZ iB

iB,jB iB

The derivation of T}/¥4 is unchanged and the condition (2.11) holds with

Jo=Y_ Josp

3B

The TX4 is usually higher then the experimental Curie temperature. A
better approximation called Random Phase Approzimation is described
in the next chapter.
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3. Green Functions

3. 1. Mathematical Formalism.

Let H be the Hamiltonian of a system and A(t), B(t) some observables in
the Heisenberg picture (defined by A(t) = /" A e=/") Suppose that
there is a nonzero temperature 7" and the system is in a statistical mixture
of quantum states with the Boltzmann statistics. The statistical average
of an observable A we mark (A) = Tr(e "*A)/Tr(e ?"), where B =
1/kpT, kp is the Boltzmann constant and e~#* is the density operator.
We consider a time-independent Hamiltonian.

We define the retarded Green function GEQ; (t,t') and the advanced Green
function fog(t, t')
Gt 1) = (A1), BE)) " = 0t = ) {[A(1), BE)))
(a) !
t,

a (3.1)
Ghap(t, 1) == ((At), B{t))“ == -0t — t)([A(t), B(t'))

© is the Heaviside step-function, ©(¢) = 1 for ¢ > 0 and 0 for ¢ < 0. It
can be shown that for a time-independent Hamiltonian the Green func-
tion depends only on the difference ¢ —¢' and we can write G(ﬂ?(t, t') =
Gy(t = 1/,0) = ({A(t — ¢), B) meaning B = B(0), (j) € {(r), (a)}.
Therefore we can make the time-fourier transformation and get

GY)(w) == (A, B (w) = —

[, myoear

(7) = (r) or (j) = (a). All the operators must fulfill the equation of
motion in the Heisenberg picture

L dA(t)
th = [A(t), H]
The time derivation of the GF is
i S UA), BNO = s[4, B + ([A0), H], BYY  (32)
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The equation holds both for (j) = (r) and (j) = (a). In the Fourier
transform we obtain the equation of motion
hw((4, B)V(w) = o—([4, B]) + (4, H], B))V (@) (3.3)

It is useful to note that the GF is not fully determined by the last equation
because it is valid for both advanced and retarded GF. We mention now
the useful identities

((4,B))"(w)
(4, B)) ()

(A, B)))(w + i0)
((A, B)"(w —i0)

(3.4)

To prove this, we can write the definition of the Fourier transform of
the time dependent GF for w + ie and get an additional term of e ¢
under the integral in the retarded GF which converges to unity for ¢ > 0,
€ \( 0. Because of the © function we integrate over the positive times
only. The same way we obtain that a small negative € does not spoil the
convergence of the advanced GF.

We can therefore consider (3.3) as 2 equation for w = w % i0 which
corresponds to the equation for the retarded and advanced GF.

If we are able to approximate the last term in (3.3)
([A,H], B))(w) = F((4, B))(w)

we can express the GF explicitly in terms of ([A, B]) and F. This ap-
proximation is called decoupling.

If we know the GF, we can compute the averaged product (A(t)B). Define
I1p(w) as the Fourier transform of (BA(t)) so that

(BA()) = / Lup(w)e—“!duw

It can be shown that then (A(t)B) = [ Iip(w)e’ e *!dw and conse-
quently

(A1), B)) = / Lip(@) (%P — D)e-“tdy
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Now we can express the retarded and advanced GF from the definition
as

(A,B)V(E) = (4, B))"(E +10)

1 ) ) .
— = dtez(EJrzO)t@(t) /deAB(w)(eﬁwﬁ _ 1)67zwt (3-5)

21
1 o

- L / dwl yps(w) (P — 1) / dteilBHi-)tg (p)
T

The last integral can be computed:

E-l—zU—w)t o0

00 i(
dreiEH0-w)1g (1) — / i(B+i0—w)t Jp [e— -
/ e ( ) 0 € z(E + 190 — W) t=0 (36)

i
CE+i0—w
The small imaginary part 20 is necessary due to the convergence of
[ ci(E+i0-w) 44
0
Substituting (3.6) into (3.5) we obtain
; Bwh 1
A BYO(E) = & / dw I e -0
(A, B)E) = 5 [ dw Lup(w) o

For the advanced GF we obtain a similar formula, which differs from
(3.7) by having £ — w — 0 in the denominator only. This justifies us to
define a compler Green function by

(3.7)

7 ehwh _
Can(z) = (A, B))(2) = o= / dw Iyp(w) L

™ Z—Ww

This function is analytic in the upper half-plane and in the lower half-
plane. The retarded resp. advanced GF are limits of this complex Green

function from the upper resp. lower half-plane at the real axis. Let us
now recall the identity

s = (P) () (3.8)

Using (3.8), (3.7) we obtain

Gap(E +i0) — Gap(E —i0) = Lyz(E) (P — 1) (3.9)
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We see that the knowledge of the retarded and advanced GF can be used
for computing I, (E) which is the Fourier transformation of (BA(t)).
In the next chapter we will approximate some Green function G 45 and
use the relation

O () - @ ()
(B(0)A(0)) = / Lap(w)dew = / GAB(eﬁ)wh _GIAB( Jaw  (3.10)

The analyticity of G4p in the half-planes is an important fact from the
numerical point of view. We can compute the limit of G4 from the
upper and lower half-plane using the analytic deconvolution.

3. 2. Random Phase Approximation for Spin 1/2

We use the formalism of the Green functions for improving the Mean
Field Approximation of the Curie temperature. Let us consider the
Heisenberg Hamiltonian

()

with zero external field. S; is the spin operator, S; = (S¥,S7,S7). The
spins are localized at the sites of a perfect crystal lattice. We assume in
this simple model that the magnetic moments in the Heisenberg Hamilto-
nian (2.1) are created by spins only, the system has translation symmetry,
all sites are equivalent, there is only one atom in each primitive cell and
Jij = Jji = Jog—i- Suppose further that there is a nonzero magneti-
zation at low temperatures (without external field) and we denote the
magnetization axis by z. Such a system is called isotropic Heisenberg
ferromagnet.

In the simplest case the spin operators S; are spin 1/2 operator and the
spin at the site 4 is a spin 1/2 quantum state (a two dimensional vector
in the spin space). By a finite non-zero temperature the system is in a
statistical mixture of quantum states. We want to express the averaged
magnetic moment (S?) and find a condition for the temperature so that
(SZ) \( 0 for T/ Tc. In the case of spin 1/2 we have S7 = 1/2— S, S,
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where S* = S% + (S~ are the creation and annihilation spin operators.
If averaged, (S?) = 1/2 — (S;S;"). Let us mark for simplicity S* = (S?)
(independent of 7 in a system with translation symmetry).

We will define the Green functions (S (t),S; ), (j) = (r) and (a)
and after approximating it by an explicit formula use (3.10) to express
(Sy Sy ). The equation of motion (3.3) reads

(S 57 ) (w) =0, 57 4

3.12
+2Z Jom (=S5, + SnSy ), S;7)) (w) (312

what is easy to check out considering the commutators Sy, S;], [Sy ', H],
Hamiltonian (3.11) and the relationship S;8; = 1/2(S;"S; + S;S}") +
SzSz.

9]

The Random Phase Approximation consists in the “decoupling” of the
last terms in (3.12):
((S59m: S )) =~ (S*H(Sm> 7))

m? ™ my >~y

(S0 S50 = (S)((ST ;7))

J J

(3.13)

for j # 0 (the case j = 0 is not interesting as Jyo=0). The equation of
motion holds both for retarded and advanced GF. The only unknown in
the equation (3.12) after “decoupling” (3.13) are S? and the functions

Goj(w) = ((Sy, S7)). The equation of motion after decoupling is

hwGoj(w) = haoys + 285, Z —JomGmj (W) + JomGoj(w))  (3.14)

In a system with translation symmetry we can make the lattice Fourier
transformation (LFT) of J;; and G;;(w). We obtain functions defined in
the first Brillouin zone J(¢) and G(g,w) defined by J(q) = >_, Jo;e"

and G(q,w) = >_; Goj(w)e?.,

If we multiply (3.14) by €% and sum over j, we get
a
TwG(q, w) = =57 + 257(J(0) — J(¢))G (g, w) (3.15)
T
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Glgw)y= T (3.16)

where
A(g) = 25.(J(0) - J(q)) (3.17)

is the energy of the “spin wave” with the wave vector ¢ € BZ.

Let us recall that for determining the retarded resp. advanced GF we can
take w + 40 resp. w — ¢0 instead of w.

We use now the equation (3.10):

B G(T)w —G(a)w
(SO,SSF>:/dw OO(eﬂ)wh_iO( ):

1 /dw/qu(q,w+ZO)—G(q,w—zO)
BZ ePwh _ 1

(3.18)

Q

After changing the order of integration, substituting (3.16) for G and
using the identity (3.8) we obtain

_ B 257 1
12 =8 =850 = /dqew@ —1

This is a self-consistent equation for the magnetization S=. We are inter-
ested in finding the temperature B¢ so that §% 0 for 8\, B¢.

We simplify the last equation by writing

S Y PR T
257 Qpz 1 efND) — 17 Qpy

/ coth(%ﬁ)\(q))dq (3.19)

The argument of the coth goes to zero as 57 \, 0 and we approximate
cothz ~ x~'. Multiplying both sides of (3.19) by S* we obtain an equa-
tion for B¢ which does not depend on S#:

1 2
fo = QBZ/J(O) _J(q)dq (3.20)

The denominator approaches to zero as ¢ — 0. We assume J(0) — J(g) to
be positive in the ferromagnets because J(0) —.J(q) is proportional to the
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energy of the spin waves and in the ground state of a ferromagnet all spins
have the same directions and no spin waves are present. If we assume that
J(q) has a continuous first derivation in ¢ = 0 (this is obvious, if we take
only a finite number of nonzero .Jy;), we can write J(0) — J(q) ~ Dg?
for some D > 0 and small g-vectors. The convergence of (3.20) is given
by the convergence of [¢ 2. This integral converges only in a space
of dimension greater then 2. Therefore in the RPA approximation the
ferromagnetic materials can exist only in a space of dimension 3 or more.
This is a difference from the MFA where the the only condition for a
nonzero Curie temperature is Jy > 0 and the ferromagnetism exists on 2
dimensional surfaces as well.

3. 3. RPA for More Atoms in a Primitive Cell

If we have two or more atoms in each primitive cell, all the functions
used in the previous section become matrices. Let us mark the different
atoms in a cell by B € {0,...,n — 1}. The Hamiltonian is

— Y JipipSisSip (3.21)

iB,jB'

In the case of spin 1/2 we get 1/2 — (Si5) = (Syp, Sop) = (So Sy ) BB
We consider the matrix (S, , Sy ) pp' of dimension nxn and are interested
in it’s diagonal elements. We define the GF matrices [GEJ (W)]Bs, (4) €

{(7), (a)}. The equation of motion (3.3) is

th
huw [Goj (w)]BB’ = ;055 5.1+

+Z< (S Sip)) (W) Jos s — ({ SBS:B’USj_B’>>(w)JUB,nB”>

nBH

We make the decoupling of the r.h.s. analogous to (3.13) and after LFT
we obtain the expression

G0, = 571+ (55 (os — I (0)) Gla )]s
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This is similar to (3.15) but it is a matrix equation now, the product on
the r.h.s. is a matrix product and Jog = ) 5 J(0)pp. We will assume
that for all B JUB = JU = ZjB’ JOU,jB’-

We obtain . 1
ih o _
Glq,w) = ;Sz(hw — S.(Jo — J(Q)))

As before, the retarded GF corresponds to w = w 440 and the advanced
GF to w = w — i0. The equation (3.18) still holds as a matrix equation.
We need now a generalization of the identity (3.8):

Lemma. If A is a hermitian operator, A; it’s eigenvalues and P; are the
projection operators onto the appropriate eigenspaces, then (in the sense
of distributions)

In((w+i0)L— A)~ = -7 Y 5(\) P (3.22)

FEspecially, if \; are non-degenerate with the normalized eigenvectors |\;),

then Im((w +40)L — A)~' = =7 >, 6(N) [ Ay (A

The proof consists in the generalization of the residual theorem to ma-
trix functions. The matrix function we call analytic, if it can be locally
expressed as f(z+¢) = Y, . A;€, jo € Z. The matrix A_; is called
residuum and a complete analogy of the residuum theorem holds.

As a consequence we get the equation (3.19) with A(¢q) = 25%(Jy—J(q)) a
matrix. The equation (3.20) holds too. The diagonal elements of (S, , Sy
are then the diagonal elements of the right hand side of the equation
(3.20) and therefore the formula for expressing the RPA Curie tempera-
ture is the same as (3.20), where we just substitute Jo = .5 Joo,jpr and
take the diagonal elements of the r.h.s. matrix. This diagonal elements
could be in general various and would correspond to the magnetizations
(J§s), B €{0,...,n—1} but in the cases we study (hcp and bee struc-
ture) all the atoms are equivalent and all the magnetizations are the
same.
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3. 4. RPA for Classical Spin

The RPA technique used for the derivation of (3.20) can be generalized
for an arbitrary spin (or magnetic momentum) but it becomes very com-
plicated. It’s more convenient to use the classical spin description what
corresponds to the quantum mechanical A~ — 0 limit. Instead of the com-
mutators we use the classical Poisson brackets { } and the GF defined

by
(A1), BN = et — ") ({A(t), B(t)})
((A(t), B = —o(t' — t)({A(t), B(t")})

If we denote the components of the classical magnetic moment r x p by

x,y, z, we obtain the relations {z,y} = z etc. The equation of motion
for a quantity A is dA/dt = {A, "}, H is the classical Hamiltonian.

We normalized the spin to unity,
2?4yt =1

This can always be achieved by normalizing the constant J;; in the Hamil-
tonian.

We define the GF Gy, (t,t") = ©(t — t'){z; + izj, w,}), where w, is
a function depending on x,,¥y,, 2z, only. If we find the Poisson bracket
{x; +iy;, H}, write the equation of motion, use the classical decoupling
analogous to (3.13):

({2 (@m + 1Ym); wn)) = (2) ((Tm + Y, Wn))

and make the time Fourier transformation, we obtain a system of equa-
tion analogous to (3.14)

WGl () = %50,4{9;0 T i, wo}) + 223 (JomGog (@) — oG ()

where Z = (z;) is assumed to be independent of j. Making the LET we
obtain, similar to (3.16)

_ i ({wo + iyo, wo})
) = W)

(3.23)
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where A(q) is defined by (3.17). We need a classical analogy of (3.10)
here. It can be shown that it is

w (3.24)

what corresponds to the i — 0 limit (compare to (3.10)). Substituting
(3.24) into (3.23) for A = xy + iyo and B = wy(xg, Yo, 29) We obtain

(o + iy = SR [y

= ik({z + iy, w})
k € R is defined by this equation.

(3.25)

We choose w,, := e**"(x,, + iy, ), where a is a real parameter and denote
®(a) = (e”) = (e ‘”) (1t is independent from the site) then ®'(a) =
(ze**) and ®"(a) = (z%e¥*).

The function ®(a) determines the magnetization, (z) = ®'(0). If we use
(3.25) and compute the Poisson bracket on the r.h.s. {x + iy, (z —iy)e**}
from the definition of the Poisson bracket, we obtain

((z +iy)(x —iy)e™) = ik{z + iy, e (z —iy)}) =
= —k{(a — 2z — az?)e™) = (3.26)
= —k(®(a) — 29'(a) — a®"(a))
From another point of view (the spin vector is normalized to unity, 22 +
y'+2t=1)
(@ +iy)(z —iy)e™) = (1 — 2%)e") = @(a) — @"(a) (3.27)
1

Comparison of (3.26) and (3.27
with an initial condition ®(0)

eads to a differential equation for ®(a)
= 1. It’s solution is

sinh(a + %)
(ka + 1) sinh(3)

®(a) =

and the magnetization .
z=9'(0) = L(%) (3.28)



where L is the Langevin function defined by (2.5).

We substitute & from (3.25) into (3.28) and obtain an equation for the
classical RPA magnetization

7= L[(%ﬂ/ﬂ%@dq)_j (3.29)

with A(q) = 22(Jy—J(q))- This equation can be solved numerically. If we
are interested in the Curie temperature, we limit Z ™\, 0, use the identity
L(z) ~ x/3 for small z and get the Curie temperature

3 1 1
rPA _ = d 3.30
¢ 2QBZ/J0—J(Q) ! (3.30)

If we have more then one atom in each cell, (3.25) will be a matrix
equation, k£ will be the diagonal element of the matrix

1 1
5 | B (&30

and (3.28) stays unchanged. Similarly, the equation (3.30) holds as an
equation for diagonal matrix elements with g&'4 = g&rAq,

3. 5. Comparison of RPA and MFA

Let us now compare the Mean Field Curie temperature (2.11) with the
RPA Curie temperature (3.30). If the spin (or, generally, magnetic mo-
ment) is normalized to unity, then the MFA formula is

2
(B =50 (3.32)
Because of Jyy = 0 and
Joo = —— [ J(q)d
00 = Qpy q)dq

we see that [ J(¢g)dg = 0 and (3.32) can be written
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eyt =2 L[ - g (3.33)

Comparing (3.30) and (3.33) we see that [(2/3)B844]~1 is the arithmetic
mean value of Jy—J(q) in the first BZ and [(2/3)8574]~! is it’s harmonic
mean value. From the convexity of the function 1/x can be easily derived
that the harmonic mean value of some numbers is always smaller then
the arithmetic mean value. Therefore

THA < ThEA (3.34)

The same result can be proved if (3.33) and (3.30) are equation of matrix
diagonal elements. Assume that the diagonal elements are identical and
therefore proportional to the trace. Let as denote x(q) := (Jo — J(q))
and x(q) it’s arithmetical mean value. We want to prove

Tra(q) > (Tra—(q))™" (3.35)

Denote the eigenvalues of z(q) by A;(q),i = 1,...,n. The equation (3.35)

is then .
>N > (XATW) (3.36)

We know already that for each i \;(¢) > (A;*(¢))~*. From this we easily

()

prove (3.36) and therefore (3.35) and (3.34) are fulfilled.
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4. Numerical implementation

4. 1. Curie Temperature of gadolinium and cobalt

Using the RPA model described in the previous chapter I computed the
Curie temperature of the ferromagnets cobalt and gadolinium. They have
both a hexagonal close packed lattice.

For computing the Curie temperature I treat the spin of the valence
electrons as a classical vector. Gd has 7 valence f-electrons and 1 d-
electron. This system are large enough to be treated classically. The
Curie temperature of a ferromagnet can be estimated from the equation
(3.30).

The main task is to compute the integral in the equation (3.30). The
hep lattice has 2 atoms in each cell and (3.30) must be used as a matrix
equation.

The exchange coefficients .J;; I obtained as an output of existing programs
written by my diploma teacher RNDr. Ilja Turek. In this programs the .J;;
coefficients are calculated using the LSDA approximation, Green func-
tion method, ASA and tight-binding LMTO, see [5]. A file with these
constants (containing about 400 exchange parameters, where all the oth-
ers, describing the interactions between very distant lattice sites, are
neglected) is an input file for my program.

To calculate the right hand side of (3.30) I had to make the LFT of the
exchange constants for a set of g-vectors from the first BZ.

The average value of [Jy — J(q)] ! in the first BZ I approximated with a
finite sum

1 1
J = E 4.1
Qpy BZ[ o TN & (4-1)

where ¢; are some points from the BZ. I chose the points ¢; to form an
equidistant mesh and magnified N until the convergence of (4.1) became
clear.
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It is not necessary to integrate over the whole BZ because some g-points
are equivalent. This is because of the symmetries of the hcp lattice.
Each symmetry in the real lattice corresponds to a degeneracy of each
g-vector in the BZ. I give an example here: the hcp lattice doesn’t change
if we mirror it around the zy plane. Denote ¢’ = (¢;, ¢y, —¢.) and R’ =
(Ry, Ry, —R.). Then €' = ¢4/ Because of the lattice symmetry Joz =
Jor (the sites R and R' are equivalent) we obtain J(q) = J(q'). We see
that the symmetry in the real lattice reduces the part of the BZ which
we have to treat independently. In fact, there are more symmetries in the
hep lattice (rotation around the z-axis about 60° or 120°) and we need to
integrate only over one 24th of the BZ, called irreducible Brillowin zone
(IBZ). The IBZ for the hcp lattice it is shown in the FIG. 4.1.

v

>

LT TR

FIG. 4.1 The first Brillouin zone for the hcp lattice and it’s irreducible part.

If integrating [Jo—J(q)] ! a difficulty is that this matrix is not defined for
g = 0 and becomes very large for ¢ ~ 0. The convergence of the integral
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J1J(0) — J(q) + z1]~" is much faster for z a small complex number. The
function [[J(0) — J(q) + 21] ' is analytic in z. For z # 0 and z not
a positive real number there are no singularities when integrating. We
can compute it for a few z points near to zero and use the analytical
deconvolution for determining it’s value in z = 0.

Let f(z) be the function we want to compute in z = 0. I used the
following formula for the deconvolution:

f(0) =~ 4f(ie) — f(2i€) — f(e+i€) — f(—€ + i€) (4.2)
for some ¢ > 0.

It is easy to show that this formula gives an error in order of only €*
for an analytic function f. We don’t use any z on the real axis to avoid
possible singularities in [Jy — J(q) + z1]~!. The parameter € is supposed
to be small compared with the eigenvalues of Jy — J(gq). For gadolinium
Jo ~ 3.3 mRy.

I used several € and I increased the number of points N along one line in
the irreducible BZ for each of them until i got convergence with respect
to both N and e.

The FIG. 4.2 shows some results for gadolinium (the total number of
g-points used for numerical integration over the IBZ is proportional to
the third power of N).

As we see from the figure, the RPA Curie temperature is 305K for
gadolinium. The same way I obtained the cobalt RPA Curie temper-
ature 1369K. The experimental results are 1388 K for cobalt (in the fcc
structure) and 295K for gadolinium. The T#"4 error for gadolinium is
about 3.3%. The MFA approach gives 1683K for cobalt and 343K for
gadolinium. We see that the RPA is a better approximation of the Curie
temperature then MFA and that indeed T#'A < T,

All this results are based on the J;; constants computed for fixed lattice
constants @ and c. I denote a the distance between the nearest neigh-
bours in the zy plane and ¢ the distance between the vertical nearest
neighbours. The experimental value of ¢/a is 1.597.

35



+
307 |- 307.013
e =1 mRy
<
§Q 306 | i
&~ € = 0.1 mRy
. +_+-+ i ST N H 4 305.644
' X e =0.03 mR
Tt BME == Y 41305.363
XX s e e X X % X 305.168
305 - ¢=00l mRy
| | | |
0 50 100 150 200 250

N (number of points along one line in the IBZ)

FIG. 4.2 Numerical calculation of the Curie temperature for gadolinium. € is the
constant from (4.2).

We can observe how the RPA and MFA Curie Temperatures change if we
change the lattice constants by a fixed proportion ¢/a. This corresponds
to a homogeneous compression of the crystal and can be compared with
experimental data.

Some of the results are on FIG. 4.3. The letter s denotes here 3/(4m)Q/3,
2 is the volume per atom.

The experimental lattice constant s is about 3.762 a.u. By pressing it
and decreasing the volume the Curie temperature becomes smaller in
the experiment, which is in conflict with the calculations. The reason for
this discrepancy is not known at present.
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FIG. 4.3 The dependence of the MFA and RPA Curie temperature for gadolinium

on the Wigner-Seitz radius s.

4. 2. Magnon Spectrum

Let us consider a Heisenberg ferromagnet with the Hamiltonian (3.11)
and spin S at each lattice site. The eigenstates of this Hamiltonian are
called magnons, or spin waves. It can be shown that the spectrum of this
Hamiltonian is connected to the poles of the Green function (3.16) resp.
(3.23). Each magnon can be characterized by a vector from the first BZ.
Be zero temperature the magnon energies are

Alg) =25(Jo — J(q)) + Eo (4.3)

where Fj is the energy of the ground state. We can choose the energy
scale so that Ey = 0.

For nonzero temperature the magnon energy is decreasing proportionally
to the magnetization S?, as can be seen from (3.17).
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If there are more atoms in each lattice cell, the magnon energies are the
eigenvalues of the matrix (4.3).

To compute this energies I made the LFT of the exchange constants J;;
for various g-vectors from the first BZ.

[ computed the magnon energies for the ferromagnets gadolinium and
cobalt. FIG. 4.4 shows the results for some special points in the first BZ
for gadolinium at zero temperature. The positions of the points I', M, K
and A in the first BZ can be seen on FIG. 4.1.

30—

X
(e]
\

\

Magnon energy [meV]

._\
S
\

r M K r A
Spin wave vector from the 1. BZ for gadolinium

FIG. 4.4 Gadolinium magnon energies at zero temperature for special points on the
border of the first BZ.

In both Gd and Co the energy has a maximum in the point M. Two lines
in the picture corresponds to the two eigenvalues of the 2 x 2 matrix (the
hep lattice has 2 atoms in each cell). We see that the energies are always
nonzero and positive: this is a consequence of the fact that gadolinium
and cobalt are ferromagnets (the ground state is not a spin wave). The
cobalt magnon spectrum is similar.
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To compute the magnetization and magnon energies at nonzero temper-
ature we use the RPA model and formula (3.29). The integral in (3.29)
is not needed to be computed so far we already have computed the RPA
Curie temperature given by (3.30). Comparing (3.30), (3.29), the con-
stant k as the diagonal term of (3.31) and the definition of the magnon
energies (3.17) we see that k£ depends on the temperature like

Lo LT
- 3z THPA

Substituting this into (3.29) and solving (3.29) I obtained the following
magnetization for gadolinium at T < TEP4:
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FIG. 4.5 The dependence of the gadolinium magnetization on the temperature. The

spin per atom at zero temperature is normalized to unity.

The magnon energies at nonzero temperature T < TH'4 are exactly
S7/S times smaller then at zero temperature. FIG. 4.6 compares some
experimental data for magnon energies along the border of the first BZ
at the temperature 78 K with the RPA result.
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FIG. 4.6 The experimental gadolinium magnon energies at the temperature 78 K

(points) and the RPA result calculated for 78 K (smooth lines). The experimental
data are from [7].
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5. Alloys with Substitutional Disorder

5. 1. Coherent Potential Approximation

Systems with substitutional disorder are systems with an ideal lattice
where the lattice sites are randomly occupied by various atoms. In the
simplest case there are two atoms A and B and their concentrations ¢*
and c® so that ¢ + ¢® = 1. We assume that each lattice site is occupied
fully randomly either by atom A (with the probability ¢) or by atom B
(probability ¢?) with no correlations between various lattice sites.

We want to compute the electronic structure of such a system. The LDA
or LSDA and ASA approximations (see chapter 1) and the GF technique
can be used again. The effective potential (1.1) or it’s spherically symmet-
ric approximation in one atomic sphere depends now on the occupation
of the sphere. We obtain two potentials Ve?f, Q € {A, B}. This indicates
two different regular and irregular solutions ¢%, (rr, z) and ¢, (rg, 2)
and two potential functions Pg, (z) (see (1.10)). The physical properties
of the system can be computed from the knowledge of the imaginary part
of the Green function G(r,r, z). The GF can be computed from (1.8).It
can be shown that the first term on the right hand side of (1.8) is real for
a real potential V,;; and we need to calculate the “physical GF matrix”

Grirr (2) only.

To obtain reasonable result we have to average this matrix over all the
possible configurations. If we denote Grrri (2) := (G) the configura-
tional average of this matrix and

Grrry(?) = () (3G rLru (7))

the average over all configurations having the atom @) at the site R (mQ2
is the “indicator” of the atom () at the site R, ng = 1 if the site @Q is
occupied by the atom ) and 0 otherwise), then the randomness of the
disorder gives the relation

= =Q
GRLRL = Z ?Grrry
Q
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Let us define the “auxiliary GF” grrr1/(2) by the relation

G = gy + VPO PC)

We see from (1.10) that for a homogeneous solid g = (P — S)~!, where
P is the diagonal potential function matrix and S the matrix of the
structure constants. We define a matrix P by

g=(P-8)"

This matrix is generally nondiagonal. The Coherent Potential Approxi-
mation an approximating P by a site-diagonal matrix. This means phys-
ically that we substitute the real alloy by a homogeneous solid with some
“effective atoms”. The condition on P is that the average scattering from
putting a single impurity A or B with the probability ¢* or ¢? into the
effective medium is zero. The detailed CPA condition and additional
theory can be found in [1].

CPA can be used not only for calculating the electronic structure of an
alloy ground state but for a substance with randomly oriented spins as
well. An example is the DLM europium that can be described as an
“alloy” of two components: europium atoms with spin up and europium
atoms with spin down. The energy dependence on the lattice parameter
is shown in FIG. 1.2.

The figure FIG. 5.1 shows the density of states of the gadolinium-yttrium
alloy at zero temperature and yttrium concentration 20%.

5. 2. Mean Field Magnetization and Curie Temperature

The Heisenberg Hamiltonian for an alloy is
H=— > JEVIRIT 0t By TP
4,5,Q,Q’ 3R

where n® is the indicator of an atom @ at the site i. Assume that we have
a ferromagnet and zero external field. We consider two “magnetizations”
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FIG. 5.1 The gadolinium (full line) and yttrium (dashed line) projected DOS of the
Gdp gYp.2 alloy (f-electrons in the core).

m® := (J9%). Let Jg be the total magnetic moment of the atom of type
(). The Mean Field magnetization is, analogous to (2.9)

mQ / ’
To = L2B) I m? Jy) (5.1)
QI

L is the Langevin function (2.3) and JOQQ’ =2, J(%Ql.

The condition for the MFA Curie temperature is that all the magnetiza-
tions go to zero. We use the quality of the Langevin function L(a) ~ a/3
for a small argument a and obtain a system of equations

1 m? 2 / mQ
— — =N I, dy

Be Jo 3Z 0T Ty
We see that the MFA Curie temperature kgTAF4 is an eigenvalue of
the matrix (2/3)J¢% JoJo . It is the maximal eigenvalue of this matrix

!
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FIG. 5.2 The mean field and experimental Curie temperature of the gadolinium-
yttrium alloy as a function of the yttrium concentration. The experimental data are
from [10].

because for kgT smaller then the maximal eigenvalue there still exist a
nonzero solution of the equations (5.1)

FIG. 5.2 shows the TAF4 for the Gd-Y alloy as a function of the Y
concentration. The Curie temperature decreases with increasing Y con-
centration in qualitative agreement with experiments.

A more realistic approximation like RPA for alloys would be suitable
but is not known yet. Some attempts to describe the finite temperature
magnetization in alloys with CPA and RPA are in [8].
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Conclusions

The density functional theory has enabled realistic computer calculations
of the ground state properties of large electron systems with a translation-
ally symmetric lattice. In the numerical implementations several approx-
imations are used, e.g. LSDA, GGA, ASA. In this work I computed the
magnetization and Curie temperature of gadolinium and cobalt within
the Random Phase Approximation and Mean Field Approximation us-
ing the model of the Heisenberg Hamiltonian with exchange interactions
constants calculated within the LSDA theory. I described the theoretical
Green function formalism that leads to the RPA theory.

The Curie temperature within the RPA model is more realistic as the
Mean Field Curie temperature and gives an error of about 3% from
experiment. The calculations has been performed using the compter lan-
guage C. The code includes integrating of a matrix function over the
irreducible part of the first Brillouin zone for hexagonal closed packed
lattice.

Making the lattice Fourier transformation of the exchage interaction con-
stants I obtained the spin wave spectrum of gadolinium at finite temper-
atures. It is in good agreement with experimental results.

In order to describe the electronic structure of substitutionally disordered
alloys at zero temperature the Coherent Potential Approximation can be
used. I calculated the mean field Curie temperature for the Gd-Y alloy
as a function of the yttrium concentration and found good qualitative
agreement with experiment.
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