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al 
al
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1. Density Fun
tional Theory1. 1. Theoreti
al BasisThe state of a quantum me
hani
al system is determined by it's Hamil-tonian H that gives us all the possible information about the system.The eigenstates of H are the stationary states. We suppose that at zerotemperature the system is in the ground state, the eigenstate of H withthe lowest energy.The physi
al systems we study are bodies with an in�nite periodi
 latti
ewith three basis ve
tors (in a 3D spa
e) and translation symmetry. Thesites are o

upied by a �nite number of atomi
 spe
ies.The task of �nding the eigenstates of the Hamiltonian is too 
ompli
atedin systems with several parti
les (in
luding nu
lei, ele
trons and theirspins) to be solved exa
tly. The �rst approximation to be mentioned isthe Born-Oppenheimer approximation. It separates the wave fun
tion (R�; ri) in a produ
t of a nu
lei wave fun
tion u(R�) and an ele
tronwave fun
tion vfR�g(ri), whi
h depends parametri
ally on the nu
lei po-sitions R�. In this work we treat the nu
lei as 
lassi
al parti
les withwell-de�ned traje
tory and assume that there exist an ele
tron Hamilto-nian HfR�g, where fR�g are the positions of the nu
lei. We also assumethat the nu
lei are not moving in the ground state and their kineti
energy is zero.The variational prin
iple 
an be used to �nd the positions fR�g whi
hminimize the appropriate ground state energy of the system. This energyis the sum of the potential energy of the nu
lei (
reated mostly by the
oulomb intera
tions) and the lowest eigenvalue of the appropriate ele
-tron HamiltonianHfR�g. This state is (in our approximation) the groundstate of the system at zero temperature.We assume in all the further text that the positions of the nu
lei are �xedand we denote the ele
tron Hamiltonian H instead of HfR�g.We usually know the positions of the nu
lei from observations. The vari-5



ational prin
iple is pra
ti
ally used only to �nd a small number of pa-rameters (as the latti
e 
onstants, assuming we know the type of thelatti
e).The task of many programs is to 
al
ulate the ground state of H. Thequantum state of the ele
trons in the system we usually 
all The Ele
-troni
 Stru
ture (ES). The most 
ommon way to 
al
ulate it is based onthe one-ele
tron approximation using the Density Fun
tional Theorem,proved by Hohenberg and Kohn in 1964 [1,2℄:Theorem (DFT). The ES of a non-degenerate ground state of anele
tron system and it's external potential are both determined by it'ssingle-parti
le density �(r), de�ned by�(r) = N Z  �(r; r2; : : : ; rN) (r; r2 : : : ; rN)dr2 : : : drnwhere  is the normalized wave fun
tion of the ES and N the number ofele
trons.This justi�es the de�nition of the total energy as a fun
tional E [�℄ of thesingle-parti
le density. We use the variational prin
iple for minimizing Ewith respe
t to � under the 
ondition R �(r)dr = N and � � 0.It 
an be shown that the variational prin
iple leads to equations that areequivalent to solving the problem of N non-intera
ting parti
les with theHamiltonian Heff = ��+ Veff , the e�e
tive potential [1℄Veff (r) = Vext(r) + Z 2�(r0)jr � r0jd3r + ÆEXC [�℄Æ�(r) (1:1)Here Vext is the external potential of our ele
tron system (it in
ludes the
oulomb ele
trostati
 �eld of the nu
lei) and EXC is 
alled the ex
hange-
orrelation energy and is 
aused by non-
lassi
al energy 
omponents. Thelast equation is to be understood as a fun
tional equation: we identifyf(r) with a fun
tional g(r)! R f(r)g(r)dr. The expression ÆEXCÆ� is thedi�erential of the EXC in the point � (whi
h is a fun
tional). The density6



� is given by �(r) = NXi=1 j i(r)j2 (1:2)where  i are the N lowest eigenfun
tion of this e�e
tive Hamiltonian.If we know the fun
tional EXC we 
an �nd the density �(r) of our systemso that the eigenfun
tion of the e�e
tive Hamiltonian satisfy (1.1) and(1.2). The knowledge of � determines the total energy of ES and 
an be
al
ulated by a simple formula.This is solved by iterations in the numeri
al implementations.We 
hoosesome starting e�e
tive potential V (1)eff , 
ompute the orbitals  (1)i and thedensity �(1). Using �(1) and (1.1) we obtain a new potential ~V (2)eff . Nowwe let V (2)eff = � ~Veff (2) + (1� �)V (1)eff . We 
all � the mixing parameter. It
an be proved that for � small enough this iterations will 
onverge to aself-
onsistent e�e
tive potential Veff .There are several methods to determine EXC . The simplest one is 
alledLo
al Density Approximation: it approximatesEXC [�℄ � Z �(r)�XC(�(r))drwhere �XC is a fun
tion. In this approximation the ex
hange-
orrelationenergy depends on the density lo
ally. For �XC we usually take theex
hange-
orrelation energy of the homogeneous ele
tron gas. We areable to 
ompute this fun
tion to a high degree of a

ura
y. This approx-imation is suitable for systems where the ele
tron density doesn't variesmu
h. A better approximation 
alled GGA (General Gradient Approxi-mation) improves this by in
luding the density gradient into the fun
tion�XC = �XC(�(r);r�(r)).If we in
lude the ele
tron spin to our observation we get two ele
trondensities: �" and �# for spin +1=2 and �1=2. The approximationEXC [�"; �#℄ = Z �(r)�XC(�"; �#)dris 
alled Lo
al Spin Density Approximation (LSDA). The models withinLDA and LSDA are based on the homogeneous ele
tron gas model.7



1. 2. Other Approximations and Te
hniques Used by Cal
ulat-ing the Ground State ESMany diÆ
ulties arise by solving the self-
onsistent S
hr�odinger equa-tions with the potential (1.1) and density (1.2). One te
hnique often usedis to distinguish between the 
ore ele
trons and valen
e ele
trons. We as-sume that the 
ore ele
trons are lo
alized inside their atomi
 spheres andthat they don't intera
t with other atoms. Therefore we treat them inde-pendently and their total energy is the sum of the 
ore ele
tron energiesover all the atoms. We use a te
hnique of the Hamiltonian resolventsde�ned by G(z) = (z �H)�1to 
al
ulate the energy of valen
e ele
trons. This operator in the spa
erepresentation is 
alled Green fun
tion (GF):G(r; r0; z) := hr0jG(z)jri =Xi  i(r) �i (r0)z � �i (1:3)where  i(r) are the eigenfun
tions ofH and �i it's eigenvalues.We assumethat H = ��+ Veff(r), Veff is the e�e
tive potential from (1.1).We use now the distributional identity1x+ i0 = P 1x � i�Æ(x) (1:4)where Æ is the dira
 distribution, R '(x)Æ(x)dx = '(0) and (P) meansthe prin
ipal value. From (1.3) and (1.4) we havew(r; E) := �1� ImG(r; r; E + i0) =Xi j i(r)j2Æ(E � �i) (1:5)From the knowledge of the GF for an ele
tron system the quantity w 
anbe 
al
ulated and from (1.5) we easily derive the energy resolved densityof state (DOS) and the ele
tron density:�(r) = Z w(r; E)dE (1:6)n(E) = Z w(r; E)dr (1:7)8



The point is that we 
an 
al
ulate the density � without the knowledge ofthe orbitals  i(r). If we integrate in (1.6) from �1 to the Fermi energyEF , we obtain the total density of ele
trons. If we need the densityof valen
e ele
trons only, we integrate in (1.6) over the energies of thevalen
e ele
trons.One important quality of the GF is that it is analyti
 in the upper 
om-plex half-plane. Therefore we 
an 
ompute the integral (1.6) by integrat-ing over a 
ir
le in the upper 
omplex half-plane what is more 
onvenientfrom the numeri
al point of view.The density �(r) 
an be determined from the GF for the e�e
tive Hamil-tonian with the potential (1.1) using (1.6) and this density determines anew potential Veff and a new e�e
tive Hamiltonian.The problem we still have is to �nd the Green fun
tion G for somepotential Veff .Here other approximation are used. The �rst one to mention is theAtomi
 Sphere Approximation (ASA) where we approximate the poten-tial Veff(r) by a potential V that is spheri
ally symmetri
 inside non-overlapping spheres and 
onstant in the interstitial region outside thespheres. We assume that the atomi
 spheres have all the same radius,the nu
lei are in their 
enters and the potential inside the Rth spheredepends only on the distan
e from the 
enter. We assume that the wavefun
tions solve the Lapla
e equation (not S
hr�odinger) in the intersti-tial region what 
orresponds to the demand for zero kineti
 energy. Theenergy 
ontribution from the interstitial region is zero in this approxima-tion and we solve the S
hr�odinger equation with the potential (1.1) onlyin the region of the atomi
 spheres.If starting with a spheri
ally symmetri
 potential, we obtain an ele
trondensity that is no more spheri
ally symmetri
 but we symmetrize it tak-ing �(rR) to be the average of �(rR) on the sphere frR = rRg. Wealso approximate the external potential Vext in (1.1) by it's spheri
allysymmetri
 part and obtain a new potential that is spheri
ally symmetri
inside the atomi
 spheres. 9



It 
an be derived that the GF for the points r+R; r0+R0, where r+Rlies in theRth sphere and r0+R0 lies in theR0th sphere, 
an be expressedas [1℄G(r +R; r0 +R0; z) = ÆRR0 XL 'RL(r<R; z) ~'RL(r>R; z)f'Rl(rR; z); ~'Rl(rR; z)g+XLL0 'RL(rR; z)GRLR0L0(z)'R0L0(r0R0; z) (1:8)where rR = r�R for all r and R, r>R resp. r<R is that one from rR; r0R0with the larger resp. smaller absolute value, 'RL(rR; z) resp. ~'RL(rR; z)is the regular resp. irregular solution of the S
hr�odinger equation (��+Veff � z) = 0 in the Rth sphere with the angular momentum L = (l;m),'RL(rRl; z) is the radial part of 'RL(rRL; z), fg is the Wronskian of theradial fun
tions de�ned by ff(r); g(r)g := r2(f(r)g0(r)� f 0(r)g(r)) andthe 
onstants GRLR0L0(z) de�ned by (1.8) 
an be 
omputed from theequation G(z) = �12 �P (z)_P (z) +q _P (z)[P (z)� S℄�1q _P (z) (1:9)where PRL;R0L0(z) = ÆRlR0l0 fKRl(r); 'Rl(r; z)gfJRl(r); 'Rl(r; z)g jr=sr (1:10)KRl and JRl(r) are the irregular and regular solutions of the Lapla
eequation, sr is the radius of the atomi
 spheres in ASA, the dot over Pis the energy derivation and the matrix S is de�ned byKL(rR) = �XL0 SRl;R0L0JL0(rR0)The matrix S is 
alled 
anoni
al stru
ture 
onstants matrix and it de-pends only on the atomi
 positions fR�g. For an ideal 
rystal it is a nonrandom matrix.This way the Green fun
tion 
an be determined and from the GF all theone-ele
tron properties of the system 
an be 
al
ulated using (1.1) andLDA or LSDA. 10



1. 3. Numeri
al ResultsMost of the existing programs for 
al
ulating the ground state energiesare based on the LSDA and Greens fun
tion te
hnique des
ribed shortlyin the previous paragraph. Other approximation are used by solving theone-ele
tron S
hr�odinger equation with H = �� + Veff(r) even withinASA. One 
ommon way is the using of the variational prin
iple and�nding the approximate solution in a subspa
e generated by some setof spe
ial fun
tions. The S
hr�odinger equation then leads to a systemof linear equations. The quality of the method depends on the 
hoi
e ofthe generating fun
tions. One 
ommon method is the te
hnique of linearmuÆn-tin orbitals (LMTO) des
ribed in [1℄.One interesting fa
t is that in order to obtain reasonable results we haveto treat the f -ele
trons in lanthanides as 
ore ele
trons, although theirenergy is high. Several 
al
ulations have been performed showing thatthe f -ele
trons are more lo
alized then the valen
e d-ele
trons and thatf -ele
tron intera
tions between various latti
e sites are negligible.I used existing programs of RNDr. Ilja Turek to 
al
ulate the energiesof europium and vanadium as a fun
tion of the Wigner-Seitz radius sde�ned by (4=3)�s3 = 
, 
 is the volume per atom. Both europium andvanadium have the b

 stru
ture with 2 atoms in ea
h latti
e 
ell. Thereare no f -ele
trons present in vanadium and it's Wigner-Seitz radius is2:81 a.u. (1 a.u.� 0:0529177 nm). I obtained FIG. 1.1 for the total atomi
energy (using LDA).The numeri
al result is about 2:75 a.u. as we see from the pi
ture, whatis, 
ompared with the experimental value 2:81 a.u. an error of about 2%.A good illustration of an f -ele
tron system is europium (b

 stru
ture).FIG. 1.2 shows the dependen
e of it's atomi
 energy on the Wigner-Seitzradius. The magneti
 properties are not negligible in europium and wehave to use the spin polarized LSDA approximation. FM means the fer-romagneti
 europium with all atoms having the same magneti
 moment(we denote it's proje
tion onto the magnetization axis J). AFM is theanti-ferromagneti
 europium. It is a solid with 2 di�erent europium atomsin ea
h primitive 
ell: one atom having the proje
tion of the magneti
moment onto the magnetization axis +J and one atom having this pro-11
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je
tion �J (where J is the total magneti
 moment of an atom). Finally,DLM means disordered lo
al moments and it is an europium with randommagneti
 moments (in this 
ase the CPA approximation have to be used,see 
hapter 5). We see that in all this 
ases the radius s 
orrespondingto the minimal energy is approximately the same, about 4:2 a.u.We 
an 
on
lude from this example that the atomi
 radius is almostindependent of the 
on�guration of the magneti
 moments. The real 
on-�guration of europium ground state is a spin spiral. The experimentalvalue is s = 4:238 a.u. In this 
al
ulations the f -ele
trons are 
ore ele
-trons and the results are good. If we treat them as valen
e ele
trons, weobtain a larger error, as 
an be seen from FIG. 1.3.
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2. Ferromagnets and Curie Temperature2. 1. The Heisenberg HamiltonianThe magnetism we observe in real solids is due to the spin and orbitalmomentum of the valen
e ele
trons. Ea
h atom has a total magneti
moment depending on it's ele
troni
 
on�guration. This 
on�guration inthe ground state is determined by the Hund rules. In a 
rystal the spinmagnetization density within LSDA ism(r) = �"(r)� �#(r)and the total spin per atom within ASA we obtain by integrating m overone atomi
 sphere.Let as assume that there is one atom in ea
h primitive 
ell i 
reating anon-zero magneti
 moment Ji = (Jxi ; Jyi ; J zi ). In the following text wedenote the latti
e 
ells by i; j instead of R;R0 et
.The magneti
 energy of a non-intera
ting system of magneti
 momentsis W = �
BPj J zj , where 
 > 0 and z is the axis of the external �eldB (the Zeeman energy term). We get a more realisti
 Hamiltonian after
onsidering the dipole-dipole intera
tions between various latti
e sites.The Heisenberg Hamiltonian is de�ned [3,4,5,6℄H = �Xi;j JijJiJj � 
BXj J zj (2:1)This model Hamiltonian operates only on the momentum spa
e and we
onsider now all the other energy 
omponents as 
onstants.The 
onstants Jij are 
alled Heisenberg ex
hange parameters. In the fur-ther text we assume that we have an ideal in�nite latti
e with translationsymmetry, Jji = Jij = J0j�i and Jii = 0. In the quantum me
hani
al de-s
ription J are the spin operators, JiJj = Jxi Jxj + Jyi Jyj + J zi J zj . If thereare many valen
e ele
trons present and the spin is high, we treat themomentum as a 
lassi
al ve
tor and the produ
t JiJj as a s
alar ve
tor15



produ
t. In this 
lassi
al des
ription we normalize this ve
tor J2 = J2,where J is the total magneti
 moment per atom.The system is in it's ground state at zero temperature, whi
h 
an be inparti
ular 
ases (depending on the Jij 
onstants) a ferromagneti
 state(i.e. all the moments have the same dire
tion).At nonzero temperatures the system is in a statisti
al mixture of di�er-ent states with the density operator � = e��H, � = 1=(kBT ), T is thetemperature and kB the Boltzmann 
onstant. The statisti
al mean valueof an observable A is de�ned byhAi := Tr(�A)Tr(�)The 
onstants Jij 
an be obtained from the knowledge of the spin resolvedGF and the (spin resolved) potential fun
tions (1.10) within LSDA, ASA,and TB-LMTO (see eq. (3) in [4℄ and [9℄).It 
an be shown that the amplitude of Jij for distant latti
e sites i; jde
reases to zero like d�3 where d = ji � jj is the distan
e between thelatti
e sites. A �ner approximation is Jij � A sin(�d + �)=d3. FIG. 2.1shows the dependen
e of the ex
hange 
oeÆ
ients on the distan
e.2. 2. Langevin ParamagnetismLet us derive an equation for the average magnetization � := hJ zi i =hJzi (independent of i) if the Hamiltonian is just H = �
BPi J zi (theZeeman term) and assume that the spins JZi 2 h�J; Ji as in the 
lassi
aldes
ription. The partition fun
tion 
an be 
omputed [4℄Z = Z d
1 : : :d
Ne�
BJPi 
os�i = ( Z d
e�
BJ 
os�)N = (z(a))Nwhere �i is the angle between the z-axis and the dire
tion of Ji,z(a) = �a sinh(a); (2:2)16



0.0

0.1

0.2

J 
(m

R
y)

-0.3
-0.2
-0.1
0.0
0.1
0.2

0.3

1 2 3 4 5 6 7 8 9 10

(d
/a

)3  J
  (

m
R

y)

d/aFIG. 2.1 The Jij 
onstant from the Heisenberg Hamiltonian for b

 europium andtheir dependen
e on the distan
e d = ji� jj without and with a prefa
tor d3. Here ais the latti
e 
onstant.N is the number of atoms and a = �BJ
. The magnetization ishJ zi = �1
 �f�B (2:3)where f is the Gibbs free energy per parti
le. From the statisti
al physi
swe know f = �(1=�) log z(a). From (2.3) and (2.2) 
an be easily derivedthat the �=J = L(a) (2:4)where we de�ne the Langevin fun
tionL(a) := 
oth(a)� 1=a (2:5)(2.4) is an equation for the magnetization. It des
ribes a phenomenon
alled Langevin paramagnetism. This equation is exa
t for nonintera
ting17




lassi
al magneti
 moments (the approximation was used only in the
hoi
e of the Hamiltonian and the 
lassi
al treatment of the magneti
moment as a ve
tor).2. 3. Mean Field ApproximationEa
h of the moments Ji 
reates it's own magneti
 �eld that intera
twith all other magneti
 moments. In the Mean Field Approximation weassume that ea
h magneti
 moment is a�e
ted only by an average �eldfrom all other moments. A natural assumption is that the 
reated �eldis proportional to the magnetization � = hJ zi:Blo
 = �� (2:6)We assume that the average magnetization doesn't depend on the latti
e
ell i.Let us 
onsider a system of magneti
 moments with the HeisenbergHamiltonian (2.1). If we 
hoose an \unperturbed" Hamiltonian H0 
loseto H, then the appropriate free energy per parti
le 
an be approximatedby f � f0 + hH � H0i0We denote hAi0 the mean value of A with respe
t to the density operator�0 = e��H0 .This equation 
an be derived from the perturbation theory and the erroris of order hH � H0i20.The following theorem has been proved:Theorem. [3,4℄ If F0 is the free energy of the system, 
orresponding tosome Hamiltonian H0 then for the free energy F 
orresponding to H thefollowing inequality holds:F � F0 + hH � H0i0 (2:7)In the Mean Field Approximation approximate the Hamiltonian byH0 = �
BeffXi J zi18



where Beff = B +Blo
, Beff is the proje
tion of Beff onto the z-axis,B is the external �eld and Beff is 
hosen so that the expression F0 +hH�H0i0 is minimal. The approximate Hamiltonian H0 is a fun
tion ofBeff . We denote the right hand side of (2.7) by �. We obtain from (2.7)that in order to obtain the best approximation for the free energy of thesystem � must be minimal and the derivations of � with respe
t to it'sfree parameters must be zero.This is the way how to obtain the Beff in the MFA.It is easy to verify hH0i0 = �
(Blo
 +B)�NhHi0 = �(J0�2 � 
B�)N (2:8)where J0 =Pi J0i, � = hJ zi0 and N is the number of magneti
 momentsin the system. We don't know the relation between Blo
 and � so farbut we treat them as independent parameters of � = �(Blo
; �). Thedependen
e Blo
(�) will be determined from the 
ondition of minimizing�.The free energy is F0 = �1=� logZ0. We have 
omputed Z0 in theprevious paragraph (see (2.2)). We see that Z0 doesn't depend expli
itlyon the magnetization, Z0 = Z0(�;Beff). If we want to �nd the minimumof � with respe
t to � and use (2.8) we obtain the 
ondition���� = �hH � H0i0�� = ���(�J0�2 + 
Blo
�) = 0Therefore Blo
 = (2J0=
)� and � = 2J0=
 (see (2.6)).We have estimated the mean �eld HamiltonianH0 = �
(B+��)Pi J zi .This is the same Hamiltonian as that des
ribed in the previous paragraph2:2 and we derive the same way that �=J = L(a), a = �
(B + ��)J .Assume now that the external �eld B is zero. Then Beff = Blo
 = ��and we get �=J = L(2J0�J�) (2:9)19



This is a self-
onsistent equation for the magnetization �. It has a nonzerosolution if J0 > 0 for some � > �MFAC . The magnetization � and theargument of the Langevin fun
tion in (2.9) goes to zero as � & �MFAC .The Langevin fun
tion 
an be approximatedL(a) � a=3 + O(a2) (2:10)Substituting (2.10) into (2.9) the Mean Field Curie temperature 
an bedetermined 1�MFAC = 23J0J2 (2:11)So far we have 
onsidered only one atom in ea
h primitive 
ell. Let us havea system with translation symmetry and n atoms in ea
h 
ell.We denotethem by the index B 2 f0; : : : ; n� 1g. The Heisenberg Hamiltonian isH = � XiB;jB0 JiB;jB0JiBJjB0 � 
BXiB J ziBThe derivation of TMFAC is un
hanged and the 
ondition (2.11) holds withJ0 =Xj;B0 J00;jB0The TMFAC is usually higher then the experimental Curie temperature. Abetter approximation 
alled Random Phase Approximation is des
ribedin the next 
hapter.
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3. Green Fun
tions3. 1. Mathemati
al Formalism.Let H be the Hamiltonian of a system and A(t); B(t) some observables inthe Heisenberg pi
ture (de�ned by A(t) = eiHt=�hA e�iHt=�h). Suppose thatthere is a nonzero temperature T and the system is in a statisti
al mixtureof quantum states with the Boltzmann statisti
s. The statisti
al averageof an observable A we mark hAi = Tr(e��HA)=Tr(e��H), where � =1=kBT , kB is the Boltzmann 
onstant and e��H is the density operator.We 
onsider a time-independent Hamiltonian.We de�ne the retarded Green fun
tion G(r)AB(t; t0) and the advan
ed Greenfun
tion G(a)AB(t; t0)G(r)AB(t; t0) := hhA(t); B(t0)ii(r) := �(t� t0)h[A(t); B(t0)℄iG(a)AB(t; t0) := hhA(t); B(t0)ii(a) := ��(t0 � t)h[A(t); B(t0)℄i (3:1)� is the Heaviside step-fun
tion, �(t) = 1 for t > 0 and 0 for t < 0. It
an be shown that for a time-independent Hamiltonian the Green fun
-tion depends only on the di�eren
e t� t0 and we 
an write G(j)AB(t; t0) =G(j)AB(t � t0; 0) = hhA(t� t0); Bii(j) meaning B = B(0), (j) 2 f(r); (a)g.Therefore we 
an make the time-fourier transformation and getG(j)AB(!) := hhA;Bii(j)(!) := 12� Z hhA(t); Bii(j)ei!tdt(j) = (r) or (j) = (a). All the operators must ful�ll the equation ofmotion in the Heisenberg pi
turei�hdA(t)dt = [A(t);H℄The time derivation of the GF isi�h ddthhA(t); Bii(j) = i�hÆ(t)h[A;B℄i+ hh[A(t);H℄; Bii(j) (3:2)21



The equation holds both for (j) = (r) and (j) = (a). In the Fouriertransform we obtain the equation of motion�h!hhA;Bii(j)(!) = i�h2� h[A;B℄i+ hh[A;H℄; Bii(j)(!) (3:3)It is useful to note that the GF is not fully determined by the last equationbe
ause it is valid for both advan
ed and retarded GF. We mention nowthe useful identitieshhA;Bii(r)(!) = hhA;Bii(r)(! + i0)hhA;Bii(a)(!) = hhA;Bii(r)(! � i0) (3:4)To prove this, we 
an write the de�nition of the Fourier transform ofthe time dependent GF for ! + i� and get an additional term of e��tunder the integral in the retarded GF whi
h 
onverges to unity for t > 0,� & 0. Be
ause of the � fun
tion we integrate over the positive timesonly. The same way we obtain that a small negative � does not spoil the
onvergen
e of the advan
ed GF.We 
an therefore 
onsider (3:3) as 2 equation for ! = ! � i0 whi
h
orresponds to the equation for the retarded and advan
ed GF.If we are able to approximate the last term in (3.3)hh[A;H℄; Bii(!)� F hhA;Bii(!)we 
an express the GF expli
itly in terms of h[A;B℄i and F . This ap-proximation is 
alled de
oupling.If we know the GF, we 
an 
ompute the averaged produ
t hA(t)Bi. De�neIAB(!) as the Fourier transform of hBA(t)i so thathBA(t)i = Z IAB(!)e�i!td!It 
an be shown that then hA(t)Bi = R IAB(!)e�!�he�i!td! and 
onse-quently h[A(t); B℄i = Z IAB(!)(e�!�h � 1)e�i!td!22



Now we 
an express the retarded and advan
ed GF from the de�nitionas hhA;Bii(r)(E) = hhA;Bii(r)(E + i0)= 12� Z dtei(E+i0)t�(t) Z d!IAB(!)(e�!�h � 1)e�i!t= 12� Z d!IAB(!)(e�!�h � 1) Z dtei(E+i0�!)t�(t) (3:5)
The last integral 
an be 
omputed:Z dtei(E+i0�!)t�(t) = Z 10 ei(E+i0�!)tdt = h ei(E+i0�!)ti(E + i0� !)i1t=0 == iE + i0� ! (3:6)The small imaginary part i0 is ne
essary due to the 
onvergen
e ofR10 ei(E+i0�!)dt.Substituting (3.6) into (3.5) we obtainhhA;Bii(r)(E) = i2� Z d! IAB(!) e�!�h � 1E + i0� ! (3:7)For the advan
ed GF we obtain a similar formula, whi
h di�ers from(3.7) by having E � ! � i0 in the denominator only. This justi�es us tode�ne a 
omplex Green fun
tion byGAB(z) = hhA;Bii(z) = i2� Z d! IAB(!)e�!�h � 1z � !This fun
tion is analyti
 in the upper half-plane and in the lower half-plane. The retarded resp. advan
ed GF are limits of this 
omplex Greenfun
tion from the upper resp. lower half-plane at the real axis. Let usnow re
all the identity 1x� i0 = (P ) 1x � �Æ(x) (3:8)Using (3.8), (3.7) we obtainGAB(E + i0)�GAB(E � i0) = IAB(E)(e�E�h � 1) (3:9)23



We see that the knowledge of the retarded and advan
ed GF 
an be usedfor 
omputing IAB(E) whi
h is the Fourier transformation of hBA(t)i.In the next 
hapter we will approximate some Green fun
tion GAB anduse the relationhB(0)A(0)i = Z IAB(!)d! = Z G(r)AB(!)�G(a)AB(!)e�!�h � 1 d! (3:10)The analyti
ity of GAB in the half-planes is an important fa
t from thenumeri
al point of view. We 
an 
ompute the limit of GAB from theupper and lower half-plane using the analyti
 de
onvolution.3. 2. Random Phase Approximation for Spin 1/2We use the formalism of the Green fun
tions for improving the MeanField Approximation of the Curie temperature. Let us 
onsider theHeisenberg Hamiltonian H = �Xi;j JijSiSj (3:11)with zero external �eld. Si is the spin operator, Si = (Sxi ; Syi ; Szi ). Thespins are lo
alized at the sites of a perfe
t 
rystal latti
e. We assume inthis simple model that the magneti
 moments in the Heisenberg Hamilto-nian (2.1) are 
reated by spins only, the system has translation symmetry,all sites are equivalent, there is only one atom in ea
h primitive 
ell andJij = Jji = J0(j�i). Suppose further that there is a nonzero magneti-zation at low temperatures (without external �eld) and we denote themagnetization axis by z. Su
h a system is 
alled isotropi
 Heisenbergferromagnet.In the simplest 
ase the spin operators Si are spin 1=2 operator and thespin at the site i is a spin 1=2 quantum state (a two dimensional ve
torin the spin spa
e). By a �nite non-zero temperature the system is in astatisti
al mixture of quantum states. We want to express the averagedmagneti
 moment hSzi i and �nd a 
ondition for the temperature so thathSzi i & 0 for T % TC . In the 
ase of spin 1=2 we have Szi = 1=2�S�i S+i ,24



where S� = Sx � iS� are the 
reation and annihilation spin operators.If averaged, hSzi i = 1=2� hS�i S+i i. Let us mark for simpli
ity Sz = hSzi i(independent of i in a system with translation symmetry).We will de�ne the Green fun
tions hhS+0 (t); S�j ii(j), (j) = (r) and (a)and after approximating it by an expli
it formula use (3.10) to expresshS�0 S+0 i. The equation of motion (3.3) reads�h!hhS+0 ; S�j ii(!) = i�h� Æ0jSz++2Xm hhJ0m(�Sz0S+m + SzmS+0 ); S�j ii(!) (3:12)what is easy to 
he
k out 
onsidering the 
ommutators [S+0 ; S�j ℄, [S+0 ;H℄,Hamiltonian (3.11) and the relationship SiSj = 1=2(S+i S�j + S�i S+j ) +Szi Szj .The Random Phase Approximation 
onsists in the \de
oupling" of thelast terms in (3.12): hhSz0S+m; S�j ii � hSzihhS+m; S�j iihhSzmS+0 ; S�j ii � hSzihhS+0 ; S�j ii (3:13)for j 6= 0 (the 
ase j = 0 is not interesting as J00=0). The equation ofmotion holds both for retarded and advan
ed GF. The only unknown inthe equation (3.12) after \de
oupling" (3.13) are Sz and the fun
tionsG0j(!) = hhS+0 ; S�j ii: The equation of motion after de
oupling is�h!G0j(!) = i�h� Æ0jSz + 2SzXm (�J0mGmj(!) + J0mG0j(!)) (3:14)In a system with translation symmetry we 
an make the latti
e Fouriertransformation (LFT) of Jij and Gij(!). We obtain fun
tions de�ned inthe �rst Brillouin zone J(q) and G(q; !) de�ned by J(q) = Pj J0jeijqand G(q; !) =Pj G0j(!)eijq.If we multiply (3.14) by eijq and sum over j, we get�h!G(q; !) = i�h� Sz + 2Sz(J(0)� J(q))G(q; !) (3:15)25



G(q; !) = i�h� Sz�h! � �(q) (3:16)where �(q) = 2Sz(J(0)� J(q)) (3:17)is the energy of the \spin wave" with the wave ve
tor q 2 BZ.Let us re
all that for determining the retarded resp. advan
ed GF we 
antake ! + i0 resp. ! � i0 instead of !.We use now the equation (3.10):hS�0 ; S+0 i = Z d!G(r)00 (!)�G(a)00 (!)e�!�h � 1 == 1
BZ Z d! Z dqG(q; ! + i0)�G(q; ! � i0)e�!�h � 1 (3:18)After 
hanging the order of integration, substituting (3.16) for G andusing the identity (3.8) we obtain1=2� Sz = hS�0 ; S+0 i = 2Sz
BZ Z dq 1e��(q) � 1This is a self-
onsistent equation for the magnetization Sz. We are inter-ested in �nding the temperature �C so that Sz & 0 for � & �C .We simplify the last equation by writing12Sz = 1
BZ Z dq(1 + 2e��(q) � 1) = 1
BZ Z 
oth(12��(q))dq (3:19)The argument of the 
oth goes to zero as Sz & 0 and we approximate
othx � x�1. Multiplying both sides of (3.19) by Sz we obtain an equa-tion for �C whi
h does not depend on Sz:�C = 1
BZ Z 2J(0)� J(q)dq (3:20)The denominator approa
hes to zero as q ! 0. We assume J(0)�J(q) tobe positive in the ferromagnets be
ause J(0)�J(q) is proportional to the26



energy of the spin waves and in the ground state of a ferromagnet all spinshave the same dire
tions and no spin waves are present. If we assume thatJ(q) has a 
ontinuous �rst derivation in q = 0 (this is obvious, if we takeonly a �nite number of nonzero J0j), we 
an write J(0) � J(q) � Dq2for some D > 0 and small q-ve
tors. The 
onvergen
e of (3.20) is givenby the 
onvergen
e of R q�2. This integral 
onverges only in a spa
eof dimension greater then 2. Therefore in the RPA approximation theferromagneti
 materials 
an exist only in a spa
e of dimension 3 or more.This is a di�eren
e from the MFA where the the only 
ondition for anonzero Curie temperature is J0 > 0 and the ferromagnetism exists on 2dimensional surfa
es as well.3. 3. RPA for More Atoms in a Primitive CellIf we have two or more atoms in ea
h primitive 
ell, all the fun
tionsused in the previous se
tion be
ome matri
es. Let us mark the di�erentatoms in a 
ell by B 2 f0; : : : ; n� 1g. The Hamiltonian isH = � XiB;jB0 JiB;jB0SiBSjB0 (3:21)In the 
ase of spin 1=2 we get 1=2 � hSz0Bi = hS�0B; S+0Bi = hS�0 ; S+0 iBB.We 
onsider the matrix hS�0 ; S+0 iBB0 of dimension n�n and are interestedin it's diagonal elements. We de�ne the GF matri
es [G(j)ij (!)℄BB0 , (j) 2f(r); (a)g. The equation of motion (3.3) is�h!hG0j(!)iBB0 = i�h� Æ0jÆBB0Sz1++XnB00 �hhS+0B; S�jB0ii(!)J0B;nB00 � hhSz0BS+nB00 ; S�jB0ii(!)J0B;nB00�We make the de
oupling of the r.h.s. analogous to (3.13) and after LFTwe obtain the expression�h![G(q; !)℄BB0 = i�h� Sz1+ [Sz(J0B � J(q))G(q; !)℄BB027



This is similar to (3.15) but it is a matrix equation now, the produ
t onthe r.h.s. is a matrix produ
t and J0B = PB0 J(0)BB0 . We will assumethat for all B J0B = J0 =PjB0 J00;jB0 .We obtain G(q; !) = i�h� Sz��h! � Sz(J0 � J(q))��1As before, the retarded GF 
orresponds to ! = !+ i0 and the advan
edGF to ! = ! � i0. The equation (3.18) still holds as a matrix equation.We need now a generalization of the identity (3.8):Lemma. If A is a hermitian operator, �i it's eigenvalues and Pi are theproje
tion operators onto the appropriate eigenspa
es, then (in the senseof distributions) Im((! + i0)1�A)�1 = ��Xi Æ(�i)Pi (3:22)Espe
ially, if �i are non-degenerate with the normalized eigenve
tors j�ii,then Im((! + i0)1� A)�1 = ��Pi Æ(�i) j�iih�ijThe proof 
onsists in the generalization of the residual theorem to ma-trix fun
tions. The matrix fun
tion we 
all analyti
, if it 
an be lo
allyexpressed as f(z + �) = Pj>j0 Aj�j, j0 2 Z. The matrix A�1 is 
alledresiduum and a 
omplete analogy of the residuum theorem holds.As a 
onsequen
e we get the equation (3.19) with �(q) = 2Sz(J0�J(q)) amatrix. The equation (3.20) holds too. The diagonal elements of hS�0 ; S+0 iare then the diagonal elements of the right hand side of the equation(3.20) and therefore the formula for expressing the RPA Curie tempera-ture is the same as (3.20), where we just substitute J0 =PjB0 J00;jB0 andtake the diagonal elements of the r.h.s. matrix. This diagonal elements
ould be in general various and would 
orrespond to the magnetizationshJ z0Bi, B 2 f0; : : : ; n� 1g but in the 
ases we study (h
p and b

 stru
-ture) all the atoms are equivalent and all the magnetizations are thesame.
28



3. 4. RPA for Classi
al SpinThe RPA te
hnique used for the derivation of (3.20) 
an be generalizedfor an arbitrary spin (or magneti
 momentum) but it be
omes very 
om-pli
ated. It's more 
onvenient to use the 
lassi
al spin des
ription what
orresponds to the quantum me
hani
al �h! 0 limit. Instead of the 
om-mutators we use the 
lassi
al Poisson bra
kets f g and the GF de�nedby hhA(t); B(t0)ii(r) = �(t� t0)hfA(t); B(t0)gihhA(t); B(t0)ii(a) = ��(t0 � t)hfA(t); B(t0)giIf we denote the 
omponents of the 
lassi
al magneti
 moment r� p byx; y; z, we obtain the relations fx; yg = z et
. The equation of motionfor a quantity A is dA=dt = fA;Hg, H is the 
lassi
al Hamiltonian.We normalized the spin to unity,x2 + y2 + z2 = 1This 
an always be a
hieved by normalizing the 
onstant Jij in the Hamil-tonian.We de�ne the GF Gjn(t; t0) = �(t � t0)hfxj + ixj; wngi, where wn isa fun
tion depending on xn; yn; zn only. If we �nd the Poisson bra
ketfxj + iyj;Hg, write the equation of motion, use the 
lassi
al de
ouplinganalogous to (3.13):hhzj(xm + iym); wnii � hzjihhxm + iym; wniiand make the time Fourier transformation, we obtain a system of equa-tion analogous to (3.14)!G0j(!) = i2�Æ0jhfx0 + iy0; w0gi+ 2zXm (J0mG0j(!)� J0mGmj(!))where z = hzji is assumed to be independent of j. Making the LFT weobtain, similar to (3.16)G(q; !) = i2� hfx0 + iy0; w0gi! � �(q) (3:23)29



where �(q) is de�ned by (3.17). We need a 
lassi
al analogy of (3.10)here. It 
an be shown that it ishB(0)A(0)i = Z i (G(r)AB(!)�G(a)AB(!))�! d! (3:24)what 
orresponds to the �h ! 0 limit (
ompare to (3.10)). Substituting(3.24) into (3.23) for A = x0 + iy0 and B = w0(x0; y0; z0) we obtainh(x0 + iy0)w0i = ihfx0 + iy0; w0gi
BZ Z 1��(q)dq == ikhfx+ iy; wgi (3:25)k 2 R is de�ned by this equation.We 
hoose wn := eazn(xn+ iyn), where a is a real parameter and denote�(a) := heaz0i = heazi (it is independent from the site) then �0(a) =hzeazi and �00(a) = hz2eazi.The fun
tion �(a) determines the magnetization, hzi = �0(0). If we use(3.25) and 
ompute the Poisson bra
ket on the r.h.s. fx+ iy; (x� iy)eazgfrom the de�nition of the Poisson bra
ket, we obtainh(x+ iy)(x� iy)eazi = ikhfx+ iy; eaz(x� iy)gi == �kh(a� 2z � az2)eazi == �k(�(a)� 2�0(a)� a�00(a)) (3:26)From another point of view (the spin ve
tor is normalized to unity, x2 +y2 + z2 = 1)h(x+ iy)(x� iy)eazi = h(1� z2)eazi = �(a)� �00(a) (3:27)Comparison of (3.26) and (3.27) leads to a di�erential equation for �(a)with an initial 
ondition �(0) = 1. It's solution is�(a) = sinh(a+ 1k )(ka+ 1) sinh( 1k)and the magnetization z = �0(0) = L(1k ) (3:28)30



where L is the Langevin fun
tion de�ned by (2.5).We substitute k from (3.25) into (3.28) and obtain an equation for the
lassi
al RPA magnetizationz = Lh� 1
BZ Z 1��(q)dq��1i (3:29)with �(q) = 2z(J0�J(q)). This equation 
an be solved numeri
ally. If weare interested in the Curie temperature, we limit z & 0, use the identityL(x) � x=3 for small x and get the Curie temperature�RPAC = 32 1
BZ Z 1J0 � J(q)dq (3:30)If we have more then one atom in ea
h 
ell, (3.25) will be a matrixequation, k will be the diagonal element of the matrix1
BZ Z 1��(q)dq (3:31)and (3.28) stays un
hanged. Similarly, the equation (3.30) holds as anequation for diagonal matrix elements with �RPAC � �RPAC 1.3. 5. Comparison of RPA and MFALet us now 
ompare the Mean Field Curie temperature (2.11) with theRPA Curie temperature (3.30). If the spin (or, generally, magneti
 mo-ment) is normalized to unity, then the MFA formula is(�MFAC )�1 = 23J0 (3:32)Be
ause of J00 = 0 and J00 = 1
BZ Z J(q)dqwe see that R J(q)dq = 0 and (3.32) 
an be written31



(�MFAC )�1 = 23 1
BZ ZBZ (J0 � J(q))dq (3:33)Comparing (3.30) and (3.33) we see that [(2=3)�MFAC ℄�1 is the arithmeti
mean value of J0�J(q) in the �rst BZ and [(2=3)�RPAC ℄�1 is it's harmoni
mean value. From the 
onvexity of the fun
tion 1=x 
an be easily derivedthat the harmoni
 mean value of some numbers is always smaller thenthe arithmeti
 mean value. ThereforeTRPAC < TMFAC (3:34)The same result 
an be proved if (3.33) and (3.30) are equation of matrixdiagonal elements. Assume that the diagonal elements are identi
al andtherefore proportional to the tra
e. Let as denote x(q) := (J0 � J(q))and x(q) it's arithmeti
al mean value. We want to proveTrx(q) > (Trx�1(q))�1 (3:35)Denote the eigenvalues of x(q) by �i(q); i = 1; : : : ; n. The equation (3.35)is then Xi �i(q) > �Xi ��1i (q)��1 (3:36)We know already that for ea
h i �i(q) > (��1i (q))�1. From this we easilyprove (3.36) and therefore (3.35) and (3.34) are ful�lled.
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4. Numeri
al implementation4. 1. Curie Temperature of gadolinium and 
obaltUsing the RPA model des
ribed in the previous 
hapter I 
omputed theCurie temperature of the ferromagnets 
obalt and gadolinium.They haveboth a hexagonal 
lose pa
ked latti
e.For 
omputing the Curie temperature I treat the spin of the valen
eele
trons as a 
lassi
al ve
tor. Gd has 7 valen
e f -ele
trons and 1 d-ele
tron. This system are large enough to be treated 
lassi
ally. TheCurie temperature of a ferromagnet 
an be estimated from the equation(3.30).The main task is to 
ompute the integral in the equation (3.30). Theh
p latti
e has 2 atoms in ea
h 
ell and (3.30) must be used as a matrixequation.The ex
hange 
oeÆ
ients Jij I obtained as an output of existing programswritten by my diploma tea
her RNDr. Ilja Turek. In this programs the Jij
oeÆ
ients are 
al
ulated using the LSDA approximation, Green fun
-tion method, ASA and tight-binding LMTO, see [5℄. A �le with these
onstants (
ontaining about 400 ex
hange parameters, where all the oth-ers, des
ribing the intera
tions between very distant latti
e sites, arenegle
ted) is an input �le for my program.To 
al
ulate the right hand side of (3.30) I had to make the LFT of theex
hange 
onstants for a set of q-ve
tors from the �rst BZ.The average value of [J0� J(q)℄�1 in the �rst BZ I approximated with a�nite sum 1
BZ ZBZ [J0 � J(q)℄�1 � 1N NXi=1 [J0 � J(qi)℄�1 (4:1)where qi are some points from the BZ. I 
hose the points qi to form anequidistant mesh and magni�ed N until the 
onvergen
e of (4.1) be
ame
lear. 33



It is not ne
essary to integrate over the whole BZ be
ause some q-pointsare equivalent. This is be
ause of the symmetries of the h
p latti
e.Ea
h symmetry in the real latti
e 
orresponds to a degenera
y of ea
hq-ve
tor in the BZ. I give an example here: the h
p latti
e doesn't 
hangeif we mirror it around the xy plane. Denote q0 = (qx; qy;�qz) and R0 =(Rx; Ry;�Rz). Then eiq0R = eiqR0 . Be
ause of the latti
e symmetry J0R =J0R0 (the sites R and R0 are equivalent) we obtain J(q) = J(q0). We seethat the symmetry in the real latti
e redu
es the part of the BZ whi
hwe have to treat independently. In fa
t, there are more symmetries in theh
p latti
e (rotation around the z-axis about 60o or 120o) and we need tointegrate only over one 24th of the BZ, 
alled irredu
ible Brillouin zone(IBZ). The IBZ for the h
p latti
e it is shown in the FIG. 4.1.

� M K
A L

FIG. 4.1 The �rst Brillouin zone for the h
p latti
e and it's irredu
ible part.If integrating [J0�J(q)℄�1 a diÆ
ulty is that this matrix is not de�ned forq = 0 and be
omes very large for q � 0. The 
onvergen
e of the integral34



R [J(0)� J(q) + z1℄�1 is mu
h faster for z a small 
omplex number. Thefun
tion R [J(0) � J(q) + z1℄�1 is analyti
 in z. For z 6= 0 and z nota positive real number there are no singularities when integrating. We
an 
ompute it for a few z points near to zero and use the analyti
alde
onvolution for determining it's value in z = 0.Let f(z) be the fun
tion we want to 
ompute in z = 0. I used thefollowing formula for the de
onvolution:f(0) � 4f(i�)� f(2i�)� f(�+ i�)� f(��+ i�) (4:2)for some � > 0.It is easy to show that this formula gives an error in order of only �4for an analyti
 fun
tion f . We don't use any z on the real axis to avoidpossible singularities in [J0 � J(q) + z1℄�1. The parameter � is supposedto be small 
ompared with the eigenvalues of J0 � J(q). For gadoliniumJ0 � 3:3 mRy.I used several � and I in
reased the number of points N along one line inthe irredu
ible BZ for ea
h of them until i got 
onvergen
e with respe
tto both N and �.The FIG. 4.2 shows some results for gadolinium (the total number ofq-points used for numeri
al integration over the IBZ is proportional tothe third power of N).As we see from the �gure, the RPA Curie temperature is 305K forgadolinium. The same way I obtained the 
obalt RPA Curie temper-ature 1369K. The experimental results are 1388K for 
obalt (in the f

stru
ture) and 295K for gadolinium. The TRPAC error for gadolinium isabout 3:3%. The MFA approa
h gives 1683K for 
obalt and 343K forgadolinium.We see that the RPA is a better approximation of the Curietemperature then MFA and that indeed TRPAC < TMFAC .All this results are based on the Jij 
onstants 
omputed for �xed latti
e
onstants a and 
. I denote a the distan
e between the nearest neigh-bours in the xy plane and 
 the distan
e between the verti
al nearestneighbours. The experimental value of 
=a is 1:597.35
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FIG. 4.2 Numeri
al 
al
ulation of the Curie temperature for gadolinium. � is the
onstant from (4.2).We 
an observe how the RPA and MFA Curie Temperatures 
hange if we
hange the latti
e 
onstants by a �xed proportion 
=a. This 
orrespondsto a homogeneous 
ompression of the 
rystal and 
an be 
ompared withexperimental data.Some of the results are on FIG. 4.3. The letter s denotes here 3=(4�)
1=3,
 is the volume per atom.The experimental latti
e 
onstant s is about 3:762 a.u. By pressing itand de
reasing the volume the Curie temperature be
omes smaller inthe experiment, whi
h is in 
on
i
t with the 
al
ulations. The reason forthis dis
repan
y is not known at present.
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FIG. 4.3 The dependen
e of the MFA and RPA Curie temperature for gadoliniumon the Wigner-Seitz radius s.4. 2. Magnon Spe
trumLet us 
onsider a Heisenberg ferromagnet with the Hamiltonian (3.11)and spin S at ea
h latti
e site. The eigenstates of this Hamiltonian are
alled magnons, or spin waves. It 
an be shown that the spe
trum of thisHamiltonian is 
onne
ted to the poles of the Green fun
tion (3.16) resp.(3.23). Ea
h magnon 
an be 
hara
terized by a ve
tor from the �rst BZ.Be zero temperature the magnon energies are�(q) = 2S(J0 � J(q)) + E0 (4:3)where E0 is the energy of the ground state. We 
an 
hoose the energys
ale so that E0 = 0.For nonzero temperature the magnon energy is de
reasing proportionallyto the magnetization Sz, as 
an be seen from (3.17).37



If there are more atoms in ea
h latti
e 
ell, the magnon energies are theeigenvalues of the matrix (4.3).To 
ompute this energies I made the LFT of the ex
hange 
onstants Jijfor various q-ve
tors from the �rst BZ.I 
omputed the magnon energies for the ferromagnets gadolinium and
obalt. FIG. 4.4 shows the results for some spe
ial points in the �rst BZfor gadolinium at zero temperature. The positions of the points �, M , Kand A in the �rst BZ 
an be seen on FIG. 4.1.

010
2030

� M K � ASpin wave ve
tor from the 1. BZ for gadolinium
Magnonenerg
y[meV℄

FIG. 4.4 Gadolinium magnon energies at zero temperature for spe
ial points on theborder of the �rst BZ.In both Gd and Co the energy has a maximum in the pointM . Two linesin the pi
ture 
orresponds to the two eigenvalues of the 2�2 matrix (theh
p latti
e has 2 atoms in ea
h 
ell).We see that the energies are alwaysnonzero and positive: this is a 
onsequen
e of the fa
t that gadoliniumand 
obalt are ferromagnets (the ground state is not a spin wave). The
obalt magnon spe
trum is similar.38



To 
ompute the magnetization and magnon energies at nonzero temper-ature we use the RPA model and formula (3.29). The integral in (3.29)is not needed to be 
omputed so far we already have 
omputed the RPACurie temperature given by (3.30). Comparing (3.30), (3.29), the 
on-stant k as the diagonal term of (3.31) and the de�nition of the magnonenergies (3.17) we see that k depends on the temperature likek = 13z TTRPACSubstituting this into (3.29) and solving (3.29) I obtained the followingmagnetization for gadolinium at T < TRPAC :

0 100 200 3000.20.4
0.60.8
1

T (K)
RPAmagnetiz
ation

FIG. 4.5 The dependen
e of the gadolinium magnetization on the temperature. Thespin per atom at zero temperature is normalized to unity.The magnon energies at nonzero temperature T < TRPAC are exa
tlySz=S times smaller then at zero temperature. FIG. 4.6 
ompares someexperimental data for magnon energies along the border of the �rst BZat the temperature 78K with the RPA result.
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FIG. 4.6 The experimental gadolinium magnon energies at the temperature 78 K(points) and the RPA result 
al
ulated for 78K (smooth lines). The experimentaldata are from [7℄.
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5. Alloys with Substitutional Disorder5. 1. Coherent Potential ApproximationSystems with substitutional disorder are systems with an ideal latti
ewhere the latti
e sites are randomly o

upied by various atoms. In thesimplest 
ase there are two atoms A and B and their 
on
entrations 
Aand 
B so that 
A+ 
B = 1. We assume that ea
h latti
e site is o

upiedfully randomly either by atom A (with the probability 
A) or by atom B(probability 
B) with no 
orrelations between various latti
e sites.We want to 
ompute the ele
troni
 stru
ture of su
h a system. The LDAor LSDA and ASA approximations (see 
hapter 1) and the GF te
hnique
an be used again. The e�e
tive potential (1.1) or it's spheri
ally symmet-ri
 approximation in one atomi
 sphere depends now on the o

upationof the sphere. We obtain two potentials V Qeff , Q 2 fA;Bg. This indi
atestwo di�erent regular and irregular solutions 'QRL(rR; z) and ~'QRL(rR; z)and two potential fun
tions PQRL(z) (see (1.10)). The physi
al propertiesof the system 
an be 
omputed from the knowledge of the imaginary partof the Green fun
tion G(r; r; z). The GF 
an be 
omputed from (1.8). It
an be shown that the �rst term on the right hand side of (1.8) is real fora real potential Veff and we need to 
al
ulate the \physi
al GF matrix"GRLRL0(z) only.To obtain reasonable result we have to average this matrix over all thepossible 
on�gurations. If we denote GRLRL0(z) := hGi the 
on�gura-tional average of this matrix andGQRLRL0(z) := (
Q)�1h�QRGRLRL0(z)ithe average over all 
on�gurations having the atom Q at the site R (�QRis the \indi
ator" of the atom Q at the site R, �QR = 1 if the site Q iso

upied by the atom Q and 0 otherwise), then the randomness of thedisorder gives the relationGRLRL0 =XQ 
QGQRLRL041



Let us de�ne the \auxiliary GF" gRLR0L0(z) by the relationG(z) = �12 �P (z)_P (z) +q _P (z)g(z)q _P (z)We see from (1.10) that for a homogeneous solid g = (P � S)�1, whereP is the diagonal potential fun
tion matrix and S the matrix of thestru
ture 
onstants. We de�ne a matrix P byg = (P � S)�1This matrix is generally nondiagonal. The Coherent Potential Approxi-mation an approximating P by a site-diagonal matrix. This means phys-i
ally that we substitute the real alloy by a homogeneous solid with some\e�e
tive atoms". The 
ondition on P is that the average s
attering fromputting a single impurity A or B with the probability 
A or 
B into thee�e
tive medium is zero. The detailed CPA 
ondition and additionaltheory 
an be found in [1℄.CPA 
an be used not only for 
al
ulating the ele
troni
 stru
ture of analloy ground state but for a substan
e with randomly oriented spins aswell. An example is the DLM europium that 
an be des
ribed as an\alloy" of two 
omponents: europium atoms with spin up and europiumatoms with spin down. The energy dependen
e on the latti
e parameteris shown in FIG. 1.2.The �gure FIG. 5.1 shows the density of states of the gadolinium-yttriumalloy at zero temperature and yttrium 
on
entration 20%.5. 2. Mean Field Magnetization and Curie TemperatureThe Heisenberg Hamiltonian for an alloy isH = � Xi;j;Q;Q0 JQQ0ij JQi JQ0j �Qi �Q0j � 
BXj;Q JQ;zj �Qjwhere �Qi is the indi
ator of an atom Q at the site i. Assume that we havea ferromagnet and zero external �eld.We 
onsider two \magnetizations"42
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FIG. 5.1 The gadolinium (full line) and yttrium (dashed line) proje
ted DOS of theGd0:8Y0:2 alloy (f -ele
trons in the 
ore).mQ := hJQ;zi. Let JQ be the total magneti
 moment of the atom of typeQ. The Mean Field magnetization is, analogous to (2.9)mQJQ = L(2�XQ0 JQQ00 mQ0JQ0) (5:1)L is the Langevin fun
tion (2.3) and JQQ00 :=Pj JQQ00j .The 
ondition for the MFA Curie temperature is that all the magnetiza-tions go to zero. We use the quality of the Langevin fun
tion L(a) � a=3for a small argument a and obtain a system of equations1�C mQJQ = 23XQ0 JQQ00 JQJQ0mQ0JQ0We see that the MFA Curie temperature kBTMFAC is an eigenvalue ofthe matrix (2=3)JQQ00 JQJQ0 . It is the maximal eigenvalue of this matrix43
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FIG. 5.2 The mean �eld and experimental Curie temperature of the gadolinium-yttrium alloy as a fun
tion of the yttrium 
on
entration. The experimental data arefrom [10℄.be
ause for kBT smaller then the maximal eigenvalue there still exist anonzero solution of the equations (5.1)FIG. 5.2 shows the TMFAC for the Gd-Y alloy as a fun
tion of the Y
on
entration. The Curie temperature de
reases with in
reasing Y 
on-
entration in qualitative agreement with experiments.A more realisti
 approximation like RPA for alloys would be suitablebut is not known yet. Some attempts to des
ribe the �nite temperaturemagnetization in alloys with CPA and RPA are in [8℄.
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Con
lusionsThe density fun
tional theory has enabled realisti
 
omputer 
al
ulationsof the ground state properties of large ele
tron systems with a translation-ally symmetri
 latti
e. In the numeri
al implementations several approx-imations are used, e.g. LSDA, GGA, ASA. In this work I 
omputed themagnetization and Curie temperature of gadolinium and 
obalt withinthe Random Phase Approximation and Mean Field Approximation us-ing the model of the Heisenberg Hamiltonian with ex
hange intera
tions
onstants 
al
ulated within the LSDA theory. I des
ribed the theoreti
alGreen fun
tion formalism that leads to the RPA theory.The Curie temperature within the RPA model is more realisti
 as theMean Field Curie temperature and gives an error of about 3% fromexperiment. The 
al
ulations has been performed using the 
ompter lan-guage C. The 
ode in
ludes integrating of a matrix fun
tion over theirredu
ible part of the �rst Brillouin zone for hexagonal 
losed pa
kedlatti
e.Making the latti
e Fourier transformation of the ex
hage intera
tion 
on-stants I obtained the spin wave spe
trum of gadolinium at �nite temper-atures. It is in good agreement with experimental results.In order to des
ribe the ele
troni
 stru
ture of substitutionally disorderedalloys at zero temperature the Coherent Potential Approximation 
an beused. I 
al
ulated the mean �eld Curie temperature for the Gd-Y alloyas a fun
tion of the yttrium 
on
entration and found good qualitativeagreement with experiment.
45



Referen
es[1℄ I. Turek, V. Dr
hal, J. Kudrnovsk�y, M. �Sob, P. Weinberger, Ele
-troni
 Stru
ture of Disordered Alloys, Surfa
es and Interfa
es (KluwerA
ademi
 Publishers, 1996)[2℄ H. Es
hrig, The Fundamentals of Density Fun
tional Theory (Teub-ner Texte zur Physik, Vol. 32, 204 pp., 1996)[3℄ S.Tyablikov, Methods of Quantum Theory of Magnetism (PlenumPress, New York, 1967)[4℄ N. Majlis, The quantum theory of magnetism (Singapore, World S
i-enti�
, 2000)[5℄ M. Pajda, J. Kudrnovsk�y, I. Turek, V. Dr
hal, V. Bruno, Ab initio
al
ulation of ex
hange intera
tions, spin-wave sti�ness 
onstants, andCurie temperatures of Fe, Co and Ni (Phys. Rev. B 64, 174402, 2001)[6℄ I. Turek, J. Kudrnovsk�y, V. Dr
hal, P. Bruno, S. Blugel, Ab initioTheory of Ex
hange Intera
tions in itinerant Magnets (Phys. Stat. Sol.(b), p. 318, 2003)[7℄ J. Jensen, A.R. Ma
kintosh, Rare Earth Magnetism (Oxford, Claren-don Press 1991)[8℄ G. Bouzerar, P. Bruno, RPA-CPA theory for magnetism in dis-ordered Heisenberg binary systems with long-range ex
hange integrals(Phys. Rev. B 66, 014410, 2002)[9℄ A. Li
htenstein, M.I. Katsnelson, V.P.Antropov, V.A.Gubanov, Lo-
al Spin Density Approximation to the Theory of Ex
hange Intera
tionsin Ferromagneti
 Metals and Alloys (Journal of Magnetism and Magneti
materials 67, p. 65, 1986)[10℄ T.Ito, S. Legvold, B.J. Beaudry, New look at magnetism in single-
rystal Gd-Y alloys, (Phys. Rev. B 23, 3409-3413, 1981)46


