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1. Density Funtional Theory1. 1. Theoretial BasisThe state of a quantum mehanial system is determined by it's Hamil-tonian H that gives us all the possible information about the system.The eigenstates of H are the stationary states. We suppose that at zerotemperature the system is in the ground state, the eigenstate of H withthe lowest energy.The physial systems we study are bodies with an in�nite periodi lattiewith three basis vetors (in a 3D spae) and translation symmetry. Thesites are oupied by a �nite number of atomi speies.The task of �nding the eigenstates of the Hamiltonian is too ompliatedin systems with several partiles (inluding nulei, eletrons and theirspins) to be solved exatly. The �rst approximation to be mentioned isthe Born-Oppenheimer approximation. It separates the wave funtion (R�; ri) in a produt of a nulei wave funtion u(R�) and an eletronwave funtion vfR�g(ri), whih depends parametrially on the nulei po-sitions R�. In this work we treat the nulei as lassial partiles withwell-de�ned trajetory and assume that there exist an eletron Hamilto-nian HfR�g, where fR�g are the positions of the nulei. We also assumethat the nulei are not moving in the ground state and their kinetienergy is zero.The variational priniple an be used to �nd the positions fR�g whihminimize the appropriate ground state energy of the system. This energyis the sum of the potential energy of the nulei (reated mostly by theoulomb interations) and the lowest eigenvalue of the appropriate ele-tron HamiltonianHfR�g. This state is (in our approximation) the groundstate of the system at zero temperature.We assume in all the further text that the positions of the nulei are �xedand we denote the eletron Hamiltonian H instead of HfR�g.We usually know the positions of the nulei from observations. The vari-5



ational priniple is pratially used only to �nd a small number of pa-rameters (as the lattie onstants, assuming we know the type of thelattie).The task of many programs is to alulate the ground state of H. Thequantum state of the eletrons in the system we usually all The Ele-troni Struture (ES). The most ommon way to alulate it is based onthe one-eletron approximation using the Density Funtional Theorem,proved by Hohenberg and Kohn in 1964 [1,2℄:Theorem (DFT). The ES of a non-degenerate ground state of aneletron system and it's external potential are both determined by it'ssingle-partile density �(r), de�ned by�(r) = N Z  �(r; r2; : : : ; rN) (r; r2 : : : ; rN)dr2 : : : drnwhere  is the normalized wave funtion of the ES and N the number ofeletrons.This justi�es the de�nition of the total energy as a funtional E [�℄ of thesingle-partile density. We use the variational priniple for minimizing Ewith respet to � under the ondition R �(r)dr = N and � � 0.It an be shown that the variational priniple leads to equations that areequivalent to solving the problem of N non-interating partiles with theHamiltonian Heff = ��+ Veff , the e�etive potential [1℄Veff (r) = Vext(r) + Z 2�(r0)jr � r0jd3r + ÆEXC [�℄Æ�(r) (1:1)Here Vext is the external potential of our eletron system (it inludes theoulomb eletrostati �eld of the nulei) and EXC is alled the exhange-orrelation energy and is aused by non-lassial energy omponents. Thelast equation is to be understood as a funtional equation: we identifyf(r) with a funtional g(r)! R f(r)g(r)dr. The expression ÆEXCÆ� is thedi�erential of the EXC in the point � (whih is a funtional). The density6



� is given by �(r) = NXi=1 j i(r)j2 (1:2)where  i are the N lowest eigenfuntion of this e�etive Hamiltonian.If we know the funtional EXC we an �nd the density �(r) of our systemso that the eigenfuntion of the e�etive Hamiltonian satisfy (1.1) and(1.2). The knowledge of � determines the total energy of ES and an bealulated by a simple formula.This is solved by iterations in the numerial implementations.We hoosesome starting e�etive potential V (1)eff , ompute the orbitals  (1)i and thedensity �(1). Using �(1) and (1.1) we obtain a new potential ~V (2)eff . Nowwe let V (2)eff = � ~Veff (2) + (1� �)V (1)eff . We all � the mixing parameter. Itan be proved that for � small enough this iterations will onverge to aself-onsistent e�etive potential Veff .There are several methods to determine EXC . The simplest one is alledLoal Density Approximation: it approximatesEXC [�℄ � Z �(r)�XC(�(r))drwhere �XC is a funtion. In this approximation the exhange-orrelationenergy depends on the density loally. For �XC we usually take theexhange-orrelation energy of the homogeneous eletron gas. We areable to ompute this funtion to a high degree of auray. This approx-imation is suitable for systems where the eletron density doesn't variesmuh. A better approximation alled GGA (General Gradient Approxi-mation) improves this by inluding the density gradient into the funtion�XC = �XC(�(r);r�(r)).If we inlude the eletron spin to our observation we get two eletrondensities: �" and �# for spin +1=2 and �1=2. The approximationEXC [�"; �#℄ = Z �(r)�XC(�"; �#)dris alled Loal Spin Density Approximation (LSDA). The models withinLDA and LSDA are based on the homogeneous eletron gas model.7



1. 2. Other Approximations and Tehniques Used by Calulat-ing the Ground State ESMany diÆulties arise by solving the self-onsistent Shr�odinger equa-tions with the potential (1.1) and density (1.2). One tehnique often usedis to distinguish between the ore eletrons and valene eletrons. We as-sume that the ore eletrons are loalized inside their atomi spheres andthat they don't interat with other atoms. Therefore we treat them inde-pendently and their total energy is the sum of the ore eletron energiesover all the atoms. We use a tehnique of the Hamiltonian resolventsde�ned by G(z) = (z �H)�1to alulate the energy of valene eletrons. This operator in the spaerepresentation is alled Green funtion (GF):G(r; r0; z) := hr0jG(z)jri =Xi  i(r) �i (r0)z � �i (1:3)where  i(r) are the eigenfuntions ofH and �i it's eigenvalues.We assumethat H = ��+ Veff(r), Veff is the e�etive potential from (1.1).We use now the distributional identity1x+ i0 = P 1x � i�Æ(x) (1:4)where Æ is the dira distribution, R '(x)Æ(x)dx = '(0) and (P) meansthe prinipal value. From (1.3) and (1.4) we havew(r; E) := �1� ImG(r; r; E + i0) =Xi j i(r)j2Æ(E � �i) (1:5)From the knowledge of the GF for an eletron system the quantity w anbe alulated and from (1.5) we easily derive the energy resolved densityof state (DOS) and the eletron density:�(r) = Z w(r; E)dE (1:6)n(E) = Z w(r; E)dr (1:7)8



The point is that we an alulate the density � without the knowledge ofthe orbitals  i(r). If we integrate in (1.6) from �1 to the Fermi energyEF , we obtain the total density of eletrons. If we need the densityof valene eletrons only, we integrate in (1.6) over the energies of thevalene eletrons.One important quality of the GF is that it is analyti in the upper om-plex half-plane. Therefore we an ompute the integral (1.6) by integrat-ing over a irle in the upper omplex half-plane what is more onvenientfrom the numerial point of view.The density �(r) an be determined from the GF for the e�etive Hamil-tonian with the potential (1.1) using (1.6) and this density determines anew potential Veff and a new e�etive Hamiltonian.The problem we still have is to �nd the Green funtion G for somepotential Veff .Here other approximation are used. The �rst one to mention is theAtomi Sphere Approximation (ASA) where we approximate the poten-tial Veff(r) by a potential V that is spherially symmetri inside non-overlapping spheres and onstant in the interstitial region outside thespheres. We assume that the atomi spheres have all the same radius,the nulei are in their enters and the potential inside the Rth spheredepends only on the distane from the enter. We assume that the wavefuntions solve the Laplae equation (not Shr�odinger) in the intersti-tial region what orresponds to the demand for zero kineti energy. Theenergy ontribution from the interstitial region is zero in this approxima-tion and we solve the Shr�odinger equation with the potential (1.1) onlyin the region of the atomi spheres.If starting with a spherially symmetri potential, we obtain an eletrondensity that is no more spherially symmetri but we symmetrize it tak-ing �(rR) to be the average of �(rR) on the sphere frR = rRg. Wealso approximate the external potential Vext in (1.1) by it's spheriallysymmetri part and obtain a new potential that is spherially symmetriinside the atomi spheres. 9



It an be derived that the GF for the points r+R; r0+R0, where r+Rlies in theRth sphere and r0+R0 lies in theR0th sphere, an be expressedas [1℄G(r +R; r0 +R0; z) = ÆRR0 XL 'RL(r<R; z) ~'RL(r>R; z)f'Rl(rR; z); ~'Rl(rR; z)g+XLL0 'RL(rR; z)GRLR0L0(z)'R0L0(r0R0; z) (1:8)where rR = r�R for all r and R, r>R resp. r<R is that one from rR; r0R0with the larger resp. smaller absolute value, 'RL(rR; z) resp. ~'RL(rR; z)is the regular resp. irregular solution of the Shr�odinger equation (��+Veff � z) = 0 in the Rth sphere with the angular momentum L = (l;m),'RL(rRl; z) is the radial part of 'RL(rRL; z), fg is the Wronskian of theradial funtions de�ned by ff(r); g(r)g := r2(f(r)g0(r)� f 0(r)g(r)) andthe onstants GRLR0L0(z) de�ned by (1.8) an be omputed from theequation G(z) = �12 �P (z)_P (z) +q _P (z)[P (z)� S℄�1q _P (z) (1:9)where PRL;R0L0(z) = ÆRlR0l0 fKRl(r); 'Rl(r; z)gfJRl(r); 'Rl(r; z)g jr=sr (1:10)KRl and JRl(r) are the irregular and regular solutions of the Laplaeequation, sr is the radius of the atomi spheres in ASA, the dot over Pis the energy derivation and the matrix S is de�ned byKL(rR) = �XL0 SRl;R0L0JL0(rR0)The matrix S is alled anonial struture onstants matrix and it de-pends only on the atomi positions fR�g. For an ideal rystal it is a nonrandom matrix.This way the Green funtion an be determined and from the GF all theone-eletron properties of the system an be alulated using (1.1) andLDA or LSDA. 10



1. 3. Numerial ResultsMost of the existing programs for alulating the ground state energiesare based on the LSDA and Greens funtion tehnique desribed shortlyin the previous paragraph. Other approximation are used by solving theone-eletron Shr�odinger equation with H = �� + Veff(r) even withinASA. One ommon way is the using of the variational priniple and�nding the approximate solution in a subspae generated by some setof speial funtions. The Shr�odinger equation then leads to a systemof linear equations. The quality of the method depends on the hoie ofthe generating funtions. One ommon method is the tehnique of linearmuÆn-tin orbitals (LMTO) desribed in [1℄.One interesting fat is that in order to obtain reasonable results we haveto treat the f -eletrons in lanthanides as ore eletrons, although theirenergy is high. Several alulations have been performed showing thatthe f -eletrons are more loalized then the valene d-eletrons and thatf -eletron interations between various lattie sites are negligible.I used existing programs of RNDr. Ilja Turek to alulate the energiesof europium and vanadium as a funtion of the Wigner-Seitz radius sde�ned by (4=3)�s3 = 
, 
 is the volume per atom. Both europium andvanadium have the b struture with 2 atoms in eah lattie ell. Thereare no f -eletrons present in vanadium and it's Wigner-Seitz radius is2:81 a.u. (1 a.u.� 0:0529177 nm). I obtained FIG. 1.1 for the total atomienergy (using LDA).The numerial result is about 2:75 a.u. as we see from the piture, whatis, ompared with the experimental value 2:81 a.u. an error of about 2%.A good illustration of an f -eletron system is europium (b struture).FIG. 1.2 shows the dependene of it's atomi energy on the Wigner-Seitzradius. The magneti properties are not negligible in europium and wehave to use the spin polarized LSDA approximation. FM means the fer-romagneti europium with all atoms having the same magneti moment(we denote it's projetion onto the magnetization axis J). AFM is theanti-ferromagneti europium. It is a solid with 2 di�erent europium atomsin eah primitive ell: one atom having the projetion of the magnetimoment onto the magnetization axis +J and one atom having this pro-11
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FIG. 1.1 The total ground state energy of vanadium within LDA and ASA for variousWigner-Seitz radii. The zero energy is set to be the ground state energy.
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FIG. 1.2 The total ground state energy of FM, AFM and DLM europium withinLSDA and ASA for various Wigner-Seitz radii. The minimum energy is here about4:2 a.u. 12



jetion �J (where J is the total magneti moment of an atom). Finally,DLM means disordered loal moments and it is an europium with randommagneti moments (in this ase the CPA approximation have to be used,see hapter 5). We see that in all this ases the radius s orrespondingto the minimal energy is approximately the same, about 4:2 a.u.We an onlude from this example that the atomi radius is almostindependent of the on�guration of the magneti moments. The real on-�guration of europium ground state is a spin spiral. The experimentalvalue is s = 4:238 a.u. In this alulations the f -eletrons are ore ele-trons and the results are good. If we treat them as valene eletrons, weobtain a larger error, as an be seen from FIG. 1.3.
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2. Ferromagnets and Curie Temperature2. 1. The Heisenberg HamiltonianThe magnetism we observe in real solids is due to the spin and orbitalmomentum of the valene eletrons. Eah atom has a total magnetimoment depending on it's eletroni on�guration. This on�guration inthe ground state is determined by the Hund rules. In a rystal the spinmagnetization density within LSDA ism(r) = �"(r)� �#(r)and the total spin per atom within ASA we obtain by integrating m overone atomi sphere.Let as assume that there is one atom in eah primitive ell i reating anon-zero magneti moment Ji = (Jxi ; Jyi ; J zi ). In the following text wedenote the lattie ells by i; j instead of R;R0 et.The magneti energy of a non-interating system of magneti momentsis W = �BPj J zj , where  > 0 and z is the axis of the external �eldB (the Zeeman energy term). We get a more realisti Hamiltonian afteronsidering the dipole-dipole interations between various lattie sites.The Heisenberg Hamiltonian is de�ned [3,4,5,6℄H = �Xi;j JijJiJj � BXj J zj (2:1)This model Hamiltonian operates only on the momentum spae and weonsider now all the other energy omponents as onstants.The onstants Jij are alled Heisenberg exhange parameters. In the fur-ther text we assume that we have an ideal in�nite lattie with translationsymmetry, Jji = Jij = J0j�i and Jii = 0. In the quantum mehanial de-sription J are the spin operators, JiJj = Jxi Jxj + Jyi Jyj + J zi J zj . If thereare many valene eletrons present and the spin is high, we treat themomentum as a lassial vetor and the produt JiJj as a salar vetor15



produt. In this lassial desription we normalize this vetor J2 = J2,where J is the total magneti moment per atom.The system is in it's ground state at zero temperature, whih an be inpartiular ases (depending on the Jij onstants) a ferromagneti state(i.e. all the moments have the same diretion).At nonzero temperatures the system is in a statistial mixture of di�er-ent states with the density operator � = e��H, � = 1=(kBT ), T is thetemperature and kB the Boltzmann onstant. The statistial mean valueof an observable A is de�ned byhAi := Tr(�A)Tr(�)The onstants Jij an be obtained from the knowledge of the spin resolvedGF and the (spin resolved) potential funtions (1.10) within LSDA, ASA,and TB-LMTO (see eq. (3) in [4℄ and [9℄).It an be shown that the amplitude of Jij for distant lattie sites i; jdereases to zero like d�3 where d = ji � jj is the distane between thelattie sites. A �ner approximation is Jij � A sin(�d + �)=d3. FIG. 2.1shows the dependene of the exhange oeÆients on the distane.2. 2. Langevin ParamagnetismLet us derive an equation for the average magnetization � := hJ zi i =hJzi (independent of i) if the Hamiltonian is just H = �BPi J zi (theZeeman term) and assume that the spins JZi 2 h�J; Ji as in the lassialdesription. The partition funtion an be omputed [4℄Z = Z d
1 : : :d
Ne�BJPi os�i = ( Z d
e�BJ os�)N = (z(a))Nwhere �i is the angle between the z-axis and the diretion of Ji,z(a) = �a sinh(a); (2:2)16
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lassial magneti moments (the approximation was used only in thehoie of the Hamiltonian and the lassial treatment of the magnetimoment as a vetor).2. 3. Mean Field ApproximationEah of the moments Ji reates it's own magneti �eld that interatwith all other magneti moments. In the Mean Field Approximation weassume that eah magneti moment is a�eted only by an average �eldfrom all other moments. A natural assumption is that the reated �eldis proportional to the magnetization � = hJ zi:Blo = �� (2:6)We assume that the average magnetization doesn't depend on the lattieell i.Let us onsider a system of magneti moments with the HeisenbergHamiltonian (2.1). If we hoose an \unperturbed" Hamiltonian H0 loseto H, then the appropriate free energy per partile an be approximatedby f � f0 + hH � H0i0We denote hAi0 the mean value of A with respet to the density operator�0 = e��H0 .This equation an be derived from the perturbation theory and the erroris of order hH � H0i20.The following theorem has been proved:Theorem. [3,4℄ If F0 is the free energy of the system, orresponding tosome Hamiltonian H0 then for the free energy F orresponding to H thefollowing inequality holds:F � F0 + hH � H0i0 (2:7)In the Mean Field Approximation approximate the Hamiltonian byH0 = �BeffXi J zi18



where Beff = B +Blo, Beff is the projetion of Beff onto the z-axis,B is the external �eld and Beff is hosen so that the expression F0 +hH�H0i0 is minimal. The approximate Hamiltonian H0 is a funtion ofBeff . We denote the right hand side of (2.7) by �. We obtain from (2.7)that in order to obtain the best approximation for the free energy of thesystem � must be minimal and the derivations of � with respet to it'sfree parameters must be zero.This is the way how to obtain the Beff in the MFA.It is easy to verify hH0i0 = �(Blo +B)�NhHi0 = �(J0�2 � B�)N (2:8)where J0 =Pi J0i, � = hJ zi0 and N is the number of magneti momentsin the system. We don't know the relation between Blo and � so farbut we treat them as independent parameters of � = �(Blo; �). Thedependene Blo(�) will be determined from the ondition of minimizing�.The free energy is F0 = �1=� logZ0. We have omputed Z0 in theprevious paragraph (see (2.2)). We see that Z0 doesn't depend expliitlyon the magnetization, Z0 = Z0(�;Beff). If we want to �nd the minimumof � with respet to � and use (2.8) we obtain the ondition���� = �hH � H0i0�� = ���(�J0�2 + Blo�) = 0Therefore Blo = (2J0=)� and � = 2J0= (see (2.6)).We have estimated the mean �eld HamiltonianH0 = �(B+��)Pi J zi .This is the same Hamiltonian as that desribed in the previous paragraph2:2 and we derive the same way that �=J = L(a), a = �(B + ��)J .Assume now that the external �eld B is zero. Then Beff = Blo = ��and we get �=J = L(2J0�J�) (2:9)19



This is a self-onsistent equation for the magnetization �. It has a nonzerosolution if J0 > 0 for some � > �MFAC . The magnetization � and theargument of the Langevin funtion in (2.9) goes to zero as � & �MFAC .The Langevin funtion an be approximatedL(a) � a=3 + O(a2) (2:10)Substituting (2.10) into (2.9) the Mean Field Curie temperature an bedetermined 1�MFAC = 23J0J2 (2:11)So far we have onsidered only one atom in eah primitive ell. Let us havea system with translation symmetry and n atoms in eah ell.We denotethem by the index B 2 f0; : : : ; n� 1g. The Heisenberg Hamiltonian isH = � XiB;jB0 JiB;jB0JiBJjB0 � BXiB J ziBThe derivation of TMFAC is unhanged and the ondition (2.11) holds withJ0 =Xj;B0 J00;jB0The TMFAC is usually higher then the experimental Curie temperature. Abetter approximation alled Random Phase Approximation is desribedin the next hapter.
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3. Green Funtions3. 1. Mathematial Formalism.Let H be the Hamiltonian of a system and A(t); B(t) some observables inthe Heisenberg piture (de�ned by A(t) = eiHt=�hA e�iHt=�h). Suppose thatthere is a nonzero temperature T and the system is in a statistial mixtureof quantum states with the Boltzmann statistis. The statistial averageof an observable A we mark hAi = Tr(e��HA)=Tr(e��H), where � =1=kBT , kB is the Boltzmann onstant and e��H is the density operator.We onsider a time-independent Hamiltonian.We de�ne the retarded Green funtion G(r)AB(t; t0) and the advaned Greenfuntion G(a)AB(t; t0)G(r)AB(t; t0) := hhA(t); B(t0)ii(r) := �(t� t0)h[A(t); B(t0)℄iG(a)AB(t; t0) := hhA(t); B(t0)ii(a) := ��(t0 � t)h[A(t); B(t0)℄i (3:1)� is the Heaviside step-funtion, �(t) = 1 for t > 0 and 0 for t < 0. Itan be shown that for a time-independent Hamiltonian the Green fun-tion depends only on the di�erene t� t0 and we an write G(j)AB(t; t0) =G(j)AB(t � t0; 0) = hhA(t� t0); Bii(j) meaning B = B(0), (j) 2 f(r); (a)g.Therefore we an make the time-fourier transformation and getG(j)AB(!) := hhA;Bii(j)(!) := 12� Z hhA(t); Bii(j)ei!tdt(j) = (r) or (j) = (a). All the operators must ful�ll the equation ofmotion in the Heisenberg piturei�hdA(t)dt = [A(t);H℄The time derivation of the GF isi�h ddthhA(t); Bii(j) = i�hÆ(t)h[A;B℄i+ hh[A(t);H℄; Bii(j) (3:2)21



The equation holds both for (j) = (r) and (j) = (a). In the Fouriertransform we obtain the equation of motion�h!hhA;Bii(j)(!) = i�h2� h[A;B℄i+ hh[A;H℄; Bii(j)(!) (3:3)It is useful to note that the GF is not fully determined by the last equationbeause it is valid for both advaned and retarded GF. We mention nowthe useful identitieshhA;Bii(r)(!) = hhA;Bii(r)(! + i0)hhA;Bii(a)(!) = hhA;Bii(r)(! � i0) (3:4)To prove this, we an write the de�nition of the Fourier transform ofthe time dependent GF for ! + i� and get an additional term of e��tunder the integral in the retarded GF whih onverges to unity for t > 0,� & 0. Beause of the � funtion we integrate over the positive timesonly. The same way we obtain that a small negative � does not spoil theonvergene of the advaned GF.We an therefore onsider (3:3) as 2 equation for ! = ! � i0 whihorresponds to the equation for the retarded and advaned GF.If we are able to approximate the last term in (3.3)hh[A;H℄; Bii(!)� F hhA;Bii(!)we an express the GF expliitly in terms of h[A;B℄i and F . This ap-proximation is alled deoupling.If we know the GF, we an ompute the averaged produt hA(t)Bi. De�neIAB(!) as the Fourier transform of hBA(t)i so thathBA(t)i = Z IAB(!)e�i!td!It an be shown that then hA(t)Bi = R IAB(!)e�!�he�i!td! and onse-quently h[A(t); B℄i = Z IAB(!)(e�!�h � 1)e�i!td!22



Now we an express the retarded and advaned GF from the de�nitionas hhA;Bii(r)(E) = hhA;Bii(r)(E + i0)= 12� Z dtei(E+i0)t�(t) Z d!IAB(!)(e�!�h � 1)e�i!t= 12� Z d!IAB(!)(e�!�h � 1) Z dtei(E+i0�!)t�(t) (3:5)
The last integral an be omputed:Z dtei(E+i0�!)t�(t) = Z 10 ei(E+i0�!)tdt = h ei(E+i0�!)ti(E + i0� !)i1t=0 == iE + i0� ! (3:6)The small imaginary part i0 is neessary due to the onvergene ofR10 ei(E+i0�!)dt.Substituting (3.6) into (3.5) we obtainhhA;Bii(r)(E) = i2� Z d! IAB(!) e�!�h � 1E + i0� ! (3:7)For the advaned GF we obtain a similar formula, whih di�ers from(3.7) by having E � ! � i0 in the denominator only. This justi�es us tode�ne a omplex Green funtion byGAB(z) = hhA;Bii(z) = i2� Z d! IAB(!)e�!�h � 1z � !This funtion is analyti in the upper half-plane and in the lower half-plane. The retarded resp. advaned GF are limits of this omplex Greenfuntion from the upper resp. lower half-plane at the real axis. Let usnow reall the identity 1x� i0 = (P ) 1x � �Æ(x) (3:8)Using (3.8), (3.7) we obtainGAB(E + i0)�GAB(E � i0) = IAB(E)(e�E�h � 1) (3:9)23



We see that the knowledge of the retarded and advaned GF an be usedfor omputing IAB(E) whih is the Fourier transformation of hBA(t)i.In the next hapter we will approximate some Green funtion GAB anduse the relationhB(0)A(0)i = Z IAB(!)d! = Z G(r)AB(!)�G(a)AB(!)e�!�h � 1 d! (3:10)The analytiity of GAB in the half-planes is an important fat from thenumerial point of view. We an ompute the limit of GAB from theupper and lower half-plane using the analyti deonvolution.3. 2. Random Phase Approximation for Spin 1/2We use the formalism of the Green funtions for improving the MeanField Approximation of the Curie temperature. Let us onsider theHeisenberg Hamiltonian H = �Xi;j JijSiSj (3:11)with zero external �eld. Si is the spin operator, Si = (Sxi ; Syi ; Szi ). Thespins are loalized at the sites of a perfet rystal lattie. We assume inthis simple model that the magneti moments in the Heisenberg Hamilto-nian (2.1) are reated by spins only, the system has translation symmetry,all sites are equivalent, there is only one atom in eah primitive ell andJij = Jji = J0(j�i). Suppose further that there is a nonzero magneti-zation at low temperatures (without external �eld) and we denote themagnetization axis by z. Suh a system is alled isotropi Heisenbergferromagnet.In the simplest ase the spin operators Si are spin 1=2 operator and thespin at the site i is a spin 1=2 quantum state (a two dimensional vetorin the spin spae). By a �nite non-zero temperature the system is in astatistial mixture of quantum states. We want to express the averagedmagneti moment hSzi i and �nd a ondition for the temperature so thathSzi i & 0 for T % TC . In the ase of spin 1=2 we have Szi = 1=2�S�i S+i ,24



where S� = Sx � iS� are the reation and annihilation spin operators.If averaged, hSzi i = 1=2� hS�i S+i i. Let us mark for simpliity Sz = hSzi i(independent of i in a system with translation symmetry).We will de�ne the Green funtions hhS+0 (t); S�j ii(j), (j) = (r) and (a)and after approximating it by an expliit formula use (3.10) to expresshS�0 S+0 i. The equation of motion (3.3) reads�h!hhS+0 ; S�j ii(!) = i�h� Æ0jSz++2Xm hhJ0m(�Sz0S+m + SzmS+0 ); S�j ii(!) (3:12)what is easy to hek out onsidering the ommutators [S+0 ; S�j ℄, [S+0 ;H℄,Hamiltonian (3.11) and the relationship SiSj = 1=2(S+i S�j + S�i S+j ) +Szi Szj .The Random Phase Approximation onsists in the \deoupling" of thelast terms in (3.12): hhSz0S+m; S�j ii � hSzihhS+m; S�j iihhSzmS+0 ; S�j ii � hSzihhS+0 ; S�j ii (3:13)for j 6= 0 (the ase j = 0 is not interesting as J00=0). The equation ofmotion holds both for retarded and advaned GF. The only unknown inthe equation (3.12) after \deoupling" (3.13) are Sz and the funtionsG0j(!) = hhS+0 ; S�j ii: The equation of motion after deoupling is�h!G0j(!) = i�h� Æ0jSz + 2SzXm (�J0mGmj(!) + J0mG0j(!)) (3:14)In a system with translation symmetry we an make the lattie Fouriertransformation (LFT) of Jij and Gij(!). We obtain funtions de�ned inthe �rst Brillouin zone J(q) and G(q; !) de�ned by J(q) = Pj J0jeijqand G(q; !) =Pj G0j(!)eijq.If we multiply (3.14) by eijq and sum over j, we get�h!G(q; !) = i�h� Sz + 2Sz(J(0)� J(q))G(q; !) (3:15)25



G(q; !) = i�h� Sz�h! � �(q) (3:16)where �(q) = 2Sz(J(0)� J(q)) (3:17)is the energy of the \spin wave" with the wave vetor q 2 BZ.Let us reall that for determining the retarded resp. advaned GF we antake ! + i0 resp. ! � i0 instead of !.We use now the equation (3.10):hS�0 ; S+0 i = Z d!G(r)00 (!)�G(a)00 (!)e�!�h � 1 == 1
BZ Z d! Z dqG(q; ! + i0)�G(q; ! � i0)e�!�h � 1 (3:18)After hanging the order of integration, substituting (3.16) for G andusing the identity (3.8) we obtain1=2� Sz = hS�0 ; S+0 i = 2Sz
BZ Z dq 1e��(q) � 1This is a self-onsistent equation for the magnetization Sz. We are inter-ested in �nding the temperature �C so that Sz & 0 for � & �C .We simplify the last equation by writing12Sz = 1
BZ Z dq(1 + 2e��(q) � 1) = 1
BZ Z oth(12��(q))dq (3:19)The argument of the oth goes to zero as Sz & 0 and we approximateothx � x�1. Multiplying both sides of (3.19) by Sz we obtain an equa-tion for �C whih does not depend on Sz:�C = 1
BZ Z 2J(0)� J(q)dq (3:20)The denominator approahes to zero as q ! 0. We assume J(0)�J(q) tobe positive in the ferromagnets beause J(0)�J(q) is proportional to the26



energy of the spin waves and in the ground state of a ferromagnet all spinshave the same diretions and no spin waves are present. If we assume thatJ(q) has a ontinuous �rst derivation in q = 0 (this is obvious, if we takeonly a �nite number of nonzero J0j), we an write J(0) � J(q) � Dq2for some D > 0 and small q-vetors. The onvergene of (3.20) is givenby the onvergene of R q�2. This integral onverges only in a spaeof dimension greater then 2. Therefore in the RPA approximation theferromagneti materials an exist only in a spae of dimension 3 or more.This is a di�erene from the MFA where the the only ondition for anonzero Curie temperature is J0 > 0 and the ferromagnetism exists on 2dimensional surfaes as well.3. 3. RPA for More Atoms in a Primitive CellIf we have two or more atoms in eah primitive ell, all the funtionsused in the previous setion beome matries. Let us mark the di�erentatoms in a ell by B 2 f0; : : : ; n� 1g. The Hamiltonian isH = � XiB;jB0 JiB;jB0SiBSjB0 (3:21)In the ase of spin 1=2 we get 1=2 � hSz0Bi = hS�0B; S+0Bi = hS�0 ; S+0 iBB.We onsider the matrix hS�0 ; S+0 iBB0 of dimension n�n and are interestedin it's diagonal elements. We de�ne the GF matries [G(j)ij (!)℄BB0 , (j) 2f(r); (a)g. The equation of motion (3.3) is�h!hG0j(!)iBB0 = i�h� Æ0jÆBB0Sz1++XnB00 �hhS+0B; S�jB0ii(!)J0B;nB00 � hhSz0BS+nB00 ; S�jB0ii(!)J0B;nB00�We make the deoupling of the r.h.s. analogous to (3.13) and after LFTwe obtain the expression�h![G(q; !)℄BB0 = i�h� Sz1+ [Sz(J0B � J(q))G(q; !)℄BB027



This is similar to (3.15) but it is a matrix equation now, the produt onthe r.h.s. is a matrix produt and J0B = PB0 J(0)BB0 . We will assumethat for all B J0B = J0 =PjB0 J00;jB0 .We obtain G(q; !) = i�h� Sz��h! � Sz(J0 � J(q))��1As before, the retarded GF orresponds to ! = !+ i0 and the advanedGF to ! = ! � i0. The equation (3.18) still holds as a matrix equation.We need now a generalization of the identity (3.8):Lemma. If A is a hermitian operator, �i it's eigenvalues and Pi are theprojetion operators onto the appropriate eigenspaes, then (in the senseof distributions) Im((! + i0)1�A)�1 = ��Xi Æ(�i)Pi (3:22)Espeially, if �i are non-degenerate with the normalized eigenvetors j�ii,then Im((! + i0)1� A)�1 = ��Pi Æ(�i) j�iih�ijThe proof onsists in the generalization of the residual theorem to ma-trix funtions. The matrix funtion we all analyti, if it an be loallyexpressed as f(z + �) = Pj>j0 Aj�j, j0 2 Z. The matrix A�1 is alledresiduum and a omplete analogy of the residuum theorem holds.As a onsequene we get the equation (3.19) with �(q) = 2Sz(J0�J(q)) amatrix. The equation (3.20) holds too. The diagonal elements of hS�0 ; S+0 iare then the diagonal elements of the right hand side of the equation(3.20) and therefore the formula for expressing the RPA Curie tempera-ture is the same as (3.20), where we just substitute J0 =PjB0 J00;jB0 andtake the diagonal elements of the r.h.s. matrix. This diagonal elementsould be in general various and would orrespond to the magnetizationshJ z0Bi, B 2 f0; : : : ; n� 1g but in the ases we study (hp and b stru-ture) all the atoms are equivalent and all the magnetizations are thesame.
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3. 4. RPA for Classial SpinThe RPA tehnique used for the derivation of (3.20) an be generalizedfor an arbitrary spin (or magneti momentum) but it beomes very om-pliated. It's more onvenient to use the lassial spin desription whatorresponds to the quantum mehanial �h! 0 limit. Instead of the om-mutators we use the lassial Poisson brakets f g and the GF de�nedby hhA(t); B(t0)ii(r) = �(t� t0)hfA(t); B(t0)gihhA(t); B(t0)ii(a) = ��(t0 � t)hfA(t); B(t0)giIf we denote the omponents of the lassial magneti moment r� p byx; y; z, we obtain the relations fx; yg = z et. The equation of motionfor a quantity A is dA=dt = fA;Hg, H is the lassial Hamiltonian.We normalized the spin to unity,x2 + y2 + z2 = 1This an always be ahieved by normalizing the onstant Jij in the Hamil-tonian.We de�ne the GF Gjn(t; t0) = �(t � t0)hfxj + ixj; wngi, where wn isa funtion depending on xn; yn; zn only. If we �nd the Poisson braketfxj + iyj;Hg, write the equation of motion, use the lassial deouplinganalogous to (3.13):hhzj(xm + iym); wnii � hzjihhxm + iym; wniiand make the time Fourier transformation, we obtain a system of equa-tion analogous to (3.14)!G0j(!) = i2�Æ0jhfx0 + iy0; w0gi+ 2zXm (J0mG0j(!)� J0mGmj(!))where z = hzji is assumed to be independent of j. Making the LFT weobtain, similar to (3.16)G(q; !) = i2� hfx0 + iy0; w0gi! � �(q) (3:23)29



where �(q) is de�ned by (3.17). We need a lassial analogy of (3.10)here. It an be shown that it ishB(0)A(0)i = Z i (G(r)AB(!)�G(a)AB(!))�! d! (3:24)what orresponds to the �h ! 0 limit (ompare to (3.10)). Substituting(3.24) into (3.23) for A = x0 + iy0 and B = w0(x0; y0; z0) we obtainh(x0 + iy0)w0i = ihfx0 + iy0; w0gi
BZ Z 1��(q)dq == ikhfx+ iy; wgi (3:25)k 2 R is de�ned by this equation.We hoose wn := eazn(xn+ iyn), where a is a real parameter and denote�(a) := heaz0i = heazi (it is independent from the site) then �0(a) =hzeazi and �00(a) = hz2eazi.The funtion �(a) determines the magnetization, hzi = �0(0). If we use(3.25) and ompute the Poisson braket on the r.h.s. fx+ iy; (x� iy)eazgfrom the de�nition of the Poisson braket, we obtainh(x+ iy)(x� iy)eazi = ikhfx+ iy; eaz(x� iy)gi == �kh(a� 2z � az2)eazi == �k(�(a)� 2�0(a)� a�00(a)) (3:26)From another point of view (the spin vetor is normalized to unity, x2 +y2 + z2 = 1)h(x+ iy)(x� iy)eazi = h(1� z2)eazi = �(a)� �00(a) (3:27)Comparison of (3.26) and (3.27) leads to a di�erential equation for �(a)with an initial ondition �(0) = 1. It's solution is�(a) = sinh(a+ 1k )(ka+ 1) sinh( 1k)and the magnetization z = �0(0) = L(1k ) (3:28)30



where L is the Langevin funtion de�ned by (2.5).We substitute k from (3.25) into (3.28) and obtain an equation for thelassial RPA magnetizationz = Lh� 1
BZ Z 1��(q)dq��1i (3:29)with �(q) = 2z(J0�J(q)). This equation an be solved numerially. If weare interested in the Curie temperature, we limit z & 0, use the identityL(x) � x=3 for small x and get the Curie temperature�RPAC = 32 1
BZ Z 1J0 � J(q)dq (3:30)If we have more then one atom in eah ell, (3.25) will be a matrixequation, k will be the diagonal element of the matrix1
BZ Z 1��(q)dq (3:31)and (3.28) stays unhanged. Similarly, the equation (3.30) holds as anequation for diagonal matrix elements with �RPAC � �RPAC 1.3. 5. Comparison of RPA and MFALet us now ompare the Mean Field Curie temperature (2.11) with theRPA Curie temperature (3.30). If the spin (or, generally, magneti mo-ment) is normalized to unity, then the MFA formula is(�MFAC )�1 = 23J0 (3:32)Beause of J00 = 0 and J00 = 1
BZ Z J(q)dqwe see that R J(q)dq = 0 and (3.32) an be written31



(�MFAC )�1 = 23 1
BZ ZBZ (J0 � J(q))dq (3:33)Comparing (3.30) and (3.33) we see that [(2=3)�MFAC ℄�1 is the arithmetimean value of J0�J(q) in the �rst BZ and [(2=3)�RPAC ℄�1 is it's harmonimean value. From the onvexity of the funtion 1=x an be easily derivedthat the harmoni mean value of some numbers is always smaller thenthe arithmeti mean value. ThereforeTRPAC < TMFAC (3:34)The same result an be proved if (3.33) and (3.30) are equation of matrixdiagonal elements. Assume that the diagonal elements are idential andtherefore proportional to the trae. Let as denote x(q) := (J0 � J(q))and x(q) it's arithmetial mean value. We want to proveTrx(q) > (Trx�1(q))�1 (3:35)Denote the eigenvalues of x(q) by �i(q); i = 1; : : : ; n. The equation (3.35)is then Xi �i(q) > �Xi ��1i (q)��1 (3:36)We know already that for eah i �i(q) > (��1i (q))�1. From this we easilyprove (3.36) and therefore (3.35) and (3.34) are ful�lled.
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4. Numerial implementation4. 1. Curie Temperature of gadolinium and obaltUsing the RPA model desribed in the previous hapter I omputed theCurie temperature of the ferromagnets obalt and gadolinium.They haveboth a hexagonal lose paked lattie.For omputing the Curie temperature I treat the spin of the valeneeletrons as a lassial vetor. Gd has 7 valene f -eletrons and 1 d-eletron. This system are large enough to be treated lassially. TheCurie temperature of a ferromagnet an be estimated from the equation(3.30).The main task is to ompute the integral in the equation (3.30). Thehp lattie has 2 atoms in eah ell and (3.30) must be used as a matrixequation.The exhange oeÆients Jij I obtained as an output of existing programswritten by my diploma teaher RNDr. Ilja Turek. In this programs the JijoeÆients are alulated using the LSDA approximation, Green fun-tion method, ASA and tight-binding LMTO, see [5℄. A �le with theseonstants (ontaining about 400 exhange parameters, where all the oth-ers, desribing the interations between very distant lattie sites, arenegleted) is an input �le for my program.To alulate the right hand side of (3.30) I had to make the LFT of theexhange onstants for a set of q-vetors from the �rst BZ.The average value of [J0� J(q)℄�1 in the �rst BZ I approximated with a�nite sum 1
BZ ZBZ [J0 � J(q)℄�1 � 1N NXi=1 [J0 � J(qi)℄�1 (4:1)where qi are some points from the BZ. I hose the points qi to form anequidistant mesh and magni�ed N until the onvergene of (4.1) beamelear. 33



It is not neessary to integrate over the whole BZ beause some q-pointsare equivalent. This is beause of the symmetries of the hp lattie.Eah symmetry in the real lattie orresponds to a degeneray of eahq-vetor in the BZ. I give an example here: the hp lattie doesn't hangeif we mirror it around the xy plane. Denote q0 = (qx; qy;�qz) and R0 =(Rx; Ry;�Rz). Then eiq0R = eiqR0 . Beause of the lattie symmetry J0R =J0R0 (the sites R and R0 are equivalent) we obtain J(q) = J(q0). We seethat the symmetry in the real lattie redues the part of the BZ whihwe have to treat independently. In fat, there are more symmetries in thehp lattie (rotation around the z-axis about 60o or 120o) and we need tointegrate only over one 24th of the BZ, alled irreduible Brillouin zone(IBZ). The IBZ for the hp lattie it is shown in the FIG. 4.1.
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FIG. 4.1 The �rst Brillouin zone for the hp lattie and it's irreduible part.If integrating [J0�J(q)℄�1 a diÆulty is that this matrix is not de�ned forq = 0 and beomes very large for q � 0. The onvergene of the integral34



R [J(0)� J(q) + z1℄�1 is muh faster for z a small omplex number. Thefuntion R [J(0) � J(q) + z1℄�1 is analyti in z. For z 6= 0 and z nota positive real number there are no singularities when integrating. Wean ompute it for a few z points near to zero and use the analytialdeonvolution for determining it's value in z = 0.Let f(z) be the funtion we want to ompute in z = 0. I used thefollowing formula for the deonvolution:f(0) � 4f(i�)� f(2i�)� f(�+ i�)� f(��+ i�) (4:2)for some � > 0.It is easy to show that this formula gives an error in order of only �4for an analyti funtion f . We don't use any z on the real axis to avoidpossible singularities in [J0 � J(q) + z1℄�1. The parameter � is supposedto be small ompared with the eigenvalues of J0 � J(q). For gadoliniumJ0 � 3:3 mRy.I used several � and I inreased the number of points N along one line inthe irreduible BZ for eah of them until i got onvergene with respetto both N and �.The FIG. 4.2 shows some results for gadolinium (the total number ofq-points used for numerial integration over the IBZ is proportional tothe third power of N).As we see from the �gure, the RPA Curie temperature is 305K forgadolinium. The same way I obtained the obalt RPA Curie temper-ature 1369K. The experimental results are 1388K for obalt (in the fstruture) and 295K for gadolinium. The TRPAC error for gadolinium isabout 3:3%. The MFA approah gives 1683K for obalt and 343K forgadolinium.We see that the RPA is a better approximation of the Curietemperature then MFA and that indeed TRPAC < TMFAC .All this results are based on the Jij onstants omputed for �xed lattieonstants a and . I denote a the distane between the nearest neigh-bours in the xy plane and  the distane between the vertial nearestneighbours. The experimental value of =a is 1:597.35
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FIG. 4.2 Numerial alulation of the Curie temperature for gadolinium. � is theonstant from (4.2).We an observe how the RPA and MFA Curie Temperatures hange if wehange the lattie onstants by a �xed proportion =a. This orrespondsto a homogeneous ompression of the rystal and an be ompared withexperimental data.Some of the results are on FIG. 4.3. The letter s denotes here 3=(4�)
1=3,
 is the volume per atom.The experimental lattie onstant s is about 3:762 a.u. By pressing itand dereasing the volume the Curie temperature beomes smaller inthe experiment, whih is in onit with the alulations. The reason forthis disrepany is not known at present.
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FIG. 4.3 The dependene of the MFA and RPA Curie temperature for gadoliniumon the Wigner-Seitz radius s.4. 2. Magnon SpetrumLet us onsider a Heisenberg ferromagnet with the Hamiltonian (3.11)and spin S at eah lattie site. The eigenstates of this Hamiltonian arealled magnons, or spin waves. It an be shown that the spetrum of thisHamiltonian is onneted to the poles of the Green funtion (3.16) resp.(3.23). Eah magnon an be haraterized by a vetor from the �rst BZ.Be zero temperature the magnon energies are�(q) = 2S(J0 � J(q)) + E0 (4:3)where E0 is the energy of the ground state. We an hoose the energysale so that E0 = 0.For nonzero temperature the magnon energy is dereasing proportionallyto the magnetization Sz, as an be seen from (3.17).37



If there are more atoms in eah lattie ell, the magnon energies are theeigenvalues of the matrix (4.3).To ompute this energies I made the LFT of the exhange onstants Jijfor various q-vetors from the �rst BZ.I omputed the magnon energies for the ferromagnets gadolinium andobalt. FIG. 4.4 shows the results for some speial points in the �rst BZfor gadolinium at zero temperature. The positions of the points �, M , Kand A in the �rst BZ an be seen on FIG. 4.1.
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FIG. 4.4 Gadolinium magnon energies at zero temperature for speial points on theborder of the �rst BZ.In both Gd and Co the energy has a maximum in the pointM . Two linesin the piture orresponds to the two eigenvalues of the 2�2 matrix (thehp lattie has 2 atoms in eah ell).We see that the energies are alwaysnonzero and positive: this is a onsequene of the fat that gadoliniumand obalt are ferromagnets (the ground state is not a spin wave). Theobalt magnon spetrum is similar.38



To ompute the magnetization and magnon energies at nonzero temper-ature we use the RPA model and formula (3.29). The integral in (3.29)is not needed to be omputed so far we already have omputed the RPACurie temperature given by (3.30). Comparing (3.30), (3.29), the on-stant k as the diagonal term of (3.31) and the de�nition of the magnonenergies (3.17) we see that k depends on the temperature likek = 13z TTRPACSubstituting this into (3.29) and solving (3.29) I obtained the followingmagnetization for gadolinium at T < TRPAC :
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FIG. 4.5 The dependene of the gadolinium magnetization on the temperature. Thespin per atom at zero temperature is normalized to unity.The magnon energies at nonzero temperature T < TRPAC are exatlySz=S times smaller then at zero temperature. FIG. 4.6 ompares someexperimental data for magnon energies along the border of the �rst BZat the temperature 78K with the RPA result.
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FIG. 4.6 The experimental gadolinium magnon energies at the temperature 78 K(points) and the RPA result alulated for 78K (smooth lines). The experimentaldata are from [7℄.
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5. Alloys with Substitutional Disorder5. 1. Coherent Potential ApproximationSystems with substitutional disorder are systems with an ideal lattiewhere the lattie sites are randomly oupied by various atoms. In thesimplest ase there are two atoms A and B and their onentrations Aand B so that A+ B = 1. We assume that eah lattie site is oupiedfully randomly either by atom A (with the probability A) or by atom B(probability B) with no orrelations between various lattie sites.We want to ompute the eletroni struture of suh a system. The LDAor LSDA and ASA approximations (see hapter 1) and the GF tehniquean be used again. The e�etive potential (1.1) or it's spherially symmet-ri approximation in one atomi sphere depends now on the oupationof the sphere. We obtain two potentials V Qeff , Q 2 fA;Bg. This indiatestwo di�erent regular and irregular solutions 'QRL(rR; z) and ~'QRL(rR; z)and two potential funtions PQRL(z) (see (1.10)). The physial propertiesof the system an be omputed from the knowledge of the imaginary partof the Green funtion G(r; r; z). The GF an be omputed from (1.8). Itan be shown that the �rst term on the right hand side of (1.8) is real fora real potential Veff and we need to alulate the \physial GF matrix"GRLRL0(z) only.To obtain reasonable result we have to average this matrix over all thepossible on�gurations. If we denote GRLRL0(z) := hGi the on�gura-tional average of this matrix andGQRLRL0(z) := (Q)�1h�QRGRLRL0(z)ithe average over all on�gurations having the atom Q at the site R (�QRis the \indiator" of the atom Q at the site R, �QR = 1 if the site Q isoupied by the atom Q and 0 otherwise), then the randomness of thedisorder gives the relationGRLRL0 =XQ QGQRLRL041



Let us de�ne the \auxiliary GF" gRLR0L0(z) by the relationG(z) = �12 �P (z)_P (z) +q _P (z)g(z)q _P (z)We see from (1.10) that for a homogeneous solid g = (P � S)�1, whereP is the diagonal potential funtion matrix and S the matrix of thestruture onstants. We de�ne a matrix P byg = (P � S)�1This matrix is generally nondiagonal. The Coherent Potential Approxi-mation an approximating P by a site-diagonal matrix. This means phys-ially that we substitute the real alloy by a homogeneous solid with some\e�etive atoms". The ondition on P is that the average sattering fromputting a single impurity A or B with the probability A or B into thee�etive medium is zero. The detailed CPA ondition and additionaltheory an be found in [1℄.CPA an be used not only for alulating the eletroni struture of analloy ground state but for a substane with randomly oriented spins aswell. An example is the DLM europium that an be desribed as an\alloy" of two omponents: europium atoms with spin up and europiumatoms with spin down. The energy dependene on the lattie parameteris shown in FIG. 1.2.The �gure FIG. 5.1 shows the density of states of the gadolinium-yttriumalloy at zero temperature and yttrium onentration 20%.5. 2. Mean Field Magnetization and Curie TemperatureThe Heisenberg Hamiltonian for an alloy isH = � Xi;j;Q;Q0 JQQ0ij JQi JQ0j �Qi �Q0j � BXj;Q JQ;zj �Qjwhere �Qi is the indiator of an atom Q at the site i. Assume that we havea ferromagnet and zero external �eld.We onsider two \magnetizations"42
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FIG. 5.1 The gadolinium (full line) and yttrium (dashed line) projeted DOS of theGd0:8Y0:2 alloy (f -eletrons in the ore).mQ := hJQ;zi. Let JQ be the total magneti moment of the atom of typeQ. The Mean Field magnetization is, analogous to (2.9)mQJQ = L(2�XQ0 JQQ00 mQ0JQ0) (5:1)L is the Langevin funtion (2.3) and JQQ00 :=Pj JQQ00j .The ondition for the MFA Curie temperature is that all the magnetiza-tions go to zero. We use the quality of the Langevin funtion L(a) � a=3for a small argument a and obtain a system of equations1�C mQJQ = 23XQ0 JQQ00 JQJQ0mQ0JQ0We see that the MFA Curie temperature kBTMFAC is an eigenvalue ofthe matrix (2=3)JQQ00 JQJQ0 . It is the maximal eigenvalue of this matrix43
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FIG. 5.2 The mean �eld and experimental Curie temperature of the gadolinium-yttrium alloy as a funtion of the yttrium onentration. The experimental data arefrom [10℄.beause for kBT smaller then the maximal eigenvalue there still exist anonzero solution of the equations (5.1)FIG. 5.2 shows the TMFAC for the Gd-Y alloy as a funtion of the Yonentration. The Curie temperature dereases with inreasing Y on-entration in qualitative agreement with experiments.A more realisti approximation like RPA for alloys would be suitablebut is not known yet. Some attempts to desribe the �nite temperaturemagnetization in alloys with CPA and RPA are in [8℄.
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ConlusionsThe density funtional theory has enabled realisti omputer alulationsof the ground state properties of large eletron systems with a translation-ally symmetri lattie. In the numerial implementations several approx-imations are used, e.g. LSDA, GGA, ASA. In this work I omputed themagnetization and Curie temperature of gadolinium and obalt withinthe Random Phase Approximation and Mean Field Approximation us-ing the model of the Heisenberg Hamiltonian with exhange interationsonstants alulated within the LSDA theory. I desribed the theoretialGreen funtion formalism that leads to the RPA theory.The Curie temperature within the RPA model is more realisti as theMean Field Curie temperature and gives an error of about 3% fromexperiment. The alulations has been performed using the ompter lan-guage C. The ode inludes integrating of a matrix funtion over theirreduible part of the �rst Brillouin zone for hexagonal losed pakedlattie.Making the lattie Fourier transformation of the exhage interation on-stants I obtained the spin wave spetrum of gadolinium at �nite temper-atures. It is in good agreement with experimental results.In order to desribe the eletroni struture of substitutionally disorderedalloys at zero temperature the Coherent Potential Approximation an beused. I alulated the mean �eld Curie temperature for the Gd-Y alloyas a funtion of the yttrium onentration and found good qualitativeagreement with experiment.
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