Higher-Order
Unification with
Definition by Cases

Brown, Cerna

Higher-Order Unification with
Definition by Cases

Chad E. Brown!, David M. Cerna?

LCzech Technical University in Prague
2Czech Academy of Science Institute for Computer Science

August 120 2022

. Higher-Order
O Utl | ne Unification with

Definition by Cases

Brown, Cerna
» We revisit extensions of the simply typed lambda
calculus by restrictions of Hilbert's choice operator.

Vp:a— o¥x:a(px=p(p))

» We introduce a restrict which differs from earlier
investigations where both

> an algorithm and
> type (unitary)
were provided.

» We show that our restriction differs from the earlier
approach as it is at least type finitary.

» In addition, we show that the space of solutions is
significantly different from unification over both the
lambda calculus and earlier investigations.

Simply Typed A-Calculus Uniteation wit

Definition by Cases

Brown, Cerna

» Simple Types
» . (individuals)
> « — [(function types)

» Simply typed A-terms (no logic):
» Typed Variables x
> Typed Constants ¢ (optional)
» Applications s t
» Abstractions Ax.s

» [n-equivalence (unification is undecidable)

vVvvyVvvVvyVvVvyVvyy

vy

Higher-Order

Henkln Semantlcs Unification with

Definition by Cases

Brown, Cerna

Frame: nonempty set D, for each type «.

Dyp C (DB)DC* for types «, 3

(A frame is “standard” if = instead of C.)
combinatorial closure

Assignment : map variables x of type o to px € D,,.
Each term t of type a evaluates as Z,, t € D,.

Z (s t) denotes function application of Z s to Z t.

A Henkin model is a frame and an Z (determined by its
interpretation of constants).

Let H be a class of Henkin models.

Two terms s and t of type « are semantically
equivalent if Z,s = Zt for all Henkin models in H and
assignments .

Higher-Order

Higher—Order LOgiC Unification with

Definition by Cases

Brown, Cerna

» Simply Typed A-Calculus
» Plus base type o (propositions/booleans/truth values)

» Plus Logic (via logical constants and properties of those
constants)

» Plus More (sometimes)

Higher-Order ATP Uniteation wit

Definition by Cases

vvyyy

v

Brown, Cerna
Automated theorem proving in HOL is hard.
Benchmark: THO part of TPTP Library
Used for higher-order division of CASC.

Many HO ATPs use Huet's preunification

» Designed for simply typed A-calculus without logic, not
for higher-order logic.

THO allows for a choice operator ¢, : (¢ = 0) = «

Restricting to Henkin models interpreting the logic and
choice operators results in

» More semantically equivalent terms
» unsolvable unification problems become solvable.

With choice, one can define if-then-else.

With if-then-else, one can define a “cases” operator

Higher-Order

M Otlvatl ng EXa m ple Unification with

Definition by Cases

Consider the problem: f (Xa) (Xb) =f b a
Not unifiable without choice.

HO ATPs use some form of choice when solving
LEO-III:

Ihf(12,plain, (@+ [ASi]: (@ = @) => (A= b)) & (@ =b) => (A =a)))) != b) | (@~ [AsSi}: (b=
a) => (A =b)) & ((b = b) => (A = a)))) != a)),introduced(choice instance)).

(hf(14,plain, ((@+ [A:S$1]: (A = b) & (@ =b) => (A =a)))) 1= b) | (@+ [ASI]: (0 =a) => (A=D))
& (A =a))) 1= a)),inference(simp, [status(thm)],[12])).

hF(18,plain, (! TAST] : ((~ (A=) & ((a = b) => (A=) | ((@+ [B:Si: (B =b) & ((a =b) => (B
=) = b) & (@@ =b) => (@+ [B:Si]: (B =b) & (@ = b) => (B = a)))) = a))inference(choice,
[status(esa)],[171)).

vvyyypy

» Zipperposition:

thf(zip_derived_cl11, plain, (![X0 : $o0 > $i, X1 : $o > $i, X2 : $i > $o]: (~ (X2 @ a) | ((\[YO : $o]:
((NY1: $0,Y2: $i: (X0 @ Y1)) @ YO @ (X1 @ YO0))) @ (Strue)) 1= (b))] ((\[YO : Sil: (\[Y1 :
$0,Y2: $i]: (X0 @ Y1) @ (X2 @ Y0) @ YO)) @ b) != (a)))), inference(fluid_loob_hoist',
[status(thm)], [zip_derived_cl5])).

thf(zip_derived_cl13, plain, (![X0 : $o > $i, X2 : $i > $0]: (~ (X2 @ a) | (X0 @ (Strue)) != (b)) |
(X0 @ (X2 @ b)) != (a)))), inference('ho_norm', [status(thm)], [zip_derived_cl11])).
thf(zip_derived_cl127, plain, (![X0 : $0 > $i]:((X0 @ ($true)) = (b)) | (X0 @ ((\[YO : $i:
(Y12 8ik: (YD) @ Y0) = (A[Y1: Sil: (2)) @ YO)))) @ b))!= (2))),
inference('fluid_log_symbol_hoist', [status(thm)], [zip_derived_cl13])).

Higher-Order

Beeson's if-then-else Unification with

Definition by Cases

Brown, Cerna

» In “Unification in Lambda-Calculi with if-then-else”
Beeson introduces a d operator and reduction relation

» d(x,x,a,b)=a
> d(x,y,Zy,Zx) = Zx
> d(x,y,y,x) =x
> d(X7y7a7a):a
> Beeson's d allows for less committing solutions.
» Consider the unification problem Xa =7 a
> §={Xr—dxx} 6={X~ Ixa}
» Beeson's d allows 6 = {X — A\z.d z a a Yz}
» This solution generalizes the previous two.

» Beeson introduced d with the goal of compression and
developing a unitary theory.

» Our goal is analysis and development of a theory where
more term pairs are unifiable.

Simply Typed A-Calculus With Cases Unifcation with

Definition by Cases

Brown, Cerna

» Idea: Drop logic and return to simply typed A-calculus
» Add constantsd, : ¢t — ¢t —a— a— a.
» Semantic restriction:
> I,dabuw=uifZl,a=1,b
> I, dabuw=wifZ,a#TI,b
» Restrict to Henkin models intepretating d
» Henkin models with d
» The unification problem is now between simply typed
A-calculus and higher-order logic with choice.
» Question: What is the nature of this unification
problem?

Back to the Motivating example Unication it

Definition by Cases

Brown, Cerna

» f (Xa) (Xb) = f b a has four d solutions

> 0 X =MXzd" zaba.
> X =XAzd" zbab.
> 03X =Xzd" zab(d" zbal(Y z)).
> X =Xzd" zba(d" zab (Y 2)).

» 03 and 6, are equi-general:

(Azd"zab(d zba(Y 2)))

=u
(AMzd" zba(d" zab (Y z))).
» Has a single solution most general solution.

» follows Beeson’s construction.
» This need not be the case.

Higher-Order

MUltlple SOlUtlonS Unification with

Definition by Cases

Brown, Cerna

» |t is unclear how our d operator can be used to
compress the solutions of

(Az.X z z) = (A\z.2)

» but there are more interesting examples!
> Consider

f(AuXuu)(AuXua)="Ff(Auf(gu)a)(Au.f(gu)u)

» The only solution to A\u.X v a=Au.f (g u)uis
> 0 X =Mznz.f (g z1) zn
» This does not solve \u.X u u= Au.f (g u) a
> dwe get 0X = \z12.d" z1 z (f (g z1) a) (f (g z1) z1).

. . igher-Order
Multiple Solutions Unifcation with

Definition by Cases

Brown, Cerna

» The solution
OX = z120.d" z1 2 (f (g z1) a) (f (g z1) z1).

works because
> Yuu=a—f (gu)a="f (g u)uisvalidin all Henkin
models, and thus

(Aud* ua(f(gu)a)(f (gu)u)=Auf(gu)u
is valid in all Henkin models of d.

» We can also check if the second argument is a:

X =)\leg.dL Zp a (f (g 21) Zl) (f (g 21) a).

» We can take this construction even further!

Higher-Order

Complex SOlUtlonS Unification with

Definition by Cases

Brown, Cerna

» Consider

f (AuX uu) (AuX u(hu))

f (Au.f (g u) (hu) (\uf (g u)u)
» We are now forced to use both arguments:
OX = Az1zp.d" zo (h z1) (f (g z1) z1) (f (g z1) (h z))
> Yuu=hu—f(gu)u=f(gu)(hu)isvaldin all

Henkin interpretations, entailing that

> (Aud" u(hu) (f (g u)u) (f(gu) (hu)) =
(Au.f (g u) (h u)) is valid in all Henkin models of D.

igher-Order
Future Work U:‘iﬁlgation (\J/vith

Definition by Cases

Brown, Cerna

» We introduce a restriction of Hilbert’s choice operator

» We consider unification over simply-typed lambda
calculus.

» We show that our restriction differs from previous work
(Beeson's d).

> We plan to investigate algorithmic approaches to the
problem,

» and resolve our conjecture concerning the type of the of
theory.

