
Restricted Unification in the Description Logic FL⊥
Franz Baader and Oliver Fernández Gil

Theoretical Computer Science, TU Dresden, Dresden, Germany
franz.baader@tu-dresden.de, oliver.fernandez@tu-dresden.de

In a previous paper, we have investigated restricted unification in the Description Logic
(DL) FL0. Here we extend this investigation to the DL FL⊥, which is obtained from FL0

by adding the bottom concept. We show that restricted unification in FL⊥ is decidable and
provide some upper and lower bounds for the complexity. This is particularly interesting since
the decidability status of unrestricted unification in FL⊥ appears to be still open. We also
show an ExpTime lower bound for the unrestricted problem.

1 Introduction

Unification of concept patterns has been proposed as an inference service in Description Logic
(DL) that can, for example, be used to detect redundancies in ontologies. For the DL FL0,
which has the concept constructors conjunction (u), value restriction (∀r.C), and top con-
cept (>), unification was investigated in detail in [4], where it was shown, by a reduction to
solvability of linear language equations over finite languages, that the decision problem is in
ExpTime. These languages are built over the alphabet Σ of all role names. ExpTime-hardness
was proved by a reduction from the intersection emptiness problem of deterministic top-down
tree automata, which is known to be ExpTime complete [5]. For the DL FL⊥, which extends
FL0 with the bottom concept (⊥), unification can still be reduced to solving language equa-
tions. These equations are, however, more complicated, and thus the approach for solving
linear equations using tree automata developed in [4] does not apply. The decidability status of
unification in FL⊥ appears to be still open, though there have been some claims of decidability
results. In the present paper, we will not tackle the decidability problem, but will show that
ExpTime-hardness also holds for unification in FL⊥.

The DL FLreg is obtained from FL0 by allowing for regular role expressions. Unification
in this DL is also ExpTime-complete [2]. The upper bound can again be shown by a reduction
to solvability of linear language equations, but now the solutions may also contain infinite
(or, equivalently, regular) languages. Interestingly, when adding ⊥ to this DL, unification in
the obtained DL FL⊥reg remains ExpTime-complete [3]. Intuitively, the reason for this is that
solvable linear language equations over infinite languages have a unique maximal solution, which
is regular [2]. This observation is used in [3] to reduce solvability of the more involved systems
of language equations induced by FL⊥reg unification problems to the simpler ones obtained
from FLreg unification problems.

In [1], we investigate two kinds of restrictions on unification in FL0. On the one hand,
we syntactically restrict the role depth (i.e., the maximal nesting of value restrictions) in the
concepts obtained by applying a unifier to be below a certain bound k. On the other hand, we
consider a semantic restriction where, when defining the semantics of concepts, only interpreta-
tions are taken into account for which the length of role paths is bounded by a given number k.
In the restricted setting, the complexity of unification in FL0 depends on whether the bound
k is assumed to be encoded in unary or binary. For binary encoding of k, the complexity stays
ExpTime, whereas for unary coding it drops from ExpTime to PSpace, both for the syntactic
and the semantic restriction.

Restricted Unification in FL⊥ Baader and Fernández Gil

In the present paper, we investigate the complexity of unification in FL⊥ in the restricted
setting. For the syntactically restricted case, we use the fact that only words of length at
most k can occur in solutions of the corresponding language equations to compute a greatest
solution by starting with the greatest substitution satisfying the syntactic restriction, and then
successively removing words violating the condition that the left-hand side should be equal to
the right-hand side. While this leads to a decision procedure, the upper bounds obtained this
way (ExpTime for unary coding of k and 2ExpTime for binary coding) are higher than the
respective lower bounds (PSpace and ExpTime). For the semantically restricted case, a similar
approach yielding the same upper bounds could be used. However, in this case we can obtain
better upper bounds by adapting the approach of [3] for unification in FL⊥reg to this setting.
Basically, the idea is that the rôle played by the language Σ∗ for FL⊥reg is now taken on by
the language Σ≤k. This way, we obtain the upper bounds PSpace and ExpTime for unary and
binary coding of k, respectively.

2 Unification in FL0 and FL⊥
Concept descriptions of FL0 are built from finite sets of concept and role names using the
constructors conjunction (u), value restriction (∀r.C), and top concept (>). In FL⊥, the
additional constructor bottom concept (⊥) is available. The semantics of FL0 and FL⊥ are
defined as usual, based on the notion of an interpretation, which has a non-empty domain,
and assigns subsets of the domain to concept descriptions, according to the semantics of the
constructors (see [4] and [3] for details). Two concept descriptions C,D are equivalent (written
C ≡ D) if they are interpreted as the same set in each interpretation. It is well-known that
equivalence of FL0 concept descriptions can be decided in polynomial time [6]. The same can
be shown for FL⊥, by using the characterization of equivalence given in [3].

Concept patterns are like concept descriptions, but may additionally contain concept vari-
ables in place of concept names. Substitutions replace concept variables by concept descriptions.
Given two concept patterns C,D, the substitution σ is a unifier of the unification problem C?≡D
if σ(C) ≡ σ(D). A unification problem is unifiable (or solvable) if it has a unifier. Simultaneous
unifiability of several unification problems by the same unifier can be reduced to unifiability of
a single unification problem (see Lemma 3.3 in [4]). In the following, we assume that Σ denotes
the set of role names occurring in C,D, NC the set of concept names occurring in C,D, and NV

the set of variables occurring in C,D.
In [4] it is shown that unifiability of C ?≡ D in FL0 can be reduced to solving systems of

linear language equations with one-sided concatenation, i.e., equations of the following form:

S0 ∪ S1 ·X1 ∪ . . . ∪ Sn ·Xn = T0 ∪ T1 ·X1 ∪ . . . ∪ Tn ·Xn, (1)

where S0, . . . , Sn, T0, . . . , Tn are finite languages of words over the finite alphabet Σ. A solution
of such an equation assigns finite languages over Σ to the variables X1, . . . , Xn. Conversely,
any system of such equations can be transformed into an equi-solvable unification problem. As
shown in [4], deciding solvability of such systems of equations (and thus of unification problems
in FL0) is an ExpTime-complete problem. The upper bound is proved by a reduction to the
emptiness problem of automata on finite trees, whereas the lower bound is demonstrated by a
reduction of the intersection emptiness problem for deterministic top-down tree automata.

In a unification problem C ?≡D in FL⊥, not only the concept patterns C,D may contain
the bottom concept, but also the concepts replacing the variables. As shown in [3], such a
problem can be translated into an equi-solvable system of language equations of the following

2

Restricted Unification in FL⊥ Baader and Fernández Gil

form:
E⊥ := S⊥ · Σ∗ ∪

⋃
X∈NV

SX ·X⊥ · Σ∗ = T⊥ · Σ∗ ∪
⋃

X∈NV

TX ·X⊥ · Σ∗,

EA := E`
⊥ ∪ SA ∪

⋃
X∈NV

SX ·XA = Er
⊥ ∪ TA ∪

⋃
X∈NV

TX ·XA.
(2)

There is one equation EA for each concept name A ∈ NC and an equation E⊥ for bottom. The
sets S⊥, T⊥, SA, TA, and SX , TX are finite sets of words over Σ, whereas the terms E`

⊥ and Er
⊥

denote the left-hand side and the right-hand side, respectively, of the equation E⊥.
There are two reasons why testing unifiability in FL⊥ is more problematic than in FL0.

First, for FL0, one obtains one equation of the form (1) for each concept name, which can
be solved independently since these equations do not share variables. In the system (2), the
variables X⊥ occur in each equation. Second, the concatenation with Σ∗ from the right in E⊥
means that the equations are no longer ones with one-sided concatenation. This makes it hard
to impossible to find a reduction to the emptiness problem of automata on finite trees. In the
next two sections we will show that things become easier in the restricted setting.

Here, we do not address the problem of determining a complexity upper bound, but at least
establish an ExpTime lower bound for unification in FL⊥, which was not known until now.

Theorem 1. Deciding unifiability of FL⊥ unification problems is ExpTime-hard.

Note that ExpTime-hardness of unification for FL⊥ does not follow immediately from
ExpTime-hardness for FL0. In fact, even if we consider a unification problem C ?≡ D for
FL0 concept descriptions C,D, this problem may have a unifier in FL⊥, though it does not
have one in FL0. The reason is that there are more FL⊥ substitutions than FL0 substitu-
tions. To overcome this problem, we consider the proof of ExpTime-hardness for unification
in FL0. For every instance of the intersection emptiness problem for deterministic top-down
tree automata, this reduction constructs a system of equations of the form (1) (one for each
automaton), which is solvable iff the intersection of the languages accepted by the automata
in the instance is non-empty. This system can then be translated into an equi-solvable FL0

unification problem. A close analysis of this problem reveals that the FL0 unification problems
obtained this way cannot have FL⊥ solutions containing the bottom concept. Thus, they are
solvable in FL⊥ iff they are solvable in FL0.

3 Syntactically Restricted Unification in FL⊥
In the syntactically restricted case, equivalence ≡ between concepts is replaced by syntactically
k-restricted equivalence ≡k

syn [1]. Two FL⊥ concepts C,D satisfy C ≡k
syn D if C ≡ D and the

role depth of C and D (i.e., the maximal nesting of value restrictions) is bounded by k. For an

integer k ≥ 1, a syntactically k-restricted FL⊥ unification problem is of the form C ?≡k
syn D,

where C and D are FL⊥ concept patterns. A unifier of this equation is a substitution such
that σ(C) ≡k

syn σ(D).
Since avoiding nesting of value restrictions of depth > k corresponds to avoiding words of

length > k, syntactically restricted unification in FL⊥ can be reduced to checking whether the
equations in (2) have a solution θ such that, for all X ∈ NV and all A ∈ NC, the following holds:

SX · θ(X⊥) ∪ TX · θ(X⊥) ⊆ Σ≤k and SX · θ(XA) ∪ TX · θ(XA) ⊆ Σ≤k, (3)

where Σ≤k consists of all words over Σ of length at most k.

3

Restricted Unification in FL⊥ Baader and Fernández Gil

We can now try to construct a solution of (2) satisfying (3) as follows. We start with an
assignment θ that maps every variable to Σ≤k, and then remove from each set θ(X) for the
variables X occurring in (2) those elements that lead to a violation of (3). After that, we
iteratedly remove words that violate (2). For instance, given a variable X⊥, we remove from
θ(X⊥) the set {w ∈ θ(X⊥) | SX · {w} 6⊆ θ(Er

⊥) or TX · {w} 6⊆ θ(E`
⊥)}. Since we start with

sets θ(X) of cardinality |Σ≤k| for polynomially many variables X, and in each step remove
at least one element from such a set, this removal process terminates. We can show that (2)
has a solution satisfying (3) iff the final assignment reached by this process solves (2). The
cardinality of Σ≤k is exponential in the size of the unary representation of k (which is k), but
doubly exponential in the size of the binary representation of k (which is log k). This yields
the upper bounds stated in the following theorem. The lower bounds can be shown similarly to
how they are proved for the syntactically restricted case for FL0 in [1], but additionally using
the idea employed in the proof of Theorem 1.

Theorem 2. Let k ≥ 1 and C,D two FL⊥ concept patterns. Deciding whether the syntactically

k-restricted unification problem C ?≡k
syn D has a unifier or not is PSpace-hard and in ExpTime

if k is encoded in unary, and ExpTime-hard and in 2ExpTime if k is encoded in binary.

4 Semantically Restricted Unification in FL⊥
For an integer n ≥ 1 and a given interpretation I = (∆I , ·I), a role path of length n is a
sequence d0, r1, d1, . . . , dn−1, rn, dn, where d0, . . . , dn are elements of ∆I , r1, . . . , rn are role
names, and (di−1, di) ∈ rIi holds for all i = 1, . . . , n. The interpretation I is called k-restricted
if it does not contain any role paths of length > k. Semantically k-restricted equivalence is then
defined as follows: C ≡k

sem D if CI = DI for all k-restricted interpretations I. A semantically

k-restricted unification problem is of the form C ?≡k
sem D, where C and D are FL⊥ concept

patterns. A unifier of this equation is a substitution σ such that σ(C) ≡k
sem σ(D).

The effect of this restriction is that value restrictions of a nesting depth > k are equivalent
to >, and thus can be removed. On the language equation side this means that equality of the
left- and right-hand side of an equation needs to hold only for words of length up to k. For
semantically k-restricted unification in FL0 it was shown in [1] that unifiability can be reduced
to testing whether, for language equations of the form (1), there is an assignment θ of finite
languages to the variables satisfying

(S0 ∪ S1 · θ(X1) ∪ . . . ∪ Sn · θ(Xn)) ∩ Σ≤k = (T0 ∪ T1 · θ(X1) ∪ . . . ∪ Tn · θ(Xn)) ∩ Σ≤k. (4)

For semantically k-restricted unification in FL⊥, the intersection with Σ≤k needs to be
applied to both sides of the equations in the system of the form (2). In addition, since we are
then only interested in words of length up to k, right-concatenation with the language Σ∗ can
be replaced by right-concatenation with Σ≤k. Thus, semantically k-restricted unification in
FL⊥ can be reduced to deciding whether there is an assignment θ of finite languages satisfying

(S⊥ · Σ≤k ∪
⋃

X∈NV

SX · θ(X⊥) · Σ≤k) ∩ Σ≤k = (T⊥ · Σ≤k ∪
⋃

X∈NV

TX · θ(X⊥) · Σ≤k) ∩ Σ≤k, (5)

(θ(E`
⊥,k) ∪ SA ∪

⋃
X∈NV

SX · θ(XA)) ∩ Σ≤k = (θ(Er
⊥,k) ∪ TA ∪

⋃
X∈NV

TX · θ(XA)) ∩ Σ≤k. (6)

To check for the existence of an assignment satisfying (5) and (6), we follow the ideas used in [3]
to solve (2) for the case of infinite languages. The reduction given in [3] can be adapted to show

4

Restricted Unification in FL⊥ Baader and Fernández Gil

that deciding the existence of a finite assignment θ satisfying (5) and (6) can be reduced to
checking whether, for language equations of the form (1), there is a finite assignment θ satisfying
(4). More precisely, we can show the following two results (which are analoga of the results in
Lemmata 5 and 7 in [3]):

• An assignment of finite languages satisfying (5) exists iff there is an assignment θ of finite
languages such that

(S⊥ · Σ≤k ∪
⋃

X∈NV

SX · θ(X⊥)) ∩ Σ≤k = (T⊥ · Σ≤k ∪
⋃

X∈NV

TX · θ(X⊥)) ∩ Σ≤k. (7)

• An assignment of finite languages satisfying (5) and (6) exists iff there is an assignment
θ of finite languages satisfying (5) such that the following holds for all A ∈ NC:

(S⊥ ·Σ≤k ∪SA∪
⋃

X∈NV

SX · θ(XA))∩Σ≤k = (T⊥ ·Σ≤k ∪TA∪
⋃

X∈NV

TX · θ(XA))∩Σ≤k. (8)

This shows that the problem of finding an assignment of finite languages satisfying (5) and
(6) can be reduced to finding an assignment of finite languages satisfying (7) and (8). Since
the solvability conditions (7) and (8) are exactly the ones dealt with in [1] for semantically
k-restricted unification in FL0, we can use the approach for solving them developed there. For
the case of unary coding of k, this yields a PSpace upper bound since the right-concatenation of
S⊥ and T⊥ with Σ≤k can be realized using a system of equations of size linear in k. For binary
coding of k, this does not work since the equation system expressing the right-concatenation
with Σ≤k would then have exponential size. Instead, one needs to look more closely into the
automaton construction used in [1] to show the ExpTime upper bound for the binary cases, and
then show that it can be adapted to deal also with the right-concatenation with Σ≤k without
causing an exponential blow-up. A PSpace lower bound for the unary case can be proved by a
reduction from semantically k-restricted unification in FL0. For the binary case, like in FL0,
it remains open whether the ExpTime upper bound is tight.

Theorem 3. Let k ≥ 1 and C,D two FL⊥ concept patterns. Deciding whether the k-

semantically restricted unification problem C ?≡k
sem D has a unifier or not is PSpace-complete

if k is encoded in unary, and in ExpTime if k is encoded in binary.

References

[1] Franz Baader, Oliver Fernández Gil, and Maryam Rostamigiv. Restricted unification in the DL FL0.
In Frontiers of Combining Systems - 13th International Symposium, FroCoS 2021, Proceedings,
volume 12941 of LNCS. Springer, 2021.

[2] Franz Baader and Ralf Küsters. Unification in a description logic with transitive closure of roles. In
Logic for Programming, Artificial Intelligence, and Reasoning, 8th International Conference, LPAR
2001, Proceedings, volume 2250 of LNCS, Springer, 2001.

[3] Franz Baader and Ralf Küsters. Unification in a description logic with inconsistency and transitive
closure of roles. In Proceedings of the 2002 International Workshop on Description Logics (DL2002),
volume 53 of CEUR Workshop Proceedings. CEUR-WS.org, 2002.

[4] Franz Baader and Paliath Narendran. Unification of concept terms in description logics. J. Symb.
Comput., 31(3):277–305, 2001.

[5] Helmut Seidl. Haskell overloading is DEXPTIME-complete. Inf. Process. Lett., 52(2):57–60, 1994.

[6] Hector J. Levesque and Ron J. Brachman. Expressiveness and Tractability in Knowledge Repre-
sentation and Reasoning. Computational Intelligence, 3:78–93, 1987.

5

	Introduction
	Unification in FL0 and FL
	Syntactically Restricted Unification in FL
	Semantically Restricted Unification in FL

