
Nominal Anti-Unification of Letrec-Expressions

Manfred Schmidt-Schauß1 and Daniele Nantes-Sobrinho2

1 Dept. Computer Science and Mathematics,
Goethe-university Frankfurt, Germany

schauss@ki.informatik.uni-frankfurt.de
2 Department of Computing, Imperial College London

Department of Mathematics, University of Braśılia, Brazil
dnantes@unb.br

Abstract

This is a work-in-progress where we present a rule-based algorithm for nominal anti-
unification of expressions in a higher-order language with lambda abstraction, functions
symbols and recursive let. The algorithm is sound and weakly complete, but has high
complexity.

1 Introduction

Our goal is to develop generalization algorithms for a letrec (programming) language with
potential applications for example for Haskell programs (see for example [2] for more references,
syntax, unification and more about letrec-languages.) We combine this with the techniques of
[3] and apply it to letrec-languages. The semantics is a specialization of that for atom-variables,
such that the infinite decreasing chains in anti-unification are avoided. The result is an anti-
unification algorithm which outputs a weakly complete set of generalizations, which means
complete up to the freshness context. Optimizations are left for future research.

2 Preliminaries

We define the nominal letrec language NLLX , which can be seen as a lambda calculus extended
with a recursive let construct, and its sublanguage NLL consisting of ground expressions (without
variables and permutations). For notation and unification in letrec-language see [2].

We consider a countable infinite set of atoms A, as a set of (concrete) symbols a, b which
we usually denote in a meta-fashion; so we can use symbols a, b also with indices (the variables
in lambda-calculus). We also consider a set F of function symbols with arity ar(·), and a
countably infinite set of variables Var ranged over by X,Y . We will use mappings on atoms
from A. A swapping (a b) is a bijective function (on NLL-expressions) that maps an atom a to
atom b, atom b to a, and is the identity on other atoms. We will also use finite permutations π
on atoms from A, which could be represented as a composition of swappings in the algorithms
below. Let dom(π) = {a ∈ A | π(a) ̸= a}. Then every finite permutation can be represented
by a composition of at most (|dom(π)| − 1) swappings. Composition π1 ◦ π2 and inverse π−1

can be immediately computed, where the complexity is polynomial in the size of dom(π).
The syntax of the expressions e of NLLX is:

e ::= a | π·X | λa.e | (f e1 . . . ear(f)) | (letr a1.e1; . . . ; an.en in e)
π := ∅ | (a b)·π

We assume that binding atoms a1, . . . , an in a letrec-expression (letr a1.e1; . . . ; an.en in e)
are pairwise distinct. Sequences of bindings a1.e1; . . . ; an.en may be abbreviated as env (as

Nominal Anti-Unification with Letrec M. Schmidt-Schauß and D. Nantes-Sobrinho

{a#b} ·∪∇
∇

if a ̸= b
{a#(f s1 . . . sn)} ·∪∇
{a#s1, . . . , a#sn} ∪ ∇

{a#(λa.s)} ·∪∇
∇

{a#(λb.s)} ·∪∇
{a#s} ∪ ∇

if a ̸= b

{a#(letr a1.s1; . . . , an.sn in r)} ·∪∇
∇

if a ∈ {a1, . . . , an}
{a#a} ·∪∇

⊥
{a#(letr a1.s1; . . . , an.sn in r)} ·∪∇

{a#s1, . . . a#sn, a#r} ∪ ∇
if a ̸∈ {a1, . . . , an}

{a#(π ·X)} ·∪∇
{π−1(a)#X} ∪ ∇

Figure 1: Simplification of freshness constraints in NLLX

a short for environment). The order of bindings can be swapped in environments. The ex-
pressions (letr a1.e1; . . . ; an.en in e) and (letr aρ(1).eρ(1); . . . ; aρ(n).eρ(n) in e) are defined as
equivalent for every permutation ρ of {1, . . . , n}, i.e., in the following we view the environment
a1.e1; . . . ; an.en of a letrec-expression as a multiset. In algorithms this leads to an additional
non-deterministic step of permuting environments.

As an example, the expression (letr a.cons s1 b; b.cons s2 a in a) represents an infinite
list (cons s1 (cons s2 (cons s1 (cons s2 . . .)))), where s1, s2 are expressions. The functional
application operator in functional languages (which is usually implicit) can be encoded by a
binary function app, which also allows to deal with partial applications.

The scope of atom a in λa.e is standard: a has scope e. The letr-construct has a special
scoping rule: in (letr a1.e1; . . . ; an.en in e), every atom ai that is free in some ej or e is
bound by the environment a1.e1; . . . ; an.en. This defines in NLL the notion of free atoms FA(e),
bound atoms BA(e) in expression e, and all atoms AT (e) in e. For an environment env =
{a1.e1, . . . , an.en}, we define the set of letrec-atoms as LA(env) = {a1, . . . , an}. We say a is
fresh for e iff a ̸∈ FA(e) (also denoted as a#e). The α-equivalence is defined only on NLL (for
more details see [2]).

Permutations π operate on expressions simply by recursing on the structure. For a letrec-
expression this is π · (letr a1.e1; . . . ; an.en in e) = (letr π · a1.π · e1; . . . ;π · an.π · en in π · e).
More generally, for a non-variable expression e, the expression π·e means an operation, which
is performed by shifting π down, using the additional simplification π1·(π2·e) → (π1 ◦ π2)·e,
where after the shift, π only occurs in the subexpressions of the form π · X, which are called
suspensions. Usually, we do not distinguish X and Id ·X. A single freshness constraint in our
anti-unification algorithm is of the form a#e, where e is an NLLX -expression, and an atomic
freshness constraint is of the form a#X. A conjunction (or set) of freshness constraints is
sometimes called freshness context.

Lemma 2.1. The rules in Fig. 1 for simplifying sets of freshness constraints in NLLX run in
polynomial time and the result is either ⊥, i.e. fail, or a set of freshness constraints where all
single constraints are atomic. This constitutes a polynomial decision algorithm for satisfiability
of ∇: If ⊥ is in the result, then unsatisfiable, otherwise satisfiable.

The intended semantics is that the results are independent of the (explicit) names of atoms.
Thus the choice of a fresh atom in the algorithm is not a choice-point, but a deterministic step.

Definition 2.2. A expression-in-context is a pair (∇, t), where t is an expression and ∇ is a
freshness context. The semantics is a set of valid instances as follows:

J(∇, t)K := {φ(t) | φ(∇) holds where φ : Var∪A → NLL and φ acts as a bijection on atoms}.
An expression-in-context (∆, r) is more general than an expression-in-context (∇, s), denoted

(∆, r) ⪯ (∇, s), if J(∇, r)K ⊆ J(∆, s)K. This defines equivalence of two expressions-in-context by
having the same semantics: (∇, s) ≈ (∇′, t) iff J(∇, s)K = J(∇′, t)K. An expression-in-context

2

Nominal Anti-Unification with Letrec M. Schmidt-Schauß and D. Nantes-Sobrinho

(∆, r) is a generalization of (∇, s) and (∇′, t), if (∆, r) ⪯ (∇, s) and (∆, r) ⪯ (∇′, t). The strict
part of ⪯ is denoted ≺.

This semantics avoids the effect that freshness constraints of the form a#X where a is an
irrelevant atom that leads to infinite sets of generalizations. In fact, this differs from Baumgart-
ner and Kutsia [1], since the following (∅, X) ≺ ({a#X}, X) ≺ ({a#X, b#X}, X) ≺ . . . does
not represent an infinite descending chain of expressions-in-context. The semantics of these
pairs remains the same: The inclusion J({a#X, b#X}, X)K ⊆ J({a#X}, X)K holds trivially.
For the opposite inclusion, it is enough to observe that one can always find a ground ρ such
that ρ(X) ∈ J({a#X}, X)K and ρ({a#X, b#X}) holds, therefore, ρ(X) ∈ J({a#X, b#X}, X)K.
The same reasoning can be used for other pairs more/less restricted in this “chain”.

3 The Anti-Unification Problem for NLLX

We are interested in the anti-unification problem for NLLX : given two expressions-in-context
(∇, s) and (∇, t), find a generalization, i.e., another expression-in-context (∆, r) that satisfies
(∆, r) ⪯ (∇, s) and (∆, r) ⪯ (∇, t), and is the least general one, that is, there is no other
generalization (∆′, r′) of (∇, s) and (∇, t) which satisfies (∆, r) ≺ (∆′, r′).

Example 3.1. A generalization for the expressions-in-context (∅, letr a.a; b.c in f(a, b))
and (∅, letr b.a; c.c in f(a, b)) is (∅, letr d.X1; e.X2 in f(X1, (c e)(e d) · X2)), where
d, e are names that are fresh w.r.t. the environments of both expressions-in-context and
X1, X2 are new variables. In fact, since environments can be permuted it follows that
J(∅, letr b.a; c.c in f(a, b))K = J(∅, letr c.c; b.a in f(a, b))K and another generalization can
be found (∅, letr d.d; e.X2 in f((c d) ·X2, b)). These generalizations can be obtained via appli-
cation of our anti-unification algorithm that will be presented next.

3.1 The Algorithm AntiUnifLetr and its Rules

We first define the nominal generalization algorithm AntiUnifLetr that computes a single
generalization of the input expressions, where the generalization can also be nonlinear in the
generalization variables due to merging. It relies on the subalgorithm EQVM that computes
a permutation similar to equivariance matching. We claim that the algorithm is sound and
weakly complete, and can be performed in exponential time.

The data structure of the algorithm AntiUnifLetr is a tuple (Γ,M,∇, L) where: Γ is a
set of generalization triples of the form X : s ≜ t, where X is a fresh (generalization-) variable,
and s, t are NLLX -expressions; M is a set of solved generalization triples; ∇ is a set of freshness
constraints; L is a substitution represented as a list of bindings; the empty list is denoted as [].

We call such a tuple a state. The rules of the AntiUnifLetr, given in Fig. 2, operate
on states. Given two NLL expressions s and t, and a freshness context ∇ (possibly empty), to
compute generalizations for (∇, s) and (∇, t), we start with ({X : s ≜ t}, ∅,∇, []), the initial
state (sometimes we abbreviate it to (∇, {X : s ≜ t})), where X is a fresh generalization
variable, and we apply the rules from Fig. 2 and Fig. 4 as long as possible, until no more
rule application is possible and we reach the final state which has the form (∅,M,∆, L). The
output is a expression-in-context obtained from the generated substitution L and the final
freshness constraint ∆, i.e. the output is (∆, X ◦ L), also called the result computed by the
AntiUnifLetr algorithm. We say it is weakly complete if every generalization is covered up
to the freshness constraints.

3

Nominal Anti-Unification with Letrec M. Schmidt-Schauß and D. Nantes-Sobrinho

(Dec): Decomposition

{X:f(s1, . . . , sn) ≜ f(t1, . . . , tn)} ·∪Γ,M,∇, L

Γ ·∪{X1:s1 ≜ t1, . . . , Xn:sn ≜ tn},M,∇, L ∪ {X 7→ f(X1, . . . , Xn)}
where Xi are fresh
variables

(Absaa): Abstraction

{X:λa.s ≜ λa.t} ·∪Γ,M,∇, L

Γ ·∪{Y :s ≜ t},M,∇, L ∪ {X 7→ λa.Y }

(Absab): Abstraction

{X:λa.s ≜ λb.t} ·∪Γ,M,∇, L ∇′ = {c#λa.s, c#λb.t}
Γ ·∪{Y :(c a)·s ≜ (c b)·t},M,∇∪∇′, L ∪ {X 7→ λc.Y }

where Y is a fresh variable,
and c is a fresh atom

(SusYY): SuspensionYY

{X:π1·Y ≜ π2·Y } ·∪Γ,M,∇, L ∇ ⊨ π1 = π2

Γ,M,∇, L ∪ {X 7→ π1·Y }
(Mer): Merging

Γ, {X:s1 ≜ t1, Y :s2 ≜ t2} ·∪M,∇, L EQVM ({(s1, t1) ⪯ (s2, t2)},∇) = π

Γ,M ∪ {X:s1 ≜ t1},∇, L ∪ {Y 7→ π·X}
(SolveYY)

{X:π1 · Y ≜ π2 · Y } ·∪Γ,M,∇, L ∇ ⊭ π1 ̸= π2

Γ,M ∪ {X:π1 · Y ≜ π2 · Y },∇, L
(Solve)

{X:s ≜ t} ·∪Γ,M,∇, L

Γ,M ∪ {X:s ≜ t},∇, L

If Head(s) ̸= Head(t) or s, t are letrec-
expressions with a different number of bindings.

Figure 2: Rules of the algorithm AntiUnifLetr

Ψ ·∪{e ⪯ e},Π,∇
Ψ,Π,∇

Ψ ·∪{(f s1 . . . sn) ⪯ (f s′1 . . . s
′
n)},Π,∇

Ψ ∪ {s1 ⪯ s′1, . . . , sn ⪯ s′n},Π,∇

Ψ ·∪{π1·X ⪯ π2·X},Π,∇ ∇ ⊨ π1·X = π2·X
Ψ,Π,∇

Ψ ·∪{λa.s ⪯ λa.t},Π,∇
Ψ ∪ {s ⪯ t},Π,∇

Ψ ·∪{λa.s ⪯ λb.t},Π,∇ ∇ ⊨ b#λa.s

Ψ ∪ {(a b)·s ⪯ t},Π,∇
Ψ ·∪{λa.s ⪯ λb.t},Π,∇ ∇ ⊨ (a#λb.t)

Ψ ∪ {(s ⪯ (a b)·t},Π,∇

Ψ ·∪{a ⪯ b},Π,∇
Ψ, {a 7→ b} ∪Π,∇

∅,Π,∇ EQVBiEx (Π) = π

Return π

Figure 3: Rules of the permutation matching algorithm Eqvm

Rules in Fig. 2 are similar to the ones in [1] without the parameter for the set of atoms
occurring in the initial state, and deal with abstractions, function application, and suspensions.
The subalgorithm Eqvm, defined by the rules in Fig. 3, computes a matching permutation of
two expressions-in-context (in Ψ with context ∇), where EQVBiEx (Π) checks whether the set
of swappings is injective and then adds a minimal set of mappings such that the result is a
bijection, i.e. a permutation (on atoms). Rules in Fig. 4 are new and deal with letrec.

4

Nominal Anti-Unification with Letrec M. Schmidt-Schauß and D. Nantes-Sobrinho

(Letraa): LetrecEq

{X:letr a1.s1, . . . , an.sn in s ≜ letr a1.t1, . . . , an.tn in t} ·∪Γ,M,∇, L

Γ ·∪{X1:s1 ≜ t1, . . . , Xn:sn ≜ tn, Y :s ≜ t},M,∇, L ∪ {X 7→ letr a1.X1, . . . , an.Xn in Y }
(Letperm): LetrecEq

{X:letr a1.s1, . . . , an.sn in s ≜ letr b1.t1, . . . , bn.tn in t} ·∪Γ,M,∇, L

{X : letr a1.s1, . . . , an.sn in s ≜ letr bρ(1).tρ(1), . . . , bρ(n).tρ(n) in t} ∪ Γ,M,∇, L

where ρ a
permutation
on the set
{1, . . . , n}

(Letrab): Letrec

{X:letr a1.s1, . . . , an.sn in s ≜ letr b1.t1, . . . , bn.tn in t} ·∪Γ,M,∇, L

{X:π1·(letr a1.s1, . . . , an.sn in s) ≜ π2 · (letr b1.t1, . . . , bn.tn in t}) ·∪Γ,M,∇∪∇′, L
where π1 = (a1 c1) . . . (an cn) and π2 = (b1 c1) . . . (bn cn) and where ci are fresh and different
atoms and ∇′ = {ci#(letr a1.s1, . . . , an.sn in s)} ∪ {ci#(letr b1.t1, . . . , bn.tn in t)} and
i = 1, . . . n.

Figure 4: Rules for letrec of the algorithm AntiUnifLetr

Theorem 3.2. The algorithm AntiUnifLetr is terminating, sound and weakly complete.

Example 3.3 (Cont. Example 3.1). The generalization presented for (∅, letr a.a; b.c in f(a, b))
and (∅, letr b.a; c.c in f(a, b)) was obtained via application of rules (Letrab) and (Letraa) to
deal with letr, followed by application of other rules from Figure 2, including Eqvm. An-
other generalization can be obtained if we apply (Letrperm) before the application of (Letrab):
(∅, letr d.d; e.X2 in f((c d) · X2, b)). The relation between different generalizations will be
explored in future work.

4 Conclusion and Further Work

We formulated an anti-unification algorithm for expressions in a higher-order language with
letrec. The conjecture is that this algorithm is (non-deterministic) polynomial and weakly
complete. We still need to prove that the obtained results are the least general generaliza-
tions and we conjecture that the solution type is finitary. Further work will be to develop a
more practical algorithm for functional programming languages with letr that may use also
semantical equivalences (like garbage-collection) in order to obtain a polynomial algorithm for
a relevant set of generalizations.

References

[1] Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal anti-unification.
In Maribel Fernández, editor, 26th International Conference on Rewriting Techniques and Appli-
cations, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland, volume 36 of LIPIcs, pages 57–73.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[2] Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, Mateu Villaret, and Yunus D. K. Kutz. Nom-
inal unification and matching of higher order expressions with recursive let. Fundamenta Informat-
icae, 185(3):247–283, 2022. to be published.

[3] Manfred Schmidt-Schauß and Daniele Nantes-Sobrinho. Nominal anti-unification with atom-
variables. In Amy Felty, editor, FSCD 2022, LIPIcs. Schloss Dagstuhl, 2022. Accepted for publica-
tion.

5

	Introduction
	Preliminaries
	The Anti-Unification Problem for NLLX
	The Algorithm AntiUnifLetr and its Rules

	Conclusion and Further Work

