
Higher-Order Unification with Definition by Cases
Chad E. Brown1 and David Cerna2,3

1 Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

Prague, Czech Republic
2 Czech Academy of Sciences Institute of Computer Science (CAS ICS), Prague, Czechia

3 Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

Abstract
We discuss unification within the simply-typed λ-calculus extended by a definition by

cases operator (denoted by d) slightly differing from similar operators introduced by earlier
investigations. Such operators may be thought of as restrictions of Hilbert’s choice operator.
We provide several non-trivial examples which illustrate the benefits of introducing such
an operator.

1 Introduction
Higher-order automated theorem provers often need to instantiate higher-order variables, i.e.,
variables of function type. It is common for provers to obtain such instantiations using Huet’s
preunification procedure for simply typed λ-calculus [5]. A recent procedure for unification
(not just preunification) was described by Vukmirovic, et. al., [9] is implemented in Zipperpo-
sition [8], the winner of the higher-order division of the CASC competition for 2020 and 2021.
There are differences between the problem of unifying terms in a simply-typed λ-calculus and
unifying terms in a simply-typed higher order logic [4]. Typically in simply-typed λ-calculus
one has (at least) a base type ι about which one makes no special assumptions. In simply-typed
higher order logic there is a base type o of propositions and typically it is assumed o is a two
element type with two distinct elements we call ⊥ and >. Clearly unifying two simply-typed
λ-terms will ensure they are equal in the simply-typed higher order logic, however, there may be
many ways to make two terms of higher order logic semantically (and provably) equal without
making the terms βη-convertible. As a simple example, the two propositions s and ¬¬s are
semantically equal, though they are not βη-convertible.

It is common for higher-order logics to include a Hilbert choice operator at every type α,
i.e., εα : (α→ o)→ α. For example, the language used by the TH0 problem suite of TPTP [7]
includes a choice operator. For each type α this satisfies the axiom ∀p : α → o.∀x : α.(p x ⇒
p (εαp)), where ⇒ is logical implication. Essentially, for every type and every predicate which
takes an argument of that type there is an operator which when given the predicate returns an
element for which the predicate holds.

Having such an operator makes many more solutions possible. For example, suppose α is
a type and a and b are distinct constants of type α. In simply typed λ-calculus, there is no
solution for X satisfying X a = b and X b = a. However, with εα there are such solutions as one
can define if-then-elseα using εα. It is unclear how to obtain a unification procedure for simply
typed higher order logic with a choice operator. However, we could consider a simpler problem.
From a choice operator at α, an if-then-else operator is constructed as ifα : o → α → α → α
satisfying ∀p : o.p→ if p x y = x and ∀p : o.¬p→ if p x y = y. We could consider unification in
a weakened logic without the choice operator but still with such an if-then-else operator. This
would still be a difficult problem because a partial instantiation of the form ifαPXY would
require us to synthesize a proposition P . The problem of needing to synthesize propositions can

Higher-Order Unification with Definition by Cases Brown and Cerna

be avoided if we further weaken the logic to include the special if-then-else operator considered
by Beeson [1], a definition-by-cases operator. Beeson introduced his d operator with reduction
rules, e.g., d s s u v ⇒ u, but the resulting system has undesirable properties (Church-Rosser
theorem does not hold). We will instead use a semantic characterization of the d operator. Let
us assume we have an operator dα : ι→ ι→ α→ α→ α satisfying

∀x : ι.∀uv : α.dα x x u v = u

and
∀xy : ι.∀uv : α.x 6= y → dα x y u v = v

for each type α. By equality, we are referring to equality within the the model (see below).
Clearly such a dα could be defined from ifα by using an equation for the proposition giving
the condition. Such a dα is also sufficient to solve a unification problem of the form X a =
b∧X b = a. Note that using the d operator will never require synthesizing a proposition, unless
perhaps if the type α makes use of the type o. We will not attempt to fully solve the problem
of unification in simply typed λ-calculus with a dα here, but will give a semantic description of
the problem and consider a few examples.

2 First Order Unification with Definition by Cases
Before considering the higher order case we briefly consider the first order case. Let us assume
a first order signature consisting of two constants a and b and two unary functions f and g. The
set of first-order terms (denoted by s, t,s1, t1, · · ·) are defined inductively as usual. a unification
problem is of the form s1 = t1 ∧ · · · ∧ sn = tn and a solution is a substitution θ with domain V
such that θ(si) is the same as θ(ti) for i ∈ {1, . . . , n}. Once we add a d operator, we want to
consider terms the same up to the semantics of d. To prepare for this, we say θ is a solution of
the problem (V, (s1 = t1 ∧ · · · ∧ sn = tn)) if θ has domain V and θ(s1 = t1 ∧ · · · ∧ sn = tn) is
valid in every interpretation.

We now extend the first-order terms to include the 4-ary operator d. That is, if s, s′, t, t′
are terms, then d s s′ t t′ is a term. We say an interpretation is a d-interpretation if it satisfies
the sentences

∀xuv.d x x u v = u and ∀xyuv.x 6= y → d x y u v = v.

In other words, d-interpretations are those that give the intended semantics to d. We now say
θ is a solution to a unification problem (V, (s1 = t1 ∧ · · · ∧ sn = tn)) if θ has domain V and
θ(s1 = t1 ∧ · · · ∧ sn = tn) is valid in every d-interpretation.

Example 2.1. Let V = {x, y}. Even though an occurs check would would lead to failure, there
is a solution to the unification problem

(V, (x = d y a b (fx))).

In particular, θ with θx = b and θy = a is a solution.

There is a relatively straightforward algorithm to solve such unification problems. Let Φ be
a quantifier-free formula with at least one occurrence of d s s′ t t′. Let us write Φ[d s s′ t t′]
to denote the existence of an occurrence of d s s′ t t′ in Φ. Note that θΦ is valid in all
d-interpretations if and only if

θ(((s = s′)→ Φ[t]) ∧ ((s 6= s′)→ Φ[t′]))

2

Higher-Order Unification with Definition by Cases Brown and Cerna

is valid in all d-interpretations. Continuing in this manner, all references to d can be eliminated,
yielding a quantifier-free formula Φ′ with no references to d. However, this formula Φ′ is no
longer of the form s1 = t1 ∧ · · · ∧ sn = tn, i.e. this is no longer a unification problem. If Φ′ is
transformed into conjunctive normal form, then it will be a disjunction of formulas of the form

s11 6= t11 ∧ · · · ∧ s1m 6= t1m ∧ s21 = t21 ∧ · · · ∧ s2n = t2n.

Such problems fall into the class of disunification problems [6, 3]. While,at the current state of
the investigation, it is clear that such methods are needed, further work is needed to provide
precises uses and . For our purposes it is sufficient to note that this motivates considering the
more general problem of finding solutions for problems of the form (V,Φ) where Φ is a quantifier-
free formula with = as the only predicate symbol. In fact, our definitions will make sense for
arbitrary predicates Φ, though once quantifiers are permitted even checking if a candidate θ is
a solution is a general theorem proving problem.

3 Higher Order Unification with Definition by Cases
We now turn to the main topic: higher-order unification with Beeson’s definition-by-cases
operator. We start with a version of Church’s simple type theory as presented in [2]. For types
we consider those generated by the grammar τ ::= o|ι|τ → τ . For terms we take simply typed
λ-terms with at least the logical constants ⊥ : o, ¬ : o→ o, ∧ : o→ o→ o, =σ: σ → σ → o and
∀σ : (σ → o) → o. The notion of a Henkin interpretation (or simply interpretation) is given
in [2].

We say a type is pure if it has no occurrence of o. A term is pure if every constant and variable
in the term is of a pure type. We next additionally consider constants dσ : ι→ ι→ σ → σ → σ
for each pure type σ. Note that each dσ is a pure term. (This would not be true with a more
general if-then-else operator of type o→ σ → σ → σ.) Let D be the set

{∀x : ι.∀uv : σ.dσ x x u v = u|σ is a pure type}
∪{∀xy : ι.∀uv : σ.x 6= y → dσ x y u v = v|σ is a pure type}

of sentences. A Henkin model of D is a Henkin interpretation in which every sentence in D
evaluates to 1, i.e. we are restricting the Henkin interpretations of simple type theory to those
that also statisfy the above statements concerning d.

The problems we consider will be given as (V,Φ) where V is a finite set of variables of pure
type and Φ in which the only constants and constants not of pure type allowed to occur in Φ
are ¬, ∧ and =σ where σ is a pure type. That is, Φ is quantifier-free and every atom in Φ is of
the form s =σ t where σ, s and t are pure. If Φ is converted to conjunctive normal form, each
conjunct can be assumed to have the form

s11 6=σ1
1
t11 ∧ · · · ∧ s1m 6=σ1

m
t1m ∧ s21 =σ2

1
t21 ∧ · · · ∧ s2n =σ2

n
t2n

where each σij , sij and tij is pure. Such problems (V,Φ) generalize Huet’s unification problem
while still avoiding the complications arising from occurrences of the type o.

Let V be a finite set of variables. For a proposition Φ and substitution θ we say θ is a
solution for (V,Φ) if θ has domain V and θΦ is valid in all Henkin models of D. We say θ is
more general than θ′ (written θ �V θ′) if there is a substitution τ such that τ(θX) = θ′X is
valid in all Henkin models of D for all X ∈ V .

Consider the following example one can find in Beeson [1].

3

Higher-Order Unification with Definition by Cases Brown and Cerna

Example 3.1. Let V = {X} and Φ be X a = a where X is a variable of type ιι and a is
a constant of type ι. Huet’s rules yield two incomparable solutions: θI and θK with θIX =
λz.z and θKX = λz.a. Beeson’s use of d yields the less committed solution θB with θBX =
λz.dι z a a (Y z) where Y is a variable of type ιι. It is obvious all three are solutions. The
fact that θB is more general than θI follows by taking τY to be λz.z. The fact that θB is more
general than θK follows by taking τY to be λz.a.

We also consider our original motivating example.

Example 3.2. Let V = {X} and Φ be X a = b∧X b = a where X is a variable of type ιι and
a and b are constants of type ι. Consider the following solutions:

• θ1 with θ1X = λz.dι z a b a.

• θ2 with θ2X = λz.dι z b a b.

• θ3 with θ3X = λz.dι z a b (dι z b a (Y z)).

• θ4 with θ4X = λz.dι z b a (dι z a b (Y z)).

It is easy to see these are all solutions, with θ3 and θ4 being most general solutions. To see
that, for example, θ3 �X θ4, take τ to be the identity substitution and note that in every Henkin
model of D the following equation is satisfied

(λz.dι z a b (dι z b a (Y z))) =ιι (λz.dι z b a (dι z a b (Y z))).

While the use of d can make some unification problems solvable that were not solvable
without d, there are, of course, many examples of unsolvable problems. The next example
demonstrates this.

Example 3.3. Let V = {X} and Φ be f (X a) (X a) = f b c where X has type ιι, f has type
ιιι and a, b, c have type ι. The problem (V,Φ) has no solution. Consider a Henkin model of D
in which b and c are interpreted differently. This model could be used to prove any candidate θ
is not a solution.

The following example demonstrates that our unification problem differs from Beeson’s as
it is not unitary.

Example 3.4. Let V = {X} and Φ be (λz.Xzz) = (λz.z) where X has type ιιι. Huet’s
procedure gives the following two solutions (via projection):

θ1 with θ1X = λuv.u θ2 with θ2X = λuv.v.

We claim conjecture that there is no solution more general than the two solutions above,
furthermore that this In particular, a naive attempt to use the d operator to write a term like
λuv.dιuzz(Y z) fails to provide a solution, since the z is unbound here.

The example solutions above using d all have the form · · · d x t · · · where x is a local bound
variable and t has no reference to bound variables. We next consider examples where d is used
differently.

Example 3.5. Let V = {X} and Φ be the conjunction

(λu.X u u) = (λu.f (g u) a) ∧ (λu.X u a) = (λu.f (g u) u)

4

Higher-Order Unification with Definition by Cases Brown and Cerna

where X and f have type ιιι, g has type ιι and u and a have type ι. Without using d the only
solution for the second conjunct would be θ with θ X = λz1z2.f (g z1) z1, which does not solve
the first conjunct. The following solution makes use of d on the diagonal:

θ(X) = λz1z2.d
ι z1 z2 (f (g z1) a) (f (g z1) z1).

To verify this is a solution one must note that the following proposition is valid in all Henkin
interpretations: ∀u.u = a→ f (g u) a = f (g u) u. Consequently

(λu.dι u a (f (g u) a) (f (g u) u)) = (λu.f (g u) u)

is valid in all Henkin models of D. Another solution makes use of d to check if the second
argument is a:

θ(X) = λz1z2.d
ι z2 a (f (g z1) z1) (f (g z1) a).

This uses d as before, to check if an input is equal to a specific term.

Example 3.6. Let V = {X} and Φ be the conjunction

(λu.X u u) = (λu.f (g u) (h u)) ∧ (λu.X u (h u)) = (λu.f (g u) u)

where X and f have type ιιι, g and h have type ιι and u has type ι. The following solution
makes use of d in a way where both of the first two arguments refer to the inputs:

θ(X) = λz1z2.d
ι z2 (h z1) (f (g z1) z1) (f (g z1) (h z2)).

Since ∀u.u = h u→ f (g u) u = f (g u) (h u) is valid in all Henkin interpretations,

(λu.dι u (h u) (f (g u) u) (f (g u) (h u))) = (λu.f (g u) (h u))

is valid in all Henkin models of D.

These examples illustrate that the space of solutions has some important differences from
the unification problem in the simply typed λ-calculus case as well as Beeson’s d-operator. We
leave it to future work to consider algorithmic approaches to solving problems in this extended
language and resolving our conjecture concerning the unification type of this theory.

Acknowledgments
The results were supported by the Ministry of Education, Youth and Sports within the dedicated
program ERC CZ under the project POSTMAN no. LL1902, the MathLP project (LIT-2019-7-
YOU-213) of the Linz Institute of Technology and the state of Upper Austria, and Cost action
CA20111 EuroProofNet.

References
[1] Michael Beeson. Unification in lambda calculus with if-then-else. In Claude Kirchner and Helene

Kirchner, editors, 15th CADE, pages 96–111, 1998.
[2] Chad E. Brown and Gert Smolka. Analytic tableaux for simple type theory and its first-order

fragment. Logical Methods in Computer Science, 6(2), Jun 2010.
[3] Wray L. Buntine and Hans-Jürgen Bürckert. On solving equations and disequations. Journal of

the ACM, 41:591–629, 1994.

5

Higher-Order Unification with Definition by Cases Brown and Cerna

[4] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic,
5:56–68, 1940.

[5] Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci., 1(1):27–
57, 1975.

[6] Claude Kirchner and Pierre Lescanne. Solving disequations. Research Report RR-0686, INRIA,
1987.

[7] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP
v6. 4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

[8] P. Vukmirović, A. Bentkamp, J. Blanchette, S. Cruanes, V. Nummelin, and S. Tourret. Making
higher-order superposition work. In A. Platzer and G. Sutcliffe, editors, CADE 2021, pages 415–432.
Springer, 2021.

[9] Petar Vukmirovic, Alexander Bentkamp, and Visa Nummelin. Efficient full higher-order unification.
In Zena M. Ariola, editor, FSCD 2020, volume 167 of LIPIcs, pages 5:1–5:17, 2020.

6

	Introduction
	First Order Unification with Definition by Cases
	Higher Order Unification with Definition by Cases

