
19 

Classifiers Based on Inverted Distances 

Marcel Jirina and Marcel Jirina, Jr. 
Institute of Computer Science AS CR, 

Faculty of Biomedical Engineering, 
 Czech Technical University in Prague, 

Czech Republic  

1. Introduction 

In this chapter we describe an elaborated yet simple classification method (IINC) that can 
outperform a range of standard classification methods of data mining, e.g. k-nearest 
neighbors, Naïve Bayes Classifiers’ as well as SVM. In any case the method is an alternative 
to well-known and widely used classification methods. 
There is a lot of classification methods, simpler or very sophisticated. Some standard 
methods of probability density estimate for classification are based on the nearest neighbors 
method which uses ratio k/V, where k is the number of points of a given class from the 
training set in a suitable ball of volume V with center at point x (Silverman, 1990; Duda et 
al., 2000; Cháves et al., 2001) sometimes denoted as query point. For probability density 
estimation by the k-nearest-neighbor (k-NN) method in En, the best value of k must be 
carefully tuned to find optimal results. Often used role of thumb is that k equals to square 
root of number of samples of the learning set. Nearest neighbors methods exhibit sometimes 
surprisingly good results see e.g. (Merz, 2010; Kim & Ghahramani, 2006). Bayesian methods 
form the other class of most reputable non-parametric methods (Duda et al., 2000; Kim & 
Ghahramani, 2006). Random trees or random forest approach belong among complex, but 
the best classification methods as well as neural networks of different types (Bock, 2004). 
The disadvantage of many these methods is the necessity to find proper set of internal 
parameters of the system. This problem is often solved by the use of genetic optimization as 
in the case of complex neural networks see e.g. (Hakl et al., 2002). 
First, we will provide a shot overview of the basic idea of the IINC and its features and 
show a simple demonstative example of a pragmatic approach to a simple classification 
task. Second, we give a deeper mathematical insight into the method and finally we will 
demonstrate the power of the IINC on data sets from two well-known repository real-life 
tasks. 

2. Classifier background - idea and motivation 

In general, if we have estimates of the probability that a given sample (query point) belongs 
to a given class, we can easily construct a classifier. We just compare the individual 
probabilities and select the class with the highest probability. The presented IINC works in 
the same way, but the probabilities are estimated in a special way that is based on summing 
up the inverted indexes of neighbors. 
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We show a practical approach to the classification of data into two classes (extending the 
classifier to be able to classify to more than two classes will be then straightforward). 
Let all samples of the learning set regardless of the class be sorted according to their 
distances from the query point x. Let indexes be assigned to these points so that index 1 is 
assigned to the nearest neighbor, index 2 to the second nearest neighbor etc. 

Let us compute sums 0
0 1 ( 0)
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reciprocals of the indexes of samples from class c = 0 and from class c = 1. N0 and N1 are the 
numbers of samples of class 0 and class 1, respectively, N0 + N1 = N, N is the total number of 
samples available. 
The probability that point x belongs to class 0 is  
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and similarly the probability that point x belongs to class 1 is  
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When a discriminant threshold   is chosen (e.g.   = 0.5), then if p(c = 1| x) !   point x is of 
class 1 else it is of class 0. This is the same procedure as in other classification approaches 
where the output is the estimation of probability (naïve Bayes) or any real valued variable 
(neural networks). The value of the threshold can be optimized with regard to the minimum 
classification error.  
 

 

Fig. 1. Example of a classification task for a two-class problem of spatial data 
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As shown, the IINC is very simple. It is based only on the sum of inverted indexes of the 
nearest neighbors. It opens the question whether it is as powerful as stated above. 
In the above formulas the actual data do not appear directly, but are hidden behind the 
indexes that express their distance from a given sample (query point). To be able to get the 
indexes we have to sort the original data according to their distances from a particular sample. 
The only information we work with is their order, not the real distance! To compare distances 
we need proper metrics (just the L1 (absolute) metrics yields the best results). And so on. In 
other words, there are many assumptions that have to be fulfilled (and fortunately they are 
fulfilled in standard classification tasks) to concentrate them into a simple presented 
classification algorithm IINC. To vindicate the correctness of the algorithm we offer a deeper 
mathematical insight into the IINC and demonstrate the IINC on real-life classification tasks. 

3. Mathematical background of IINC 

Let us consider partial influences of individual points on the probability that point x is of 
class c. Each point of class c in the neighborhood of point x adds a little to the probability 
that point x is of class c, where c${0, 1} is the class mark. This influence grows larger the 
closer the point considered is to point x and vice versa. This observation is based on the 
finding of (Cover & Hart, 1967) that the nearest neighbor has the largest influence on the 
proper estimation to what class point x belongs. Let us assume – for proof see (Jirina & 
Jirina, 2008) – that the influence to the probability that point x is of class c (the nearest 
neighbor of class c) is 1, the influence of the second nearest neighbor is 1/2, the influence of 
the third nearest neighbor is 1/3, etc. We show further that just these values of influence 
lead to improved classification. Let p1(c|x, ri) be the probability that query point x is of class 
c if neighbor point number i is of the same class as point x, K is a constant that is used to 
normalize the probability that point x belongs to any class to 1: 

For the first (nearest) point i = 1           1 1( | , ) .1p c x r K , 

 

for the second point i = 2                       1 2

1
( | , )
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and so on, generally for point No. i      
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Individual points are independent and then we can sum up these probabilities. Thus we add 
the partial influences of k individual points together by summing up 
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The sum goes over indexes i for which the corresponding samples of the learning set are of 
class c. Let  
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(This is, in fact, so-called harmonic number HN, the sum of truncated harmonic series.) The 
estimation of the probability that query point x belongs to class c is 

( | ) cS
p x c

S
 . 

The approach is based on the hypothesis that the influence, the weight of a neighbor, is 
proportional to the reciprocal of its order number just as it is to its distance from the query 
point. 
The hypothesis above is equivalent to the assumption that the influence of individual points 
of the learning set is governed by Zipfian distribution (Zipf's law), (Zipf, 1968). 
It is also possible to show that the use of 1/i has a close connection to the correlation integral 
and correlation dimension and thus to the dynamics and true data dimensionality of 
processes that generate the data we wish to separate. It generally leads to better 
classification. 

3.1 Data and the learning set  
Let us consider only two classes for a classification task. Let the learning set U of total N 
samples be given in the form of a matrix XT with N rows and n columns. Each sample 
corresponds to one row of XT and, at the same time, corresponds to a point in n-dimensional 
space Rn, where n is the sample space dimension. The learning set consists of points (rows, 
samples) of two classes c $ {0, 1}, i.e. each row (point or sample) belongs to one of these two 
classes. Then, the learning set can be formally described as U = U0%U1, U0"U1 =& , Uc = {xcs}, 
s = 1, 2, …  Nc, c $ {0, 1}. Nc is the number of samples of class c, N0 + N1 = N, and xcs={xcs1, 
xcs2,…  xcsn} is the data sample of class c. 
As we need to express which sample is closer to or further from a given point x, we can bind 
the index of the point of the learning set with its distance from point x. Therefore, let U be a 
learning set composed of points (patterns, samples) xi, where i is the index of a point 
regardless of the class to which it belongs; xi is the i-th nearest neighbor of point x. By the 
symbol i(c), we denote those indexes i for which point xi(c) belongs to class c. 
As we need to work with metrics space we have to transform general data space to metric 
space. Therefore, we use normalized data, i.e. each variable xcsj (j fixed, s = 1, 2, ... N, c = 0 or 
1 corresponds to the j-th column of matrix XT) has zero mean and unit variance. The 
empirical means and variances of individual variables are computed from the whole 
learning set, i.e. regardless of the classes. Later they are used for the normalization of testing 
samples. We use Euclidean (L2) and absolute (L1) metrics here. 

3.2 Mapping the distribution 

First we introduce two important notions, the probability distribution mapping function 
and the distribution density mapping function. It is interesting that there is a close 
connection between the probability distribution mapping function and the correlation 
integral by Grassberger and Procaccia (Grassberger & Procaccia, 1983).  

Let us have an example of a ball in an n-dimensional space containing uniformly distributed 
points over its volume. Let us divide the ball into concentric “peels” of the same volume. 
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Using the formula / ( )n
i ir V S n , which is, in fact, inverted formula for volume Vi of an n-

dimensional ball of radius ri, we obtain a quite interesting succession of radii corresponding 
to the individual volumes - peels. The symbol S(n) denotes the volume of a ball with unit 
radius in En; note S(3) = 4/3' . A mapping between the mean density #i in an i-th peel and 
its radius ri is #i = p(ri); p(ri) is the mean probability density in the i-th ball peel with radius 
ri. The probability distribution of points in the neighborhood of a query point x is thus 
simplified to the function p(ri) of a scalar variable ri. We call this function a probability 
distribution mapping function D(x, r) and its partial differentiation with respect to r the 
distribution density mapping function d(x, r). Functions D(x, r) and d(x, r) for x fixed are, in 
fact, the probability distribution function and the probability density function of variable r, 
i.e. of distances of all points from the query point x. More exact definitions follow. 
Definition 1. Probability distribution mapping function D(x, r) of the query point x is 

function 
( , )

( , ) ( )
B x r

D x r p z dz ( , where r is the distance from the query point and B(x, r) is a 

ball with center x and radius r. 
Definition 2. Distribution density mapping function d(x, r) of the query point x is function 

( , ) ( , )d x r D x r
r

)
 
)

, where D(x, r) is a probability distribution mapping function of the query 

point x and radius r. 
Note. When it is necessary to differentiate the class of a point in distance r from point x, we 
write D(x, r, c) or d(x, r, c). 

3.3 Zipfian distribution (Zipf's law) 
The Zipfian distribution (Zipf's law) (Zipf, 1968; Zipf-Mandelbrot, 2009) predicts that out of 
a population of N elements, the frequency of elements of rank k, f(i;s,N), is 
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where N is the number of elements, i is their rank, s is the value of the exponent 
characterizing the distribution. 
The law may also be written: 
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where HN, s is the N-th generalized harmonic number. 
The simplest case of Zipf's law is a "1/f function". Given a set of Zipfian distributed 
frequencies of the occurrence of some objects, sorted from the most common to the least 
common, the second most common frequency will occur 1/2 as often as the first. The third 
most common frequency will occur 1/3 as often as the first. The n-th most common 
frequency will occur 1/i as often as the first. However, this cannot hold exactly, because 
items must occur an integer number of times: there cannot be 2.5 occurrences of anything. 
Nevertheless, over fairly wide ranges, and to a fairly good approximation, many natural 
phenomena obey Zipf's law. Note that in the case of a "1/f function", i.e. s = 1, N must be 
finite; otherwise the denominator is a sum of harmonic series, which is divergent. This is not 
true if exponent s exceeds 1,  s > 1, then 
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where * is Riemann's zeta function. 
The original motivation of Zipf's law was a corpus of natural language utterances. The 
frequency of any word is inversely proportional to its rank in the frequency table. Thus the 
most frequent word will occur approximately twice as often as the second most frequent 
word, which occurs twice as often as the fourth most frequent word, etc. In this example of 
the frequency of words in the English language, N is the number of words in the English 
language and, if we use the classic version of Zipf's law, the exponent s is 1.  f(i; s,N) will 
then be the fraction of the time the i-th most common word occurs. It is easily seen that the 
distribution is normalized, i.e., the predicted frequencies sum to 1: 

1

( ; , ) 1
N

i

f i s N
 

 ! . 

3.4 Probability density estimation 

As we mentioned above the classification method presented is based on estimation of a 
probability to which class point x of the data space belongs. The sum of inverted neighbors’ 
indexes can be utilized for the probability estimation with advantage. In this section we give 
a deeper mathemeatical insight into the probability density estimation and and thus 
vindication of the method presented. 
Let us assume that the best case for the distribution density estimation is the case of uniform 
distribution. This conjecture follows from generally accepted meaning (often implicit only) 
that best results are usually obtained in cases which are not too far from uniform 
distribution. For both classes distributed uniformly the probability that point x belongs to a 
class is given exactly by apriori probability. Then we are looking for a transformation by 
which we get the probability distribution mapping function linear and its derivative, the 
distribution density mapping function, constant.  
Let indexes i be assigned to points (samples) of the learning set without respect to a given 
class so that i = 1 is assigned to the nearest neighbor of point x, i = 2 to the second nearest 
neighbor etc. We have finite learning set of size N samples and Nc samples of each class. The 
same number of samples of both classes is assumed without loss of generality in the 
theorem and proof as follows. 
Theorem . Let the task of classification into two classes be given and let the best case for the 
distribution density estimation is the case of uniform distribution holds. Let the size of the 
learning set be N and let both classes have the same number of samples. Let i be the index of 
the i-th nearest neighbor of point x (without considering neighbor’s class) and ri be its 
distance from the point x. Then 
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 (1) 

(the upper sum goes over indexes i for which the corresponding samples are of class c) is 
probability that point x belongs to class c. 
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Proof. For each query point x one can state the probability distribution mapping function 
D(x, ri, c). We approximate this function so that it holds (K is a constant) 

( , , )q q
i iD x r c Kr  

in the neighborhood of point x. Using derivation, according to variable z = q
ir , we get 

( , , )q
id x r c K . By the use of z = q

ir , the space is mapped (“distorted”) so that the distribution 

density mapping function is constant in the neighborhood of point x for any particular 

distribution. The particular distribution is characterized by particular value of the 

distribution mapping exponent q in point x. In this mapping the distribution of points of 

class c is uniform.  

Let us consider sum 
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because d(x, q
ir , c) = d(x, z, c) = p(c|x) for all i (uniform distribution has a constant density).  

By the use of zi = q
ir , the space is distorted so that the distribution density mapping function 

( , , )id x z c  is constant in the neighborhood of point x for any particular distribution. This 

local property we extend to wider neighborhood to have ( , , ) ( , , )q
iid x r c d x z c  constant in 

the whole data space. For it the exponent q need not be a constant but can be a function 

q = q(i, c). Let  ( , )
1

q i c
ir k i  for all i of class c; k1 is a constant. (From the last formula one 

could derive the q(i, c), but we need not it.) We rewrite the equation above in form  
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and then in form 
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Given the learning set, we have the space around point x “sampled” by individual points of 
the learning set. Let pc(ri) be an a-posteriori probability point i in distance ri from the query 
point x is of the class c. Then pc(ri) is equal to 1 if point i is of class c and pc(ri) is equal to 

zero, if the point is of the other class. Then the particular realization of 
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Dividing this equation by the limit of sum on the left hand side we get  
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and due to the same limit transition in numerator and in the denominator we can rewrite it 
in form (1). $ 

3.5. Generalization of the classifier 

Here we generalize the classifier to cases of learning sets of different sizes for each class and 
for case of more than two classes. For different number of samples of one and the other class 
formula (1) has form 
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It is only recalculation of the relative representation of different numbers of samples of one 
and the other class. For C classes there is  
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It is interesting that formula (1) expresses Zipfian distribution (Zipf ś law) (Zipf, 1968) with 
Zipf ś exponent s = 1 (or eventually Zipf-Mandelbrot’s law with zero additive parameter 
(Zipf, Mandelbrot, 2008)). It is easily seen that 
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and p(c|x) is a “sum of relative frequencies of occurrence” of points of a given class c. A 
“relative frequencies of occurrence” of point i, i.e. of the i-th neighbor of query point x, is just 
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In fact, f(i; s, N) is a probability mass function of Zipfian distribution. In our case p(c|x) is a 
sum of probability mass functions for all appearances of class c. We could discuss optimal 
value of Zipf ś exponent s, but as seen above s = 1 is just optimal value. In the context of our 
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findings this discrete distribution gets much broader role than its use in linguistics and 
psychology.  
Exam ple. Let us show a practical approach to construction a classifier that classifies to more 
than two classes and moreover it manages different numbers of patterns in the individual 
classes. In this example we use the well-know iris data by (Fischer, 1936). The task is to 
classify irises to three possible classes: Virginic, Versicolor and Setosa on the basis of their 
sepal and petal leaf width and length. There are totally 150 patterns (irises).  
Let us chose one sample from the set as an unknown (test) pattern, say 
 

Sepal Length Sepal Width Petal Length Petal Width Iris Type 

5.9 3 5.1 1.8 Virginic 

 
As we excluded one pattern from the available set of irises we have 149 (49, 50 and 50) 

patterns to our disposal for classifier construction. 

The first step in our classifier construction is a normalization of the data (each individual 

feature is normalized independently) to zero mean and unit variance and consequently a 

normalization of the test pattern. Second, we calculate all (Euclidean) distances of the test 

pattern to all given patterns (149) and sort all the patterns in ascending order according to 

this distance. Further, a reciprocal value of order index is assigned to each pattern. In other 

words, 1 is assigned to the nearest pattern from our given pattern, ½ to the second nearest 

pattern and so on ... Finally, the 1/149 is assigned to the furthest pattern. As a further step 

we split the patterns with the assigned reciprocal indexes according to their class identifier 

and sum the particular values of the reciprocal indexes for the corresponding classes. We get 

the values 
 

Virginic Versicolor Setosa 

3.11377202 2.062620008 0.408121893 
 

The sum of reciprocal values of indexes of all 149 patterns is 5.584513922. The ratios of these 
individual values to the number of patterns in the corresponding class is  
 

Virginic Versicolor Setosa 

3.11377202/49 = 
0.063546368 

2.062620008/50 = 
0.0412524 

0.408121893/50 = 
0.008162438 

 

After simple recalculation we finally get the probabilities in percentual representation 
 

Virginic Versicolor Setosa 

56.2550 % 36.5191 % 7.2259 % 
 

On the basis of these results we can conclude that the given test pattern belongs to class 
‘Virginic’ what has been assumed at the begining. 
Partial cumulative sums for individual classes are depicted in Fig. 2. It is obvious that the 
lines do not overlap in this example. It means that it does not matter how many nearest 
neighbors will be used for the pattern classification (probability determination to which 
class the pattern belongs). The only difference would take effect in the different values of the 
probabilities of the individual classes not  in their order. 
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Fig. 2. Partial cumulative sums for individual classes 

3.6 Measuring the distance 

Usually distances are measured in Euclidean metric. On the experimental observation is 

seems that L1 (absolute) metrics gives better results. At the same time, the larger p of Lp 

metric, the worse. The question arises why? We have no exact proof but point of view only, 

as follows. 

Let us consider a metric written in a standard form 

1

( , )
n

i
ii i i

j

a b b a.
 

 /! . 

Let us formally rewrite this formula in form of scalar product using a vector which we will 

call weights 

1 1 2 2 1 2( , ) ( , ,..., ).( , ,..., )i
i n n na b b a b a b a w w w.  / / / . 

In our case, input arguments for the metric are coordinate differences %j = bj - aj, j = 1, 2,..., n. 

Corresponding weight let be wj. In Table 1 it can be seen that weights depend on the size of 

coordinate differences, and for L1 metric only the weights are equal one to another. In other 

cases the larger the coordinate difference, the larger it’s weight. There is also dependence on 

p of Lp and differences in the weights are the larger the larger p. The limit case is Lmax 

metric. 
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etc. etc. etc. 
Lmax wj = 1  for maximal dj 

wj = 0  otherwise 
max( )jd  

Table 1. Metrics as Weighted Sum of Coordinate Differences. 

It seems to hold that the only “fair” metric is L1 as it gives to all coordinate differences the 
equal “chance” to influence the distances of neighbors and, in the end, their final relative 
positions and thus their ordering which influences the sums of reciprocals of neighbor’s 
indexes for one and the other class.  

3.7 Correspondence of the distribution mapping exponent to correlation dimension 

It can be seen that for a fixed x the function D(x, r), r > 0 is monotonously non-decreasing 
from zero to one. Functions D(x, r) and d(x, r) for fixed x are one-dimensional analogs to the 
probability distribution function and the probability density function, respectively. In fact, 
D(x, r) is the distribution function of distances of points from the query point x and d(x, r) is 
the corresponding probability density function. So we can write p(c|x, r) = d(x, r, c). 
Moreover, D(x, r) resembles the correlation integral (Grassberger & Procaccia, 1983; 
Camastra & Vinciarelli, 2001). The correlation integral 

. .2
, 1

1
( ) lim ( | |)

N

i j
N

i j

C r h r x x
N- +  

 / /! , 

where x.i and x.j are points of the learning set without regard to class and h(.) is the Heaviside’s 
step function, can be written in form (Camastra & Vinciarelli, 2001; Camastra, 2003) 
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. .
1 1
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N N
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N
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N N

/
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 / /
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It can be seen (Camastra & Vinciarelli, 2001; Camastra, 2003) that correlation integral is a 
distribution function of all binate distances among the given data points. The probability 
distribution mapping function is a distribution function of distances from one fixed point. In 
the case of a finite number of points N, there is N(N - 1)/2 binate distances and from them 
one can construct the empirical correlation integral. Similarly, for each point there are N - 1 
distances and from these N - 1 distances one can construct the empirical probability 
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distribution mapping function. There are exactly N such functions and the mean of these 
functions gives the correlation integral. This applies also for the limit for the number of 
points N going to infinity. 
On the other hand there are essential differences. The probability distribution mapping 
function is a local feature dependent on the position of point x. It also includes the boundary 
effects (Arya et al., 1996) of a true data set. The correlation integral is a feature of a fractal or 
data generated process and should not depend on the position of a particular point 
considered or on the size of the data set at hand. 
In a log-log graph of the correlation integral, i.e. the graph of dependence of C on r, the 
slope gives the correlation dimension 0. In the log-log graph of the probability distribution 
mapping function D(x, r) the curve is also close to a monotonously and nearly linearly 
growing function. The slope (derivative) is given by a constant parameter. Let us denote this 
parameter q and call it the distribution mapping exponent. This parameter is rather close 
but generally different from 0. 
The linear part of the log-log graph means  

log ( ) logC r a 0 #  

where a is a constant, and then ( )C r ar0 . Thus C(r) grows linearly with variable r0 . 
Similarly the probability distribution mapping function grows linearly with rq at least in the 
neighborhood of point x. Its derivative, the distribution density mapping function, is 
constant there.  We will use this finding in the next section. 

4. Demonstrations of the IINC on real-life tasks 

4.1 Tasks from UCI machine learning repository 
The classification ability of the IINC presented here was tested using real-life tasks from UCI 
Machine Learning Repository (Asuncion & Newman, 2007). Four tasks of classification into 
two classes for which data from previous tests were known were selected: “German”, 
“Heart”, “Adult”, and “Ionosphere”. 
The task “German” decides whether a client is good or bad to be lent money to. In this data 
errors are weighted so that not to lend money to good a client means error weight 1, and 
lending money to a bad client means error weight 5. 
The task “Heart” indicates the absence or presence of a heart disease in a patient. 
The task “Adult” determines whether a person earns over $ 50000 a year. 
For the task “Ionosphere” the targets were free electrons in the ionosphere. "Good" radar 
returns are those showing evidence of some type of structure in the ionosphere. "Bad" 
returns are those that do not show this; their signals pass through the ionosphere. 
We do not describe these tasks in detail here as all can be found in (Asuncion & Newman, 
2007). For each task the same approach to testing and evaluation was used as described in 
(Asuncion & Newman, 2007). Especially splitting the data set into two disjoint subsets, the 
learning set and the testing set, and the use of cross validation were the same as in (Asuncion 
& Newman, 2007). For our method the discriminant threshold was tuned accordingly. 
The testing should show the classification ability of IINC method for some tasks and also 
show its classification ability relatively to other published methods and results for the same 
data sets. 
In Table 2 the results are shown together with the results of other methods as given in 
(Asuncion & Newman, 2007). For each task the methods were sorted according to the 
classification error, the method with the best – the smallest - error first. 
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“Germ an” “Heart” 

Algorithm Error Algorithm Error 
IINC 0.1580 IINC  0.1519 

SVM 0.297 Bayes  0.374 

Discrim 0.535 Discrim  0.393 

LogDisc 0.538 LogDisc  0.396 

Castle 0.583 Alloc80 0.407 

Alloc80 0.584 SVM 0.411 

Dipol92 0.599 QuaDisc  0.422 

Smart 0.601 Castle  0.441 

Cal 0.603 Cal5  0.444 

Cart 0.613 Cart  0.452 

QuaDisc 0.619 Cascade  0.467 

KNN 0.694 KNN  0.478 

Default 0.700 Smart  0.478 

Bayes 0.703 Dipol92 0.507 

IndCart 0.761 Itrule 0.515 

Back Prop 0.772 Bay Tree 0.526 

BayTree 0.778 Default 0.560 

Cn2 0.856 BackProp  0.574 

“Adult” “Ionosphere” 

Algorithm Error Algorithm Error 

FSS Naive Bayes 0.1405 IB3  0.0330 

NBTree  0.1410 IINC 0.0331 

C4.5-auto  0.1446 backprop 0.0400 

IDTM (Decision table) 0.1446 Ross Quinlan's C4 0.0600 

HOODG  0.1482 nearest neighbor  0.0790 

C4.5 rules 0.1494 "non-linear" perceptron 0.0800 

OC1 0.1504 "linear" perceptron  0.0930 

C4.5 0.1554 SVM 0.1400 

Voted ID3 (0.6)  0.1564   

SVM 0.1590   

CN2  0.1600   

Naïve-Bayes 0.1612   

IINC 0.1617   

Voted ID3 (0.8)  0.1647   

T2  0.1684   

1R  0.1954   

Nearest-neighbor (4)  0.2035   

Nearest-neighbor (2)  0.2142   

Table 2. Comparison of the classification error of IINC method for different tasks with 
results of other classifiers as given in (Asuncion & Newman, 2007). 
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4.2 Comprehensive tests  

Data sets ready for a run with a classifier were prepared by Paredes and Vidal and are 
available on the net (Lucas & Algoval, 2008). We used all data sets in this corpus. Each task 
consists of 50 pairs of training and testing sets corresponding to 50-fold cross validation. For 
DNA data (Paredes, 2008), Letter data (Letter recognition (Asuncion & Newman, 2007)), and 
Satimage (Statlog Landsat Satellite (Asuncion & Newman, 2007)) the single partition into 
training and testing sets according to specification in (Asuncion & Newman, 2007) was used. 
We also added the popular Iris data set (Asuncion & Newman, 2007) with ten-fold cross 
validation. In Table 3 the results obtained by different methods are summarized. The 
methods are as follows: 
 

L2 
The nearest neighbor method, data by (Paredes & Vidal, 2006) 

1-NN L2 
The nearest neighbor method computed by authors 

sqrt-NN L2 

The k-NN method witt k equal to square root of the number of samples of the 
learning set computed by authors 

Bayes 10 

The Bayes naive method with ten bins histograms, computed by authors 

CDM 

The learning weighted metrics method with class dependent Mahalanobis, 
data by (Paredes & Vidal, 2006) 

CW 

The learning weighted metrics method with class dependent weighting by 
(Paredes & Vidal, 2006), data by (Paredes & Vidal, 2006) 

PW 

The learning weighted metrics method with prototype dependent weighting 
by (Paredes & Vidal, 2006), data by (Paredes & Vidal, 2006) 

CPW 

The learning weighted metrics method with class and prototype - dependent 
weighting by (Paredes & Vidal, 2006), data by (Paredes & Vidal, 2006) 

posit. L1 

The learning weighted metrics method (Jirina & Jirina, 2008) with positions 
weighting and Manhattan L1 metrics 

posit. L2 

The learning weighted metrics method (Jirina & Jirina, 2008) with positions 
weighting and Euclidean L2 metrics 

diff. L1 

The learning weighted metrics method (Jirina & Jirina, 2008) with coordinate 
differences weighting and Manhattan L1 metrics 

diff. L2 

The learning weighted metrics method (Jirina & Jirina, 2008) with coordinate 
differences weighting and Euclidean L2 metrics 

IINC L1 
The method presented here with Manhattan L1 metrics 

IINC L2 
The method presented here with Euclidean L2 metrics 

 

In Table 3 in each row the best result is denoted by bold numerals. Furthermore, in the last 
column, the values for IINC better with L2 metrics than with L1 metrics are shown in italics. 
There are 6 such cases out of a total of 24. 
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Table 3. Classification error rates for different datasets and different approaches. Empty cells 
denote not available data. For legend see text above 
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5. Conclusion 

The IINC seems to provide better classification then other classifiers in most tasks even 

though it is not the best all the time. This could make it a welcome alternative to standard 

classification methods. 

The method of classification based on probability estimation proposed here consists in 

finding that each point of class c in the neighborhood of the query point x adds a little to the 

probability that point x is of class c, where c is the class mark. We proved that the influence 

to the probability that point x is of class c if the nearest neighbor of class c is 1, the influence 

of the second nearest neighbor is ½, the influence of the third nearest neighbor is 1/3 etc. We 

sum up these influences so that the sum goes over indexes i for which the corresponding 

samples of the learning set are of class c. In the case of two classes we get two numbers S0 

and S1 which together give the sum of N first elements of harmonic series S = 1 + ½ + 1/3 + 

¼ + …  + 1/N. The estimation of the probability that the query point x belongs to class c is 

then ( | ) cS
p x c

S
 . 

The proof that ratio of sums mentioned gives just probability that the query point is of that 

class uses the notion of distance but no explicit metrics is specified. It was also found 

experimentally that it is usually better to measure distance by L1 rather than standard L2 

metrics. 

There is no problem with convergence of the method and the curse of dimensionality. The 

computational complexity grows at most linearly with dimensionality and quadratically or 

less with the learning set size depending on the sorting algorithm used. 
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