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Abstract

A new method for the classification of data into classes is presented. The method is based on the sum
of reciprocals of neighbors’ indexes. We show that neighbors’ indexes are in close relation to the
polynomial transform of the neighbors’ distances. The sum of the reciprocals of indexes for all
neighbors forms truncated harmonic series due to a finite number of its elements. For the neighbors of
one class there is a sum of the selected elements of this truncated series. It is proved that the ratio of
these sums gives just the probability that the point to be classified — the query point — is of that class.
The classification ability is demonstrated on real-life data from the Machine Learning Repository and the
results are compared with published results obtained through other methods.
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The presented material describes an elaborated yet simple classification method (IINC) that can outperform a
range of standard classification methods of data mining, e.g. K-Nearest neighbors, Naive Bayes Classifiers’ as
well as SVM.

First, we will provide a shot overview of the basic idea of the IINC and its features. Second, we will demonstrate
the power of the IINC on data sets from two well-known repository real-life tasks.

Classifier Background and Features

In general, if we have estimates of the probability that a given sample (query point) belongs to a given class, we
can easily construct a classifier. We just compare the individual probabilities and select the class with the
highest probability. The presented IINC works in the same way, but the probabilities are estimated in a special
way that is based on summing up the inverted indexes of neighbors.

We show a practical approach to the classification of data into two classes (extending the classifier to be able
to classify to more than two classes is then straightforward).

Let all samples of the learning set regardless of the class be sorted according to their distances from the query
point x. Let indexes be assigned to these points so that index 1 is assigned to the nearest neighbor, index 2 to
the second nearest neighbor etc.
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Let us compute sums S, (x) = —— Zl/l and S,(x)=— Zl/l , i.e. the sums of the reciprocals of the
0 i=1(c=0) | i=1(c=1)

indexes of samples from class ¢ = 0 and from class ¢ = 1. Ny and N, are the numbers of samples of class 0 and
class 1, respectively, Ny + N; = N, , N is the total number of samples available.

The probability that point x belongs to class 0 is

So(x)

plc=01lx)= 750 ) +5,(0)

and similarly the probability that point x belongs to class 1 is

plc=1lx)= &
So(x)+S,(x)

When a discriminant threshold & is chosen (e.g. & = 0.5), then if p(c = 1| x) = & point x is of class 1 else it is of
class 0. This is the same procedure as in other classification approaches where the output is the estimation of
probability (naive Bayes) or any real valued variable (neural networks). The value of the threshold can be
optimized with regard to the minimum classification error.

Features

As shown, the IINC is very simple. It is based only on the sum of inverted indexes of the nearest neighbors. It
opens the question whether it is as powerful as stated above.



In the above formulas the actual data do not appear directly, but are hidden behind the indexes that express
their distance from a given sample (query point). To be able to get the indexes we have to sort the original data
according to their distances from a particular sample. The only information we work with is their order, not the
real distance! To compare distances we need proper metrics (just the L, (absolute) metrics yields the best
results). And so on. In other words, there are many assumptions that have to be fulfilled (and fortunately they
are fulfilled in standard classification tasks) to concentrate them into a simple presented classification
algorithm IINC. To vindicate the correctness of the algorithm we offer a deeper mathematical insight into the
IINC and demonstrate the IINC on real-life classification tasks.

Mathematical background of IINC

Let us consider partial influences of individual points on the probability that point x is of class c. Each point of
class c in the neighborhood of point x adds a little to the probability that point x is of class ¢, where ¢ ={0, 1} is
the class mark. This influence grows larger the closer the point considered is to point x and vice versa. This
observation is based on the finding of [4] that the nearest neighbor has the largest influence on the proper
estimation to what class point x belongs. Let us assume — for proof see [1] — that the influence to the
probability that point x is of class ¢ (the nearest neighbor of class ¢) is 1, the influence of the second nearest
neighbor is 1/2, the influence of the third nearest neighbor is 1/3, etc. We show further that just these values
of influence lead to improved classification. Let p.(c|x, r;) be the probability that query point x is of class c if
neighbor point number i is of the same class as point x, K is a constant that is used to normalize the probability
that point x belongs to any class to 1:

For the first (nearest) pointi=1 piclx,n)=K.1,
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1
and so on, generally for point No.i  p,(clx,r;)=K~ .
i

Individual points are independent and then we can sum up these probabilities. Thus we add the partial
influences of k individual points together by summing up

k k
plclx, )= z pi(clx,r)=K Zl/i.

i=I(c) i=I(c)

The sum goes over indexes i for which the corresponding samples of the learning set are of class c. Let

and let

i=1

(This is, in fact, so-called harmonic number Hy, the sum of truncated harmonic series.) The estimation of the
probability that query point x belongs to class c is

S
xlec)=—*%.
p(xlc) S




The approach is based on the hypothesis that the influence, the weight of a neighbor, is proportional to the
reciprocal of its order number just as it is to its distance from the query point.

The hypothesis above is equivalent to the assumption that the influence of individual points of the learning
set is governed by Zipfian distribution (Zipf's law).

It is also possible to show that the use of 1/i has a close connection to the correlation integral and
correlation dimension and thus to the dynamics and true data dimensionality of processes that generate the
data we wish to separate. It generally leads to better classification.

Theorem. Let the task of classification into two classes be given. Let the size of the learning set be N and let
both classes have the same number of samples. Let i be the index of the i-th nearest neighbor of point x
(without considering neighbor’s class) and r; be its distance from point x. Then

N
D1/

i= l(c)

Zl/l

(the upper sum goes over indexes i for which the corresponding samples are of class c) is the probability that

plclx)= hm (1)

point x belongs to class c. The proof can be found in [1].

Note. For a different number of samples of one and the other class formula (1) has the form

plclx)= hm

— Zl/z+—21/z
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It is only a recalculation of the relative representation of different numbers of samples of one and the other
class.

For more than two classes, say C classes, the equation is

— 21/1
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Demonstrations of the IINC on Real-life Tasks
Tasks from UCI Machine Learning Repository - a Comparison with Published Results

The classification ability of the IINC presented here was tested using real-life tasks from UCI Machine Learning
Repository [2].

Four tasks of classification into two classes for which data from previous tests were known were selected:
“German”, “Heart”, “Adult”, and “lonosphere”.



The task “German” decides whether a client is good or bad to be lent money to. In this data errors are
weighted so that not to lend money to good a client means error weight 1, and lending money to a bad client
means error weight 5.

The task “Heart” indicates the absence or presence of a heart disease in a patient.
The task “Adult” determines whether a person earns over $ 50000 a year.

For the task “lonosphere” the targets were free electrons in the ionosphere. "Good" radar returns are those
showing evidence of some type of structure in the ionosphere. "Bad" returns are those that do not show this;
their signals pass through the ionosphere.

We do not describe these tasks in detail here as all can be found in [2]. For each task the same approach to
testing and evaluation was used as described in [2]. Especially splitting the data set into two disjoint subsets,
the learning set and the testing set, and the use of cross validation were the same as in [2]. For our method the
discriminant threshold was tuned accordingly.

The testing should show the classification ability of INC method for some tasks and also show its classification
ability relatively to other published methods and results for the same data sets.

In Table 1 the results are shown together with the results of other methods as given in [2]. For each task the
methods were sorted according to the classification error, the method with the best — the smallest - error first.

Table 1. Comparison of the classification error of IINC method for different tasks with results of other classifiers
as given in [2].

“German” “Heart”
Algorithm Error Algorithm Error
IINC 0.1580 IINC 0.1519
SVM 0.297 Bayes 0.374
Discrim 0.535 Discrim 0.393
LogDisc 0.538 LogDisc 0.396
Castle 0.583 Alloc80 0.407
Alloc80 0.584 SVM 0.411
Dipol92 0.599 QuaDisc 0.422
Smart 0.601 Castle 0.441
Cal 0.603 Cal5 0.444
Cart 0.613 Cart 0.452
QuaDisc 0.619 Cascade 0.467
KNN 0.694 KNN 0.478
Default 0.700 Smart 0.478
Bayes 0.703 Dipol92 0.507
IndCart 0.761 Itrule 0.515
Back Prop 0.772 Bay Tree 0.526
BayTree 0.778 Default 0.560
Cn2 0.856 BackProp 0.574
“Adult” “lonosphere”
Algorithm Error Algorithm Error
FSS Naive Bayes 0.1405 IB3 0.0330
NBTree 0.1410 IINC 0.0331
C4.5-auto 0.1446 backprop 0.0400




IDTM (Decision table) 0.1446 Ross Quinlan's C4 0.0600
HOODG 0.1482 nearest neighbor 0.0790
C4.5 rules 0.1494 "non-linear" perceptron 0.0800
0ocC1 0.1504 "linear" perceptron 0.0930
C4.5 0.1554 SVM 0.1400
Voted ID3 (0.6) 0.1564
SVM 0.1590
CN2 0.1600
Naive-Bayes 0.1612
IINC 0.1617
Voted ID3 (0.8) 0.1647
T2 0.1684
1R 0.1954
Nearest-neighbor (4) 0.2035
Nearest-neighbor (2) 0.2142

Tasks from UCI Machine Learning Repository — Comprehensive Tests

Data sets ready for a run with a classifier were prepared by Paredes and Vidal and are available on the net
[7]. We used all data sets in this corpus. Each task consists of 50 pairs of training and testing sets corresponding
to 50-fold cross validation. For DNA data [8], Letter data (Letter recognition [2]), and Satimage (Statlog Landsat
Satellite [2]) the single partition into training and testing sets according to specification in [2] was used. We also
added the popular Iris data set [2] with ten-fold cross validation.

In Table 3 the results obtained by different methods are summarized. The methods are as follows:

L2 The nearest neighbor method, data by [5]
1-NN L2 The nearest neighbor method computed by authors
sqrt-NN 12 The k-NN method witt k equal to square root of the number of samples of the

learning set computed by authors
The Bayes naive method with ten bins histograms, computed by authors

Bayes 10

CDM The learning weighted metrics method with class dependent Mahalanobis, data by
(5]

cw The learning weighted metrics method with class dependent weighting by [5], data
by [5]

PW The learning weighted metrics method with prototype dependent weighting by [5],
data by [5]

CcPW The learning weighted metrics method with class and prototype - dependent
weighting by [5], data by [5]

posit. L1 The learning weighted metrics method [6] with positions weighting and Manhattan
L1 metrics

posit. L2 The learning weighted metrics method [6] with positions weighting and Euclidean
L2 metrics

diff. L1 The learning weighted metrics method [6] with coordinate differences weighting
and Manhattan L1 metrics

diff. 12 The learning weighted metrics method [6] with coordinate differences weighting
and Euclidean L2 metrics
The method presented here with Manhattan L1 metrics

IINC L1



IINC L2 The method presented here with Euclidean L2 metrics

In Table 2 in each row the best result is denoted by bold numerals. Furthermore, in the last column, the values
for IINC better with L2 metrics than with L1 metrics are shown in italics. There are 6 such cases out of a total of
24,



Table 2. Classification error rates for different datasets and different approaches. Empty cells denote not available data. For legend see text above.

\Method | L2 1-NN L2 |sqgrt-NN | Bayes SVM | CDM CW PW CPW posit. L1 |posit. L2 |diff. L1 | diff. L2 |IINCL1 |IlINC L2
Australian 34.37 20.73 15.50 13.88| 35.99 18.19 17.37 16.95 16.83 17.64 19.00 17.86 21.51 13.31 14.75
Balance 25.26 23.61 32.06 15.17| 45.48 35.15 17.98 13.44 17.6 17.85 16.17 34.48 37.74 32.58 30.80
Cancer 4.75 5.07 3.25 2.68|16..34 8.76 3.69 3.32 3.53 17.70 3.18 26.46 26.49 3.28 3.48
Diabetes 32.25 29.48 26.46 24.19| 29.64 32.47 30.23 27.39 27.33 34.90 26.49 34.90 34.90 26.21 25.52
Dna 234 25.72 34.06 6.66 15 4.72 6.49 4.21 20.83 2437 42.24 41.57 27.82 31.03
German 33.85 32.76 30.90 24.97| 27.25 32.15 27.99 28.32 27.29 29.02 29.23 29.87 30.00 30.91 31.13
Glass 27.23 32.72 4210 47.37 32.9 28.52 26.28 27.48 43.43 30.29 46.89 43.77 33.01 35.18
Heart 42.18 25.11 16.89 17.44| 38.89 2255 22.34 18.94 19.82 19.04 21.56 21.37 22.52 17.96 17.93
lonosphere 19.03 14.05 14.70 9.26 29.39 17.58 29.70 30.03 10.82 14.81
Iris 6.91 5.91 7.91 9.82| 6.55 4.91 6.91 25.82 11.82 7.91 4.91
Led17 20.5 11.50 0.12 0.00 7.64 2.67 24.78 37.72 0.46 0.45
Letter 4.35 4.80 18.70 28.98| 40.53 6.3 3.15 4.6 4.2 6.23 5.90 7.95 8.05 4.85 4.98
Liver 37.7 39.59 41.48 39.42| 37.68 39.32 40.22 36.22 36.95 40.96 42.00 40.70 40.43 38.29 39.13
Monkey1 2.01 2.01 9.27 28.01| 23.54 2.01 2.82 1.45 1.47 4.79 4.79
Phoneme 18.01 11.83 20.71 21.47| 21.71 14.72 14.61 29.27 29.27 17.55 18.06
Satimage 10.6 10.65 15.20 19.15| 44.85 14.7 11.7 8.8 9.05 11.40 11.70 76.95 75.90 11.00 11.55
Segmen 11.81 3.81 11.41 9.85 5.18 5.35 9.96 10.62 4.12 5.05
Sonar 31.4 18.37 32.51 31.46 21.11 21.89 46.63 46.63 19.89 22.85
Vehicle 35.52 30.51 31.51 38.40 32.11 29.38 29.31 28.09 30.48 31.01 36.83 34.96 29.40 29.34
Vote 8.79 8.74 9.60 9.70 6.97 6.61 5.51 5.26 7.97 7.45 717 11.98 8.52 8.89
Vowel 1.52 1.19 46.68 26.64 1.67 1.36 1.68 1.24 3.52 3.89 5.55 6.17 2.73 2.74
Waveform 21 241 23.73 14.71 19.26 18.50 18.63 25.56 25.19 16.15 16.38
Waveform 40 | 31.66 28.22 16.24 20.31 20.50 22.61 32.25 32.78 17.59 18.08
Wine 24.14 5.42 6.15 4.50 2.6 1.44 1.35 1.24 5.27 6.06 72.04 67.42 4.24 5.66




Standalone Serious Real-live Comprehensive Classification Task

This data set was available for tests described in [3] as one of many studies for data processing relating ATLAS
experiment at CERN, Geneva, Switzerland. For the description of the particle physics problem we cite [3] in

Table 3 as follows:

Table 3. Problem formulation from the point of view of physics.

Identification of hadronic v decays will be the key to the possible Higgs boson discovery in the wide
range of the MSSM parameter space [1]. The h/H/A — 77 and H* — 71 are promising channels
in the mass range spanning from roughly 100 GeV to 800 GeV. The sensitivity increases with large
tan 7 and decreases with rising mass of the Higgs boson. The H — r7 decays will give access to the
Standard Model and light Minimal Supersymmetric Standard Model Higgs boson observability around
mp = 120 GeV, with Higgs boson produced by vector-boson fusion [2]. The hadronic 7 identification
1s also very important in searching for supersymmetric particles, particularly at high tan 5 values [3].

The same signal and background samples, as discussed in [4], are used to evaluate performance of
the proposed methods. As signal, we consider reconstructed candidates from tau decays in pp — W —
v and pp — Z — 77 events. As background, we consider candidates from QCD shower in the same
pp— W — 1t pp — Z — 77 events and in QCD dijet events (sample with p4#7? > 35 GeV).

(Note that references relate to [3].)

The data set consists of 7 dimensional vectors of real numbers and class mark, which differentiates between
signal samples (events) and background samples. The data set is split into a learning and a testing set, each of

3279 samples.
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Fig. 1. ROC curves for different separation/classification tools including the “cut” method.

In Fig. 1 well-known ROC curves are shown for different separation/classification tools including the “cut”
method popular in physics studies.

The result obtained with “cuts” method is depicted by the black diamond.
The result obtained by GMDH-MIA algorithm is depicted by the lower bold black line.

The results obtained by Statistica Neural Networks are depicted by two sets of red, magenta, orange and
yellow lines. Each set corresponds to four best results out of ten networks generated. The set going more to
the left at level 0.4 or 0.6 of signal acceptance corresponds to its being set as a classifier; the other set (more
close to the black line of GMDH-MIA) corresponds to its being set as an approximator.

The upper bold blue line was obtained by the IINC method described in this report with L1 metrics.
Conlusion

The IINC seems to provide better classification then other classifiers in most tasks even though it is not the best
all the time. This could make it a welcome alternative to standard classification methods.

The idea of the classifier above is subject to patent pending under number PV 2008-245; Z 7576 submitted on
22™ April 2008 to the INDUSTRIAL PROPERTY OFFICE, Antonina Cermaka 2a, 160 68 Prague, Czech Repubilic.
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