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Abstract: Classifiers serve as tools for classifying data into classes. They directly or 
indirectly take a distribution of data points around a given query point into account. 
To express the distribution of points from the viewpoint of distances from a given 
point, a probability distribution mapping function is introduced here. The approxima-
tion of this function in a form of a suitable power of the distance is presented. How to 
state this power—the distribution mapping exponent—is described. This exponent is 
used for probability density estimation in high-dimensional spaces and for classifica-
tion. A close relation of the exponent to a singularity exponent is discussed. It is also 
shown that this classifier exhibits better behavior (classification accuracy) than other 
kinds of classifiers for some tasks. 
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1. Introduction 
 

In classification problems, the only known fact is the learning set, i.e. 
the set of points each of known class. The problem is how to estimate the 
probability to which class a query point x of the data space belongs. The 
different approaches to classification can be divided into parametric and 
nonparametric methods. Parametric methods include e.g. artificial neural 
networks of different kinds (Haykin 1998), decision trees or forests. Anoth-
er well-known method is the CART method (Breiman, Friedman, Stone 
and Olshen 2006) and many more. Nonparametric methods are mostly 
based on the Bayesian approach (Silverman 1986; Gama 2003), and the k 
nearest neighbors (k-NN) method (Cover and Hart 1967; Duda, Hart and 
Stork 2000; Petridis and Kaburlasos 2003; Hinnenburg, Agarwal and Keim 
2000; Paredes and Vidal 2006; Zuo, Wang, Zhang and Zhang 2007).  

It can be found that chaos theory provides some useful background 
and tools that could be utilized for estimating the probability mentioned 
and consequently to use them for classification tasks. The chaos theory is 
focused on chaotic processes that are described by time series. Therefore, 
the order of values of variables plays a significant role. There is a lot of 
data in practical tasks that do not form a series. In spite of that some ele-
ments of chaos theory could be used for processing of such a data that do 
not form series (Mandelbrot 1982). Such data are for example the well-
known iris data on three species of iris flower, Fisher (1936). Each individ-
ual sample describes one particular flower but neither flowers nor data 
about them form series. There is a set of flowers as well as a set of data 
without any ordering. The task is to state to what species a flower belongs 
according to measured data. We use or necessarily redefine some notions 
from multifractals theory for a classification task here, especially correla-
tion dimension (Grassberger and Procaccia 1983), which is a measure of 
the dimensionality of the space occupied by a set of random points. Here, 
data is considered as a set of points in a multidimensional space. The corre-
lation dimension characterizes also a scaling, i.e. a transformation that en-
larges (increases) or shrinks (diminishes) objects by a scale factor. While 
the correlation dimension is a global feature of the data set as a whole, a 
singularity exponent has the same role but locally. 

Singularity exponents, and also scaling exponents are widely used in 
multifractal chaotic series analysis. We try here to use these exponents for 
classification problems. In classification, the task is to properly recognize 
to which class a presented multivariate sample belongs. This task usually 
has nothing to do with time series but as shown already by Mandelbrot 
(1982) any data may posses a fractal or multifractal nature. A problem is 
that there no time scale even no ordering of samples of the learning (refer-
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ence) set exist. Therefore one cannot use such tool as wavelet functions 
(Lashermes 2004). 

Comparing different classification methods applied to different sets 
of data, one can find a very interesting fact that sometimes a simple ap-
proach outperforms the other methods, including those which are very so-
phisticated. This is the case of the k-NN method and its particular version 
1-NN method, for example. These methods are deeply elaborated since 
Cover and Hart (1967) and lots of variants have appeared since, see e.g. 
Paredes and Vidal (2006) and Zuo et al. (2007). 

The k-NN method uses the ratio k/V, where k is the number points 
from the training set in an n-dimensional ball of volume V with its center at 
point x and a proper radius that corresponds to a distance of the furthest k-
th point, see e.g. Silverman (1986), Duda, Hart and Stork (2000). For prob-
ability density estimation by the k-nearest-neighbor method in En, the best 
value of k must be carefully tuned to find the optimal results. The often 
used rule of thumb is that k equals the square root of the number of samples 
of the learning set. As mentioned the nearest neighbor based methods ex-
hibit sometimes surprisingly good results, see e.g. Paredes and Vidal 
(2006).  

Understanding data distribution in a multivariate (multidimensional) 
space is the first step in the analysis of the data and its features in a multi-
variate space and will further lead to the design of a powerful yet simple 
classier suggested in this paper. Multivariate space, even with Euclidean 
metrics, is much different than the three-dimensional space we live in. 
Three-dimensional space seems quite natural to us and we have no prob-
lems in understanding some geometrical facts. Consider the relation of a 
unit ball inside a unit cube, for example. The unit ball occupies approxi-
mately 56 % of the volume of the cube and 44 % of the volume is in the 
eight corners. In ten-dimensional Euclidean space the unit ball occupies 
0.25 % of unit cube volume. At the same time a ten-dimensional unit cube 
has 1024 corners and 99.75 % of the volume of the cube is in these corners 
and nearly nothing is in the central part given by the unit ball inside. Most 
methods mentioned above do not reflect features of the multidimensional 
space. Standard methods use individual coordinates of multivariate data 
space as they are. On the other hand, Beyer et al. (1999) and Pestov 
(2000a) found that with increasing dimensionality, the distance to the near-
est data point approaches the distance of the farthest data point of the data 
set. In other words, in high-dimensional space, all data points seem to be 
almost at the same distance from any given point.  

This is a special case of much broader theory about a concentration 
phenomenon or concentration of measure described in detail especially in 
Chapter 2 of the book by Steele (1997) and later studied e.g. by Pestov 
(2000b). We do not deal with this general problem here, but note only that 
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we make war against this phenomenon with the use of “expanded distanc-
es” z = rq (q > 1) instead of standard distances r. Exponent q, a distribution 
mapping exponent, is smaller than but usually comparable with data di-
mensionality and thus from small difference in r a large difference in z 
arises. 

However, the strangest thing about the k-NN method is the fact that 
the true distribution of points inside the ball has no influence on the proba-
bility estimation. At the same time, only distances are taken into account, 
but geometric features of multivariate space not. Points can be concentrated 
in the center or spread along the surface of the ball, the result is the same 
and thus a part of the information about the distribution of points is lost. 
There are attempts at taking this effect into account somehow. The simplest 
is the optimization of k, in fact the size of the ball (Silverman 1986). Other 
approaches try some way of weighting; e.g., Dudani (1976) has suggested 
using the weight given by the formula below for classification 
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where dk is a distance of k-th nearest neighbor from the query point and d1 a 
distance of the first nearest neighbor from the query point. These weights 
are computed for all classes and the class with the largest sum of weights is 
associated to the query point. Hastie and Tibshirani (1996) use local dis-
criminant analysis for each query point to estimate an effective metrics for 
searching neighborhoods. In fact, the local discriminant analysis linearly 
shrinks the original ball neighborhood in directions orthogonal to the local 
decision boundaries and after that, the k-NN method is used for classifica-
tion. The method by Paredes and Vidal (2006) is based on the idea of 
weighting classes or features in the learning set so that the overall classifi-
cation error on the training set is minimized.  

Here we show the possibility of using a suitable transformation (dis-
tortion) of the data space so that the distribution of points, which is general-
ly non-uniform, looks uniform-like in the transformed space, at least local-
ly, i.e. in the neighborhood of the query point. It is generally accepted that 
all classifiers exhibit very good behavior just in cases of a uniform distribu-
tion of data. 

A core notion in this transformation is a slightly redefined singularity 
or scaling exponent. The scaling considered here is related to distances 
between pairs of points in a multivariate space. Thus it is closer to the cor-
relation dimension by Grassberger and Procaccia (1983) than to box-
counting or other fractal or multifractal dimension definitions (Barabási 
and Stanley 1995). 

Three new notions are introduced here. The probability distribution 
mapping function is a mapping of the probability distribution of points in n-
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dimensional space to the distribution of points in one-dimensional space of 
the distances. The distribution density mapping function (DDMF) is a one-
dimensional analogy to the probability density function. We show that the 
DDMF is a distribution function of all distances between a particular point 
(a query point) and all points of a set considered. The power approximation 
of the probability distribution mapping function in the form of (distance)q 
is introduced, where we call the exponent q the distribution mapping expo-
nent (DME). These notions are local, i.e. are related to a particular point (a 
query point). We also show that the distribution mapping exponent q is 
something like a local value of the correlation dimension according to 
Grassberger and Procaccia (1983). It can be viewed also as the local di-
mension of the attractor by Froehling, Crutchfield, Farmer, Packard, and 
Shaw (1981) or simply “exponent” in the sense of Stanley and Melkin 
(1988). 

We found that the contribution of a point of class c to the probability 
that a query point x is of class c is inversely proportional to the q-th power, 
where q is the distribution mapping exponent, of the distance between a 
point of class c and the query point x. Summing up these partial influences 
for one and the other class we get the numbers S0 and S1 and the estimation 
of the probability that the query point x belongs to class c is Sc/S, where S = 
S0 + S1. This is a case of a two-class classifier. A generalization to an arbi-
trary number of classes is possible and it is straightforward, as we will 
show later. A welcomed feature of the classifier is that it does not have 
tuning parameters.  

We suppose that the approach presented here can be a starting point 
for other methods based on the summation of the partial influences of the 
individual points around the query point x. Thus, finer information about 
the distribution of the points in the neighborhood of the query point can be 
taken into account than in the 1-NN and k-NN methods and their modifica-
tions. Then it should generally lead to a better classification than these 
methods. 
 

2. Probability Density Estimation 
 

2.1 Probability Distribution Mapping Function 
 

To study a probability distribution of points (samples, patterns) in the 
neighborhood of a query point x in n-dimensional Euclidean space En, let 
us build n-dimensional balls with their centers at point x and with volumes 
Vi , i =1, 2, ...  The individual balls are in one another, the (i-1)-th inside the 
i-th like peels of an onion. Then, the mean density of the points in the i-th 
ball containing mi points is ρi = mi/Vi. Thus, we have constructed a mapping 
between the mean density ρi of points in the i-th ball and its radius ri. This 
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way a complex picture of the distribution of the points in the neighborhood 
of a query point x can be simplified to a function of a scalar variable – the 
density of points in a given volume.  

 
Definition.  Let the probability distribution mapping function D(x, r) of the 
query point x in En be the function 

),(

)(),(
rxB

dzzprxD , where p(z) is the 

probability density of the points at z; r is the distance from the query point 
x and B(x, r) is the ball with center x and radius r. 
 
Definition.  Let the distribution density mapping function d(x, r) of the 

query point x in En be the function ),(),( rxD
r

rxd



 , where D(x, r) is a 

probability distribution mapping function of the query point x with radius r. 
 

Note. The functions D(x, r) and d(x, r) for a fixed x are one-dimensional 
analogs to the standard well-known probability distribution function and 
the probability density function, respectively. In fact, D(x, r) is the proba-
bility distribution of a random variable ||r – x|| for a fixed x, and d(x, r) is 
the corresponding probability density. 

 
2.2 Power  Approximation  of  the  Probability  Distribution  Mapping 
      Function 

 
Now we propose a transformation with the aim to somehow distort 

the distribution of the points to look uniform-like because it is generally 
accepted that all classifiers exhibit very good behavior in cases of a uni-
form distribution of data. 

Let us try to transform the true distribution of points so that the dis-
tribution density mapping function is constant, at least in the neighborhood 
of the query point.  

 
Definition.  The power approximation of the probability distribution map-

ping function D(x, r) is the function rq such that const
r

rxD
q


),(  for 

r → 0+ . The exponent q is the distribution mapping exponent.  
 

The distribution mapping exponent (DME) reminds so-called corre-
lation dimension by Grassberger and Procaccia (1983). Generally, it can be 
seen that the correlation integral is a distribution function of all pairwise 
distances among the data points given. The probability distribution map-
ping function is a distribution function of the distances from one fixed point 
x. In the case of finite number of points N, there are N(N - 1)/2 pairwise 
distances and from them one can construct an empirical correlation inte-
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gral.  Similarly, for  each  point  there  are  N - 1  distances  and from these 
N - 1 distances one can construct an empirical probability distribution map-
ping function. There are exactly N such functions and the mean of these 
functions gives the correlation integral. This definition remains valid for 
the number of points N going to infinity.  

 
2.3 Indexing Data 

 
Let U be a learning set composed of points (patterns, samples) xcs, 

where c = {0, 1} is the class mark and s = 1, 2, …, Nc is the index of the 
point within class c; Nc is the number of points in class c and let 
N = N0 + N1 be the learning set size. Points xcs of one class are ordered so 
that index s = 1 corresponds to the nearest neighbor, index s = 2 to the se-
cond nearest neighbor, etc. In Euclidean metrics, rs = ||x - xcs || is the dis-
tance of the s-th nearest neighbor of class c from point x.  

This is the usual way of identifying data samples. For our purpose, 
we also use a simple form of numbering for the neighbors of point x: U is a 
learning set composed of points (patterns, samples) xi, where i is the index 
of the point without respect to which class it belongs; xi is the i-th nearest 
neighbor of point x. By the symbol i(c), we denote such index i that point 
xi(c) belongs to class c. 

 
2.4 Distribution Mapping Exponent Estimation 

 
In this section, we suggest a procedure how to determine the distri-

bution mapping exponent for a classifier, which classifies into two classes. 
The extension to many classes will be then straightforward.  

To estimate the distribution mapping exponent q we use a similar 
approach, nearly identical, to the approach of Grassberger and 
Procaccia (1983) for the correlation dimension estimation.  

We look for exponent q so, that q
sr is proportional to index s, i.e. 

 

ksr q
s  , s = 1, 2, ..., Nc, c = 0 or 1,                          (1) 

 

where k is a proportionality constant, which will be eliminated later, so we 
need not bother with it. Pragmatically said, we are looking for arbitrary q 
that fulfils the above equation (1) and consequently we show that the q 
found leads to a uniformity of the transformed space. Using a logarithm we 
get 

)ln()ln()ln( skrq s  , s = 1, 2, ..., Nc  .                          (2) 
 

This way of finding the optimal exponent is a task of estimating the 
slope of a straight line by linearly approximating the graph of the depend-
ence of the neighbor’s index s as a function of distance in log-log scale. It 
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is the same problem as in the correlation dimension estimation where equa-
tions of the same form as (1) and (2) arise. Grassberger and Procaccia 
(1983) proposed a solution by linear regression. Dvorak and Klaschka 
(1990), Guerrero and Smith (2003), Osborne and Provenzale (1989) later 
proposed different modifications and heuristics. Many of these approaches 
and heuristics can be used for the distribution mapping exponent estima-
tion, e.g. use of the square root of Nc nearest neighbors instead of Nc to 
eliminate the influence of a limited number of the points of the learning set. 
The accuracy of the distribution mapping exponent estimation is the same 
problem as the accuracy of the correlation dimension estimation. On the 
other hand, one can find that a small change of q does not essentially influ-
ence the classification results. 

We solve the system of Nc (or cN  as mentioned above) equations 
(2) with respect to an unknown q by the use of standard linear regression 
for both classes. Thus, for two classes we get two values of q, q0 and q1. To 
get a single value of q we use the arithmetic mean, q = (q0 + q1)/2. For 
more classes, the arithmetic mean of the q’s for the individual classes can 
also be used. 

At this point, we can say that the distribution mapping exponent q is 
something like a local effective dimensionality of the data including the 
true distribution of the points of both classes. The value of q is related to 
each particular point x and thus varies from one point x to another. Note 
that our notion of the distribution mapping exponent differs significantly 
from the local intrinsic dimensionality by Fukunaga and Olsen (1971), 
Froehling et al. (1981), see also e.g. Costa, Girotra, and Hero (2005), which 
is defined as an integer representing a rank of the data matrix for the data 
points within a local region. 

 
2.5 The Method 

 
We come from the assumption that the best estimation of the proba-

bility distribution of the data is closely related to the uniformity of the data 
around the query point x. This uniformity is reached by the use of the trans-
formed distances, i.e. by the use of rq instead of r.  

Informally, let us consider the partial influences of the individual 
points to the probability that point x is of class c. Each point of class c in 
the neighborhood of point x adds a little to the probability that point x is of 
class c, where c  {0, 1} is the class mark. Suppose that this contribution is 
larger the closer the point considered is to point x and vice versa. Let 
p(c|x, i) be a partial contribution of the i-th nearest point to the probability 
that point x is of class c. Then: 
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For the first (nearest) point i = 1                    q
nrS

xcp
1

1)1,|(  , 
 

where we use the distribution mapping exponent q instead of the data space 
dimensionality n; Sn is proportionality constant dependent on the dimen-
sionality and metrics used. 
 

For the second point i = 2                             q
nrS

xcp
2

1)2,|(  . 
 

And so on; generally for point No. i             q
inrS

ixcp
1),|(  . 

 

We add the partial contributions of individual points together by 
summing up into estimate 
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                    (3) 

 
(The sum goes over the indexes i for which the corresponding sam-

ples of the learning set are of class c). For both classes there is  
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xpxp  and from it 
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Thus we get the form suitable for practical computation 
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)|(                                   (4) 

 

(The upper sum goes over the indexes i for which the corresponding 
samples of the learning set are of class c).  

At the same time all N points of the learning set are used instead of 
some finite number as in the k-NN method. Moreover, we do not use the 
nearest point (i = 1) because its influence is more negative than positive on 
the probability estimate here. 

A more exact elicitation for the two class classification and the same 
number of samples for both classes of the learning set is given in the next 
section. We show that the generalization is straightforward later. 
Theorem 1.  Let the task of classification into two classes be given. Let the 
size of the learning set be N and let both classes have the same number of 
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samples. Let q > 1 be the distribution mapping exponent, let i be the index 
of the i-th nearest neighbor of point x (without respect to class), and ri > 0 
its distance from point x. Then  
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lim)|(                                      (5) 

is a probability that point x belongs to class c.  
Proof.  For each query point x one can state the probability distribution 
mapping function D(x, ri, c). We set this function so that it holds (C is a 
constant) 

q
i

q
i CrcrxD ),,(  

 

in the neighborhood of point x. Using derivation, according to variable z = 
q

ir , we get Ccrxd q
i ),,( . By the use of z = q

ir , the space is mapped (“dis-
torted”) so that the distribution density mapping function is constant in the 
neighborhood of point x for any particular distribution. The particular dis-
tribution is characterized by the particular value of the distribution mapping 
exponent q at point x. In this mapping, the distribution of the points of class 
c is uniform.  

Let us consider sum
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because d(x, q
ir , c) = d(x, z, c) = p(c|x) for all i (uniform distribution has a 

constant density).  
Given the learning set, we have the space around point x “sampled” 

by the individual points of the learning set. Let pc(ri) be an a-posteriori 
probability that point i at distance ri from the query point x is of the class c. 
Then pc(ri) is equal to 1 if point xi is of class c and pc(ri) is equal to zero, if 
not, i.e. if the point is of the other class. Then, the particular realization of 
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Dividing this equation by the limit of the sum on the left hand side 
we get  
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and due to the same limit transition in the numerator and in the denomina-
tor we can rewrite it in form (5).  
■ 

Note that the convergence of 



N

ci
q

i
c r

S
)(2

1
 is faster the larger DME 

q is. Usually, for multivariate real-life data the DME is also large (and the 
correlation dimension as well). 

Theorem 1 states that probability density is proportional to q
ir/1  and 

formula (3) uses the sum of these ratios supposing to get a reasonable num-
ber for probability density estimation. So it is supposed that for a number of 
samples going to infinity, the sum would be convergent.  

 
Theorem 2.  Let there exist a mapping of probability density of points of 
class c in En, En  E1: )()( q

cici rpxp   so that  
 

1 1( )q
c cK r p x ,  

2 1 2( ) ( )q q
c c cK r r p x  ,    …

( 1)( ) ( )q q
cNc cNcc NcK r r p x  ,   (7) 

 

where K is a fixed constant that has the same value for both classes. Let 
there exist a constant  > 0 and index k >2 so that for each i > k it holds  
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Then                                 
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where K and Cc are finite constants.  
 

Proof.  First we arrange (9) in the form 
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Then using mapping (7) we get 
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For individual elements  2 / 2,3,...,c cjp p j i  in denominators of 
fractions in the sum it holds 
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Using condition (8) the summed elements Pk, Pk+1, … in (10) have 

the form 
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 , 

 
 

0i   and 0  . Then the series is convergent and thus K and Cc are 
finite constants.  
■ 

 
Note.  In the statement of the theorem the sum need not start just by index 
i = 2. We can start with the nearest neighbor (i = 1) or other neighbors 
(i > 2). 

 
Figure 1 and Figure 2 illustrate the convergence of the sum Sc above 

for one query point for the well-known “vote” data, see Asuncion 
and Newman (2007). The task is to find whether a president elected will be 
republican or democrat. The data is 15-dimensional of two classes, republi-
can and democrat, and has a different number of samples. In the learning 
set, there are 116 times republican and 184 times democrat. The distribu-
tion mapping exponent q varies between 4.52 and 14 with the mean value 
10.22.  
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Figure 1. Sample contribution to the sum Sc for the 15-dimensional data “vote” and one 
particular query point; q = 7.22. The upper line corresponds to the republican, the lower line 
to the democrat. Samples are sorted according to the distance r, i.e. also to the size of the 
sample contribution to the sum Sc. There are different numbers of samples of one and the 
other class in the learning set.  
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1

1 21 41 61 81 101 121 141 161 181

Sc rep

Sc dem

 
 

Figure 2. The size of the total sum Sc for the 15-dimensional data “vote” and one particular 
query point; q = 7.22. The upper line corresponds to the republican, the lower line to the 
democrat. The samples are sorted according to the distance r, i.e. also to the size of the 
sample contribution to the sum Sc. 
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2.6 Classifier Construction 
 

In this section, we show how to construct a classifier that incorpo-
rates the idea of the distribution mapping exponent. First, compute the dis-
tribution mapping exponent q using (2) by linear regression for the query 
point x. Then, we simply sum up all the components q

ir1  excluding the 
nearest point. The sum is calculated class-wise, simultaneously getting 
numbers S0 and S1 for both classes. Then we can get the Bayes ratio or a 
probability estimate that point x  En belongs to class 1 from the Equations 
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Then for a threshold (cut)  chosen, if )(xR  or )(1 xp  then 

x belongs to class 1 or else to class 0.  
Note that for the different number N0 and N1 of the samples of one 

and the other class formula (4) has the form 
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It is only a recalculation of the relative representation of the different 
number of the samples of one and the other class. 

For M classes, M ≥ 2 the formula above has the form 
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Final algorithm proposed here consists of the following steps. 

 
 
Input: 
 The learning set with samples of C classes and Nc samples of 

each class, c = 1, 2, ..., C, and total N samples.  
 The query point x. 
 Threshold θ (for a two class classification). 
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Output: 
 Estimates of probabilities )|(ˆ xcp  that point x belongs to class 

c, c = 1, 2, ..., C. 
 Class k to which the query point x most probably belongs. 

 
For query point x do { 

Sort all samples of the learning set according to the distance 
from the query point x. 
 
Assign indexes i to sorted samples of the learning set without 
respect to class so that i = 1 is assigned to the nearest neighbor, 
i = 2 to the second nearest neighbor etc. 
 
For c = 1, 2, ... C { 

Estimate value of the distribution mapping exponent q. 
Compute probability )|(ˆ xcp  according to (11). 

} 
// now we have estimates of probabilities that the query point // 
x belongs to individual classes.) 
 
For a classification task do { 

if C = 2 then {// two class problem 
if )|0(ˆ xp > θ then point x belongs to class 

k = 0. 
else point x belongs to class k = 1. 

} 
else { 

))|(ˆ(maxarg 1 xcpk C
c  is the estimated class 

to which point x belongs. 
} 

} 
} 

 
 

 
 
 

3. Experiments 
 

We demonstrate the features and the power of the classifier both on 
synthetic and real-life data. 
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3.1 Distribution Mapping Exponent Estimation 
 

An essential part of the algorithm and experiments is the distribution 
mapping exponent estimation. As said above, many approaches and heuris-
tics for correlation dimension estimation can be used for this task. In exper-
iments below we used algorithms of distribution mapping exponent estima-
tion as follows. 

 

- Linear regression over the whole learning set. This systematically un-
derestimates q by factor 2 and then it is corrected by this factor.  

- Linear regression over the nearer half of points of the learning set. 
- t-score robust regression (Fabian and Vajda 2003) over the nearer half 

of points of the learning set and over the nearer square root of number 
of points of the learning set 

- Takens estimator (Takens 1985) over the nearer half of points of the 
learning set and over the nearer square root of number of points of the 
learning set. 

 

It will be seen below that spread of results with different algorithms 
and the part of the learning set really used is generally relatively low. A 
small change of q does not essentially influence the classification results. 

 
3.2 Synthetic Data 

 
Synthetic data according to Paredes and Vidal (2006) is two-

dimensional and consists of three two-dimensional normal distributions 
with identical a-priori probabilities. If μ denotes the vector of the means 
and Cm is the covariance matrix, there is 

 

      Class A: μ = (2, 0.5)t,   Cm = (1, 0; 0, 1) (identity matrix) 
      Class B: μ = (0, 2)t,     Cm = (1, 0.5; 0.5, 1) 
      Class C: μ = (0, -1)t,   Cm = (1, -0.5; -0.5, 1). 
 
 

Figure 3 shows the results obtained by the different methods for the 
different learning sets sizes from 8 to 256 samples and a testing set of 5000 
samples all from the same distributions and independent. Each point in the 
figure was obtained by averaging over 100 different runs. For other meth-
ods, i.e. the 1-NN method with L2 metrics and variants of the LWM meth-
od by Paredes and Vidal (2006), the values were estimated from literature 
cited. It is seen that in this synthetic experiment, the DME based method 
presented  here  reliably  outperforms  all  other  methods  shown  and  for a 
large number of samples fast approaches the Bayes limit. For the distribu-
tion mapping estimation the linear regression over the whole learning set 
was used. 
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Figure 3. Comparison of the classification errors of the synthetic data for the different ap-
proaches. In the legend, 1-NN (L2) means the 1-NN method with Euclidean metrics, CW, 
PW, and CPW are three variants of the method by Paredes and Vidal (2006); the points are 
estimated from the reference cited. DME means the method presented here.  

 
 
 

Note that in this test, the error of the DME estimation is combined 
with numerical errors, and with a negative influence of the low number of 
the samples giving the results presented in Figure 3.  

 
3.3 Data from Machine Learning Repository 
 
Tasks from UCI Machine Learning Repository – Comprehensive Tests 
 

The testing should show the classification ability of the DME meth-
od for some tasks and also shows the classification ability relative to the 
other published methods and the results for the same data sets.  

We used real-life tasks from the UCI Machine Learning Repository; 
see Asuncion and Newman (2007). 24 databases have been used for the 
classification task into two to 26 classes. The number of attributes not in-
cluding the class mark differs from 4 to 180. Basic characteristics of data 
sets are summarized in Table 1. Data originally from the UCI Machine 
learning repository (Asuncion and Newman, 2007) were gained mostly 
from (Paredes, 2008) (denoted by P in column Source in the table). These 
data sets are ready for a run with a classifier. We used all data sets in this 
corpus.  Each  task  consists  of  50 pairs of training and testing sets corres-  
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Table 1. Characteristics of data sets basically from the UCI Machine learning repository 
[MLR] gained from or modified according to different sources. Abbreviations for sources: P 
– Paredes (2008); P2 – Paredes (2009); UCI MLR - Asuncion and Newman (2007). Note 
(1): Iris data are used without Setosa class, i.e. two classes Versicolor and Virginica only 
according to Friedman (1994).  

 

 Dataset 

Dimen- 
sion 
(#att-
ributes) 

Number 
of  
classes 

   Total  
   samples 

 Learning 
 set size 

 Test set  
 size 

 Cross  
 valida-
 tion 

 Source 

 Australian 42 2 690 551 139 50 P 
 Balance 4 3 625 499 126 50 P 
 Cancer 9 2 683 546 137 50 P 
 Diabetes 8 2 768 614 154 50 P 
 DNA 180 3 31186 2000 1186 1 P2 
 German 24 2 1000 800 200 50 P 
 Glass 9 6 215 169 46 50 P 
 Heart 25 2 270 216 54 50 P 
 Ionosphere 34 2 351 280 71 50 P 
 Iris (1) 4      2 (3) 100 (150) 90 10 10 UCI MLR 
 Led17 24 10 2000 1595 405 50 P 
 Letter 16 26 20000 16000 4000 1 UCI MLR 
 Liver 6 2 345 276 69 50 P 
 Monkey1 17 2 556 444 112 50 P 
 Phoneme 5 2 5404 4322 1082 50 P 
 Satimage 36 7 6435 4435 2000 1 UCI MLR 
 Segmen 19 7 2310 1848 462 50 P 
 Sonar 60 2 208 165 43 50 P 
 Vehicle 18 4 846 675 171 50 P 
 Vote 16 2 435 347 88 50 P 
 Vowel 10 11 528 418 110 50 P 
 Waveform21 21 3 5000 3998 1002 50 P 
 Waveform40 40 3 5000 3999 1001 50 P 
 Wine 13 3 178 141 37 50 P 

 
 
 

ponding to 50-fold cross validation. For DNA data (Paredes 2009), Letter 
data (Letter recognition (Asuncion and Newman 2007)), and Satimage 
(Statlog Landsat Satellite (Asuncion and Newman,2007)) the single parti-
tion into training and testing sets according to specification in (Asuncion 
and Newman 2007) was used. We also added the popular Iris data set. Iris 
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data were taken from (Asuncion and Newman 2007) but we use them with-
out Setosa class, i.e. we used two classes Versicolor and Virginica only 
according to Friedman (1994) and then we have split remaining data into 
10 pairs for ten-fold cross validation. 

 
Classification Methods Compared 
 

The best results obtained with six different classification methods are 
shown in Table 2. We used six classification methods as follows. Notation 
corresponds to columns in Table 3. 

 
 Bayes – the naïve Bayes method that uses 10 bins histograms (Silver-

man 1986). A short but comprehensive description one can find in pa-
per by Gama (2003). 
 

 1-NN – standard nearest neighbor method (Cover and Hart 1967). 
 

 ParedBest – the best results obtained by three variants of method by 
Paredes and Vidal (2006) using original software available from 
(Paredes 2009). Detailed results for three variants of this method are 
shown in the Appendix. 
 

 SVMbest – the best results obtained with support vector machine 
(Joachims 1999; Tsochantaridis, Joachims, Hofmann, and Altun  2005) 
using four types of kernels (default values for other parameters) and 
software available at (Joachims 2008). Detailed results for four differ-
ent kernels are shown in the Appendix. 
 

 MLP – the well-known Multilayer Perceptron artificial neural network 
(Haykin 1998). 
 

 DMEbest – the best results obtained with variants of the method pre-
sented here. Variants mean different approaches to DME estimation. 
Detailed results for different algorithms for stating the distribution 
mapping exponent and the part of the learning set used are shown in 
Table 3. 

 
In Table 2 in each row the best result is denoted by bold numerals. 

Details of results for the method presented here are shown in Table 3. The 
method is the same and follows the algorithm shown in Chapter 2.6. Six 
variants in Table 3 differ in approach to the distribution mapping estima-
tion and are described in legend in the table caption. 

 
4.  Discussion 

 
Our  model  utilizing  a transformation of the data space in the form (dis-

tance)q   comes  from  the  demand  to  have  a  uniform  distribution  of 
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Table 2. Condensed comparison of six types of classification methods including DME 
method presented here. The best result for each particular data set are shown in bold.  
 

 Dataset Bayes     1-NN   ParedBest   SVMbest MLP   DMEbest 

 Australian      14.88% 34.29% 31.91% 35.99%         15.12%     14.20% 

 Balance      15.17% 22.05% 13.68% 33.17% 3.85% 24.85% 

 Cancer       2.68% 4.83% 3.41% 16.32% 4.71% 3.69% 

 Diabetes      25.19% 32.76% 29.60% 29.64% 22.92% 24.75% 

 DNA       6.66% 23.44% 3.71% 0.00% 12.14% 28.33% 

 German     24.97% 33.74% 29.79% 27.25% 38.80% 27.64% 

 Glass      47.37% 30.81% 30.75% 32.63% 35.85% 34.47% 

 Heart      18.44% 41.48% 38.15% 37.22% 17.98%      17.96% 

 Ionosphere       9.26% 14.07% 5.87% 18.52% 18,39% 15.58% 

 Iris       9.82% 5.91% 4.91% 5.55% 5,26% 5.91% 

 Led17       0.00% 24.92% 0.02% 11.52% 0.00% 0.32% 

 Letter      28.98% 4.35% 3.25% 2.68% 3.26% 5.73% 

 Liver      39.42% 39.25% 38.14% 35.54% 32.56% 40.09% 

 Monkey1      28.01% 29.47% 0.04% 2.94% 1.44% 8.22% 

 Phoneme      21.47%     11.50% 11.60% 14.39% 22.24% 16.49% 

 Satimage      19.15% 10.55% 9.25% 24.30% 14.61% 11.95% 

 Segmen       9.85% 4.30% 3.76% 34.27% 6.09% 6.48% 

 Sonar      31.46% 22.62% 19.42% 19.67% 42.31% 24.25% 

 Vehicle      38.40% 35.08% 29.95% 26.23% 21.80% 29.37% 

 Vote       9.70% 8.13% 5.35% 22.64% 14.81% 9.28% 

 Vowel      26.64% 1.37% 1.33% 8.54% 12.12% 6.66% 

 Waveform21      19.26% 21.91% 18.30% 26.34% 15.16%     15.05% 

 Waveform40      20.31% 23.34% 24.55% 32.25% 17.04%     16.49% 

 Wine       5.50% 27.05% 19.46% 8.85% 0.00% 5.04% 
 
 

 
points, at least locally. There is an interesting relationship between the cor-
relation dimension and the distribution mapping exponent. The former is a 
global feature of the fractal or data generating process. The latter is a local  
feature  of  the  data  set  and  is  closely  related to a particular query point.  
On the other hand, if linear regression were used, the computational proce-
dure is almost the same in both cases. Moreover, it can be found that the 
values of the distribution mapping exponent lie sometimes in a narrow, 
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Table 3. Error rates for 24 data sets with the DME classifier with different approaches to 
DME estimation. Legend for columns headings: 

DMEL2 - Linear regression over the whole learning set.  
DME1/2L2 - Linear regression over the nearer half of points of the learning set. 
DME1/2FabiL2 - t-score robust regression (Fabian and Vajda 2003) over the nearer half 

of points of the learning set 
DMEsqrFabiL2 - t-score robust regression (Fabian and Vajda 2003) over the nearer 

square root of number of points of the learning set 
DME1/2TakeL2 - Takens estimator (Takens 1985) over the nearer half of points of the 

learning set. 
DMEsqrTakeL2 - Takens estimator (Takens 1985) over the nearer square root of number 

of points of the learning set. 
 
 

 Dataset   DMEL2 
DME1/2
L2 

DME1/2Fa
biL2 

DMEsqrFa
biL2 

DME1/2Ta
keL2 

DMEsqrTake
L2 

 Australian   17.34%   14.83% 14.78% 14.20% 15.84% 15.03% 

 Balance   25.17%   24.85% 24.86% 24.99% 25.01% 25.12% 

 Cancer   3.70%   3.69% 3.70% 3.98% 3.72% 3.79% 

 Diabetes   25.39%   24.95% 24.97% 24.75% 25.18% 24.82% 

 DNA   25.04%   31.70% 31.70% 30.69% 33.31% 28.33% 

 German   29.20%   27.65% 27.64% 27.90% 27.74% 28.14% 

 Glass   32.95%   34.52% 34.47% 35.20% 34.57% 35.58% 

 Heart   19.00%   18.15% 18.15% 17.96% 18.15% 18.26% 

 Ionosphere   15.41%   16.09% 16.09% 16.29% 16.44% 15.58% 

 Iris   5.91%   5.91% 5.91% 5.91% 5.91% 5.91% 

 Led17   3.62%   0.43% 0.43% 0.32% 0.87% 1.82% 

 Letter   5.05%   6.65% 6.68% 10.30% 6.55% 5.73% 

 Liver   39.68%   40.09% 40.17% 40.26% 40.12% 40.23% 

 Monkey1   6.72%   9.19% 9.21% 10.42% 8.22% 10.42% 

 Phoneme   13.37%   16.93% 17.00% 19.25% 16.49% 20.17% 

 Satimage   10.65%   12.85% 12.85% 13.90% 13.05% 11.95% 

 Segmen   5.25%   6.48% 6.54% 8.23% 6.61% 6.81% 

 Sonar   23.81%   25.65% 25.65% 27.43% 24.92% 24.25% 

 Vehicle   28.86%   30.65% 30.67% 31.51% 30.79% 29.37% 

 Vote   8.50%   9.88% 9.90% 10.11% 9.49% 9.28% 

 Vowel   5.67%   10.21% 10.28% 13.81% 6.86% 6.66% 

 Waveform21   15.82%   15.06% 15.05% 15.29% 15.35% 15.60% 

 Waveform40   17.94%   16.49% 16.49% 16.83% 16.78% 17.27% 

 Wine   4.99%   5.76% 5.76% 6.39% 5.04% 5.38% 
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sometimes in a rather wide interval around its mean value. Not surprising-
ly, the mean value of the distribution mapping exponent over all samples is 
not far from the correlation dimension. A question arises what the relation 
of the distribution mapping exponent statistic is to the overall accuracy of 
the classification. A direct use of the correlation dimension for the classifi-
cation is another question. Introducing the notion of the distribution map-
ping exponent and the transformation of the distances may be a starting 
point for a more detailed description of the local behavior of the multivari-
ate data and for the development of new approaches to the data analysis, 
including classification problems. 

We do not use the first nearest neighbor in our formulas. In our ap-
proach, a true distribution is mapped to the uniform distribution. For uni-
form distribution, it holds that the i-th neighbor distance from a given point 
has an Erlang distribution of i-th order. For an Erlang distribution of i-th 
order, the relative statistical deviation, i.e. the statistical deviation divided 
by the mean, is equal to i1 . Then the relative statistical deviation dimin-
ishes with the index of the neighbor and for the nearest neighbor is equal to 
1 which also follows from the fact that Erlang(1) distribution is just expo-
nential distribution. So, there is a large relative spread in the positions of 
the nearest neighbor and, at the same time, its influence is the largest. It 
appears better to eliminate the influence of the first nearest neighbor. Theo-
rem 1 remains valid when the first neighbor is included, as well as if more 
than one neighbor is excluded. In any case the influence of the nearest 
neighbors is large as illustrated in Figures 1 and 2 while farther neighbors 
have nearly no influence. One could say that the distribution mapping ex-
ponent approach somehow automatically controls the size of neighborhood, 
which influences the estimation. 

We have shown that the distribution mapping exponent (DME) can 
be computed by similar approaches as with the correlation dimension and 
that the polynomial transformation which uses the distribution mapping 
exponent as the exponent leads to a classification algorithm.  

By the use of the notion of distance, i.e. a simple transformation En 
→ E1, the problems with the curse of dimensionality are easily eliminated. 
The curse of dimensionality (Bellman 1961, Pestov 2000a) means that the 
computational complexity grows exponentially with the dimensionality n, 
while complexity here grows only linearly. In any case there is a loss of 
information on the true distribution of the points in the neighborhood of the 
query point which is fortunately not fundamental for distance based meth-
ods. On the other hand, the distribution mapping exponent method uses 
more information than the 1-NN and k-NN methods as it takes the individ-
ual distances of all points of the learning set into account.  

Our experiments demonstrate that the simplest classifier based on the 
ideas introduced here can outperform other methods for some data sets. We  
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compared  our  method  with  standard  methods  as  naive  Bayes  and 1-
NN method as well as with two powerful and complex methods the Learn-
ing Weighted Metrics (LWM) by Paredes and Vidal (2006) and the Support 
Vector Machine (SVM), see (Joachims 1999, Tsochantaridis et al. 2005). 
Each method is good for some group of tasks as seen in Table 2 but the 
basic 1-NN method is apparently outperformed by any other method stud-
ied here.  

On the other hand, the target of this paper was to present a basically 
new approach to probability density estimation and classification. Some 
refinement of this approach can bring better results in the future. There is 
an observation that the distribution mapping exponent (DME), in fact a 
redefined scaling exponent, shows an inherent multifractal nature of data. A 
multifractal system (Stanley-Melkin 1988) is a generalization of a fractal 
system in which a single exponent (the fractal dimension) is not sufficient 
to describe its dynamics; instead, a continuous spectrum of exponents (the 
so-called singularity spectrum) is needed or, as presented here, a stating of 
exponent to each particular point. Further research may try to use another 
description of multifractal phenomena to get better probability density es-
timation and thus better classification. 

 
Appendix 

 
Details on classification accuracy of the LWM and SVM methods com-

puted using software available from Paredes (2009) and Joachims (2008). 
 

Table 4. Classification accuracy for 26 datasets for three variants of the LWM method by 
Paredes and Vidal (2006). The software package by Paredes (2009) was used with default 
control parameters. 

 
Dataset CW PW CPW 

Australian 31.91% 36.43% 33.88%

Balance 18.44% 13.68% 18.01%

Cancer 3.75% 4.06% 3.41% 

Diabetes 30.62% 31.15% 29.60%

DNA 4.30% 40.98% 3.71% 

German 29.87% 33.59% 29.79%

Glass 31.40% 30.75% 31.60%

Heart 39.22% 39.63% 38.15%

Ionosphere 7.92% 6.24% 5.87% 

Iris 5.91% 4.91% 5.91% 
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Dataset CW PW CPW 

Led17 0.02% 24.10% 0.02% 

Letter 3.25% 4.23% 3.25% 

Liver 39.25% 38.14% 38.58%

Monkey1 0.04% 23.35% 0.04% 

Phoneme 12.61% 11.60% 12.30%

Satimage 10.95% 9.25% 9.25% 

Segmen 3.76% 4.30% 3.82% 

Sonar 19.42% 21.19% 19.94%

Vehicle 30.05% 35.93% 29.95%

Vote 5.70% 8.16% 5.35% 

Vowel 1.33% 1.38% 1.41% 

Waveform21 22.15% 21.00% 18.30%

Waveform40 24.55% 35.56% 30.83%

Wine 19.79% 27.84% 19.46%
 

Table 5. Classification accuracy for 26 datasets and for four kernels of the Support vector 
machine (SVM) (Joachims 1999, Tsochantaridis et al. 2005). The software packages by 
Joachims (2008) were used with default control parameters. 

 

Dataset SVMlin SVMpoly SVM-RBF SVMsigmo 

Australian 35.99% 40.69% 41.33% 41.33% 

Balance 33.17% 47.00% 33.56% 33.56% 

Cancer 16.34% 16.32% 17.08% 17.08% 

Diabetes 29.64% 29.77% 32.74% 32.74% 

DNA NA NA NA NA 

German 27.25% 27.94% 29.64% 29.64% 

Glass 32.63% 33.81% 46.62% 46.62% 

Heart 38.89% 37.22% 37.22% 37.22% 

Ionosphere 22.75% NA 18.52% 18.52% 

Iris 6.55% 8.55% 5.55% 6.55% 

Led17 11.52% 21.23% 16.97% 16.97% 

Letter 2.68% NA 3.98% 2.68% 

Liver 37.68% 37.57% 35.54% 35.54% 

Monkey1 23.54% NA 2.94% 2.94% 
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Phoneme 21.71% 17.63% 14.39% 14.39% 

Satimage 44.85% NA 24.30% 44.85% 

Segmen 34.27% NA 46.48% 46.48% 

Sonar 26.58% 22.72% 19.67% 26.58% 

Vehicle 26.23% NA 28.23% 28.23% 

Vote 22.64% 22.78% 23.54% 23.54% 

Vowel 8.54% NA 13.64% 13.64% 

Waveform21 26.34% NA 26.94% 26.94% 

Waveform40 32.30% NA 32.25% 33.07% 

Wine 41.13% 8.85% 27.77% 41.13% 
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