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Abstract. The paper deals with using so called singularity exponent in a classifier that is 
based on ordered distances of patterns to a given (classified) pattern. The approximation of 
probability distribution mapping function of the distribution of points from the viewpoint of 
distances from a given point in a form of a suitable power (exponent) of a distance is 
presented together with a way how to state it. A classifier utilizing knowledge about explored 
data distribution in a space and a suggested expression of the exponent is presented. 
Experimental results on both synthetic and real-life data show interesting behavior 
(classification accuracy) of the classifier in comparison with other well-known classifiers. 
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I   Introduction 

In this paper we use or slightly redefine if needed some notions from multifractals theory 
for a classification task. One of the most important elements of chaos theory are singularity 
exponents (also called scaling exponents). They are used in multifractal chaotic series 
analysis. We try here to use these exponents for a classification problem. In classification the 
task is to properly recognize to which class a presented multivariate sample belongs. This task 
usually has nothing to do with time series but as shown already by Mandelbrot, 1982, [1] any 
data may posses a fractal or multifractal nature. 

In classification problems, the only known fact is the learning set, i.e. the set of points each 
of known class. The problem is how to estimate the probability to which class a query point x 
of the data space belongs. The different approaches to classification can be divided into 
parametric and nonparametric methods. Parametric methods include neural networks of 
different kinds [2], decision trees or forests and many more. Nonparametric methods are 
mostly based on the Bayesian approach [3] and the k nearest neighbors (k-NN) method [3] - 
[6].  

Here we show the possibility of using a suitable transformation (distortion) of the data 
space so that the distribution of points, which is generally non-uniform, looks uniform-like in 
the transformed space, at least locally, i.e. in the neighborhood of the query point. This is 
important because it is generally accepted that classifiers exhibit very good behavior in cases 
of a uniform distribution of data. 

A core notion in this transformation is a slightly redefined singularity or scaling exponent 
to fit notion of distance between points. The scaling considered here is related to distances 
between pairs of points in a multivariate space. Thus it is closer to the correlation dimension 
by Grassberger and Procaccia [7] than to box-counting or other fractal or multifractal 
dimension definitions [1], [8]. 

We remind three notions introduced or used in [9]-[13]. The probability distribution 
mapping function is a mapping of the probability distribution of points in n-dimensional space 
to the distribution of points in one-dimensional space of the distances. The distribution 
density mapping function (DDMF) is a one-dimensional analogy to the probability density 
function. The power approximation of the probability distribution mapping function in the 
form of (distance)q is introduced, where the exponent q we call the distribution mapping 
exponent (DME).  

These notions are local, i.e. are related to a particular (query) point. We show that the 
distribution mapping exponent q is something like a local value of the correlation dimension 
according to Grassberger and Procaccia, [8]. It can be viewed also as the local dimension of 
the attractor by Froehling [14] or singularity eventually scaling exponent (“exponent”) in the 
sense of Stanley and Melkin, [8].  

II. Probability Density Estimation 

A. Probability Distribution Mapping Function 

To study a probability distribution of points (patterns) in the neighborhood of a query point 
x in n-dimensional Euclidean space En, let us introduce two definitions.  
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Definition. Let the probability distribution mapping function D(x, r) of the query point x in 
En be function �=

),(

)(),(
rxB

dzzprxD , where p(z) is the probability density of the points at z; r is 

the distance from the query point x and B(x, r) is the ball with center x and radius r. 

Definition. Let the distribution density mapping function d(x, r) of the query point x in En 

be function ),(),( rxD
r

rxd
∂
∂= , where D(x, r) is a probability distribution mapping function of 

the query point x with radius r. 

B. Power Approximation of the Probability Distribution Mapping Function 
Now we propose a transformation with the aim to somehow distort the distribution of the 

points to look uniform-like because it is generally accepted that all classifiers exhibit very 
good behavior in cases of a uniform distribution of data. 

Let us try to transform the true distribution of points so that the distribution density 
mapping function is constant, at least in the neighborhood of the query point.  

Definition. The power approximation of the probability distribution mapping function 

D(x, r) is the function rq such that const
r

rxD
q

→),(  for r � 0+ . The exponent q is the 

distribution mapping exponent.  

The distribution mapping exponent (DME) reminds one of the so-called correlation 
dimension by Grassberger and Procaccia [7], and corresponds to generally used definitions of 
power scaling laws especially to singularity exponent. It can be seen that the correlation 
integral is a distribution function of distances between all pairs of points of the data points 
given. The probability distribution mapping function is a distribution function of the distances 
from one fixed point x. In the case of finite number of points N, there are N(N - 1)/2 distances 
between pairs of points and from them one can construct an empirical correlation integral. 
Similarly, for each point there are N - 1 distances and from these N - 1 distances one can 
construct an empirical probability distribution mapping function. There are exactly N such 
functions and the mean of these functions gives the correlation integral. This is also valid for 
N going to infinity.  

C. Distribution Mapping Exponent Estimation 

In this section, we suggest a procedure how to determine the distribution mapping exponent 
for a classifier, which classifies into two classes. The extension to many classes will be 
straightforward.  

Let U be a learning set composed of points (patterns, samples) xcs, where c = {0, 1} is the 
class mark and s = 1, 2, …, Nc is the index of the point within class c; Nc is the number of 
points in class c and let N = N0 + N1 be the learning set size. Points xcs of one class are ordered 
so that index s = 1 corresponds to the nearest neighbor, index s = 2 to the second nearest 
neighbor, etc. In Euclidean metrics, rs = ||x - xcs || is the distance of the s-th nearest neighbor of 
class c from point x. xi is the i-th nearest neighbor of point x. Symbol i(c) denotes such an 
index i that point xi(c) belongs to class c. 

To estimate the distribution mapping exponent q we use a similar approach to the approach 
of Grassberger and Procaccia, [8], for the correlation dimension estimation.  
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We look for exponent q so, that q
sr is proportional to index s, i.e. 

�
ksr q

s = , s = 1, 2, ..., Nc,  
c = 0 or 1,�

�1�

where k is a proportionality constant, which will be eliminated later, so we need not bother 
with it. Using a logarithm we get 

� )ln()ln()ln( skrq s += , s = 1, 2, ..., Nc� �2�
This is a task of estimating the slope of a straight line linearly approximating the graph of 

the dependence of the neighbor’s index s as a function of distance in log-log scale. This is the 
same problem as in the correlation dimension estimation where equations of the same form as 
(1) and (2) arise. Grassberger and Procaccia [7], proposed a solution by linear regression. 
Other authors proposed different modifications and heuristics later. Many of these approaches 
can be used for the distribution mapping exponent estimation, e.g. the use of Nv < Nc nearest 
neighbors instead of Nc eliminates the influence of a limited number of the points of the 
learning set. Nv may be equal e.g. to one half or the square root of Nc. The accuracy of the 
distribution mapping exponent estimation is the same problem as the accuracy of the 
correlation dimension estimation. On the other hand, one can find that a small change of q 
does not essentially influence the classification results. 

We solve the system of Nv equations (2) with respect to an unknown q by the use of 
standard linear regression for both classes. Thus, for two classes we get two values of q, q0 
and q1. To get a single value of q we use the arithmetic mean, q = (q0 + q1)/2. For more 
classes, the arithmetic mean of the q’s for the individual classes is used. 

III. The Method 
Informally, let us consider the partial influences of the individual points to the probability 

that point x is of class c. Each point of class c in the neighborhood of point x adds a little to 
the probability that point x is of class c, where c ∈ {0, 1} is the class mark. Suppose that this 
contribution is larger the closer the point considered is to point x and vice versa. Let p(c|x, i) 
be a partial contribution of the i-th nearest point to the probability that point x is of class c. 
Then: 

For the first (nearest) point i = 1       
q

nrS
xcp

1

1
)1,|( ≅ , 

where we use the distribution mapping exponent q instead of the data space dimensionality n. 
Sn is proportionality constant dependent on the dimensionality and metrics used. 

For the second point i = 2                 
q

nrS
xcp

2

1
)2,|( ≅ . 

And so on; generally for point No. i  
q

inrS
ixcp

1
),|( ≅ . 

We add the partial contributions of individual points together by summing up into estimate 
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(The sum goes over the indexes i for which the corresponding samples of the learning set are 

of class c). For both classes there is 1)|1(ˆ)|0(ˆ =+ xpxp  and from it �
=

≅
k

i

q
in rS

1

/1 . Thus we get 

the form suitable for practical computation 
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(The upper sum goes over the indexes i for which the 

corresponding samples of the learning set are of class c).  

At the same time all N points of the learning set are used instead of some finite number as 
in the k-NN method. Moreover, we do not use the nearest point (i = 1). It can be found that its 
influence is more negative than positive on the probability estimate here. 

A more exact elicitation for the two class classification and the same number of samples for 
both classes of the learning set is given in the next section. We show that the generalization is 
straightforward later. 

IV. Classifier Construction 
In this section, we show how to construct a classifier that incorporates the idea of the 

distribution mapping exponent. First, compute the distribution mapping exponent q using (2) 
by linear regression for the query point x. Then, we simply sum up all the components q

ir1  
excluding the nearest point. This is made for classes, simultaneously getting numbers S0 and 
S1 for both classes. Then we can get the Bayes ratio or a probability estimate that point x ∈ En 

belongs to class 1 from the Equations 

0
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S
S
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1
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Then for a threshold (cut) θ chosen, if θ>)(xR  or θ>)(1 xp  then x belongs to class 1 or else to 
class 0.  

Note that for the different number N0 and N1 of the samples of one and the other class 
formula (1) has the form 
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It is only a recalculation of the relative representation of the different number of samples of 
one and the other class. 

For M classes, M � 2 the formula above has form 
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V. Experiments 
The presented classification method based on DME with respect to other well-known 
classification algorithms is compared on both synthetic and real-life data. 

A. Synthetic Data 
Synthetic data according to Paredes and Vidal [5] is two-dimensional and consists of three 

two-dimensional normal distributions with identical a-priori probabilities. � denotes the 
vector of means and Cm is the covariance matrix 

Class A: � = (2, 0.5)t,   Cm = (1, 0; 0, 1) (identity matrix) 

Class B: � = (0, 2)t,     Cm = (1, 0.5; 0.5, 1) 

Class C: � = (0, -1)t,   Cm = (1, -0.5; -0.5, 1). 

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

8 16 32 64 128 256

1-NN (L2)
CW
PW
CPW
Bayes limit
DME

 

Figure 1.  Comparison of classification errors of the synthetic data for the different approaches. In the legend, 1-NN (L2) 
means the 1-NN method with Euclidean metrics, CW, PW, and CPW are three variants of the method by Paredes and Vidal, 
2006, [5]. 

Fig. 1 shows the results obtained by the different classification methods for different 
learning sets sizes from 8 to 256 samples and a testing set of 5000 samples all from the same 
distributions and independent. Each point in the figure was obtained by averaging over 100 
different runs. For other methods, i.e. the 1-NN method with L2 metrics and variants of the 
LWM method, the values were estimated from literature cited. It is seen that in this synthetic 
experiment, the DME based method presented here reliably outperforms all other methods 
shown and for a large number of samples fast approaches the Bayes limit. For the distribution 
mapping estimation the linear regression over the whole learning set was used. 

B. Data from Machine Learning Repository 

Tasks from UCI Machine Learning Repository – Comprehensive Tests.  
The testing should show the classification ability of the DME method for some tasks and 

also shows the classification ability relative to the other published methods and the results for 
the same data sets.  

We used real-life tasks mainly from the UCI Machine Learning Repository, see Asuncion 
and Newman, 2007, [15]. DNA data can be found in Paredes, 2009, [6]. 24 databases have 
been used for the classification task into two to 26 classes. The number of attributes not 
including the class mark differs from 4 to 180.  
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Classification methods compared 
The best results obtained with five different classification methods are shown in Table 1. 

We used five classification methods as follows. Notation corresponds to columns in Table 1. 

• Bayes – the naïve Bayes method that uses 10 bins histograms (e.g. [3]). 
• 1-NN – standard nearest neighbor method (Cover and Hart, 1967, [4]). 
• ParedBest – the best results obtained by three variants of method by Paredes and Vidal 

[5], [6].  
• SVMbest – the best results obtained with support vector machine (Joachims [16]) using 

four types of kernels. 
• DMEbest – the best results obtained with the method presented here with different DME 

estimations. 
 

VI. Discussion 
Our model of the polynomial expansion of the data space comes from the demand to have a 

uniform distribution of points, at least locally. We introduced the distribution mapping 
exponent as redefinition of the singularity or scaling exponent from the point of view of 
distances of near points. There is an interesting relationship between the correlation 
dimension and the distribution mapping exponent. The former is a global feature of the fractal 
or data generating process; the latter is a local feature of the data set and is closely related to a 
particular query point. On the other hand, if linear regression were used, the computational 
procedure is almost the same in both cases. Not surprisingly, the mean value of the 
distribution mapping exponent over all samples is not far from the correlation dimension. Our 
experiments demonstrate that the simplest classifier based on the ideas introduced here can 
outperform other methods for some data sets. On the other hand, the target of this paper was 
to present basically new approach to probability density estimation and classification. 

TABLE I.  CONDENSED COMPARISON OF FIVE TYPES OF METHODS INCLUDING DME METHOD PRESENTED HERE. IN 
BOLD THE BEST RESULT (CLASSIFICATION ERROR) FOR EACH PARTICULAR DATA SET IS SHOWN.  

Dataset Bayes 1-NN ParedBestSVMbest DMEbest 
Australian 14.88% 34.29% 31.91% 35.99% 14.20% 
Balance 15.17% 22.05% 13.68% 33.17% 24.85% 

Cancer 2.68% 4.83% 3.41% 16.32% 3.69% 

Diabetes 25.19% 32.76% 29.60% 29.64% 24.75% 
DNA 6.66% 23.44% 3.71% 0.00% 28.33% 

German 24.97% 33.74% 29.79% 27.25% 27.64% 

Glass 47.37% 30.81% 30.75% 32.63% 34.47% 

Heart 18.44% 41.48% 38.15% 37.22% 17.96% 
Ionosphere 9.26% 14.07% 5.87% 18.52% 15.58% 

Iris 9.82% 5.91% 4.91% 5.55% 5.91% 

Led17 0.00% 24.92% 0.02% 11.52% 0.32% 

Letter 28.98% 4.35% 3.25% 2.68% 5.73% 

Liver 39.42% 39.25% 38.14% 35.54% 40.09% 

Monkey1 28.01% 29.47% 0.04% 2.94% 8.22% 

Phoneme 21.47% 11.50% 11.60% 14.39% 16.49% 

Satimage 19.15% 10.55% 9.25% 24.30% 11.95% 

Segmen 9.85% 4.30% 3.76% 34.27% 6.48% 

Sonar 31.46% 22.62% 19.42% 19.67% 24.25% 
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Vehicle 38.40% 35.08% 29.95% 26.23% 29.37% 

Vote 9.70% 8.13% 5.35% 22.64% 9.28% 
Vowel 26.64% 1.37% 1.33% 8.54% 6.66% 

Waveform21 19.26% 21.91% 18.30% 26.34% 15.05% 
Waveform40 20.31% 23.34% 24.55% 32.25% 16.49% 
Wine 5.50% 27.05% 19.46% 8.85% 5.04% 
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