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Abstract 
We propose to use the Zipfian distribution as a kernel for design of a nonparametric classifier in contrast to the 
Gaussian distribution used in most of kernel methods. We show that the Zipfian distribution takes into account 
multifractal nature of data and gives a true picture of scaling properties inherent in data. We also show that this 
new look at data structure can lead to a simple classifier that can, for some tasks, outperform more complex 
systems. 
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I. INTRODUCTION 

The proper selection of the kernel and window width are essential for good classification in classification tasks 
[19], [20]. This problem is solved solely from statistical point of view. However, the role of spatial correlations 
and the effective data dimensionality are not considered in kernel methods.  
Here we show that a suitable alternative to the standard kernel functions can be the Zipfian distribution [15], [21] 
which can take into the account a fractal nature of data. 
Furthermore, this classification method is truly nonparametric as there is no need to set up the window width 
common in most kernel methods. A new kind of nonparametric classifier of multivariate data is proposed.  

In our method we center Zipfian kernel to each point xi of learning data set. At point x the kernel gives value 
(probability density, in fact probability mass as Zipfian distribution is discrete) 1/i; xi is i-th nearest neighbor of 
x. In the two class classification problem summing up these values for all points xi of class 1 gives S1, for points 
of class 2 gives S2. Estimate of probability that point x is of class 1 is  
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Then if there is given threshold θ and if the estimate above is greater than θ then we say that point x is of class 1 
else it is of class 2. 
We prove here that the kernel method with the Zipfian kernel gives an unbiased approximation of the probability 
of class of the given point. For proof we use here or necessarily redefine some notions from the multifractals 
theory. Singularity exponents, also scaling exponents are widely used in multifractal chaotic series analysis and 
can be related to data that do not form a series. It was shown already by Mandelbrot [14] that any data may 
possess a fractal or multifractal nature. We use these exponents for proof of our method of classification. As 
there is no time scale, even no ordering of samples, one cannot use such a tool as wavelet functions. 

Our results demonstrate that the kernel method can be related to the fractal nature of data and to the harmonic 
series [15], [18] via the Zipfian distribution [21]. 
This work can be a starting point for more detailed description of local behavior of multivariate and not exactly 
self-similar fractal data, and for the development of new approaches to data analysis including classification 
problems. 
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II. KERNEL ESTIMATOR 

A. Data and the learning set                

Let the learning set U of total N samples be given. Each sample xt={xt1, xt2,… xtn}; t = 1, 2, ... N , xtk ∈ R ; k = 1, 
2, ..., n corresponds to a point in n-dimensional metric space Mn, where n is the sample space dimension. For 
each xt ∈ U a class function T: Rn → {1, 2, ... C}: T(xt) = c is introduced. With the class function the learning set 

U is decomposed into disjoint classes Uc = {xt ∈ U | T(xt) = c};  c ∈ {1, 2, ..., C},  c
C
c U1=� , Uc � Ud = Ø;  c, d 

∈ {1, 2, ..., C}; c ≠ d. Cardinality of set  Uc let be Nc ; � =
=C

c c NN
1

. 

As we need to express which sample is closer or further from some given point x, we can rank points of the 
learning set according to distance ri of point xi from point x. Therefore, let points of U be indexed (ranked) so 
that for any two points xi, xj  ∈ U there is i < j if ri < rj; i, j = 1, 2, ... N, and class Uc = {xi ∈ U | T(xi) = c}. Of 
course, the ranking depends on point x and eventually metrics of Mn. We use Euclidean (L2) and absolute 
(Manhattan, L1) metrics here. In the following indexing by i means ranking just introduced. 
 

B. Zipfian kernel 
The Zipfian distribution (Zipf's law) [15][21] predicts that out of a population of N elements, the frequency of 

elements of rank i, f(i;s,N), is given by probability mass function 
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where N is the number of elements, i is their rank, s is the value of the exponent characterizing the distribution. 
The law may also be written as: 
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where HN,s is the Nth generalized harmonic number. 
The simplest case of Zipf's law is a "1/f function" arising when s = 1. Given a set of Zipfian distributed 
frequencies of occurrence of some objects, sorted from the most common to the least common, the second most 
common frequency will occur ½ as often as the first. The third most common frequency will occur 1/3 as often 
as the first, and so on. Over fairly wide ranges, and to a fairly good approximation, many natural phenomena 
obey Zipf's law. Note that in the case of a "1/f function", i.e. s = 1, N must be finite and its denominator is equal 
to HN, the so-called harmonic number, i.e. the sum of truncated harmonic series [18]; otherwise the denominator 
is a sum of harmonic series, which is divergent. This is not true if exponent s exceeds 1,  s > 1, then the series is 
convergent, 
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where ζ is Riemann's zeta function. 

III. THE METHOD 

A. Intuitive basis 
The method of probability estimation proposed is based on the following illustrative example. Let us consider 

partial influences of individual points to the probability that point x is of class c; we consider two classes only 
here. Both classes have the same cardinality. Each point of class c in the neighborhood of point x adds a little to 
the probability that point x is of class c, where c = {1, 2} is the class mark. This influence is the larger the closer 
the point considered is to point x and vice versa. This observation is based on the finding of [5] that the first 
nearest neighbor has the largest influence on proper estimation to what class point x belongs. Suppose that the 
influence on the probability that point x is of class c of the nearest neighbor of class c is 1, the influence of the 
second nearest neighbor is ½, the influence of the third nearest neighbor is 1/3 etc. Just these values are related to 
Zipfian distribution.  

From kernel methods point of view, we center Zipfian kernel to each point xi of data set. At point x the kernel 
gives probability mass proportional to 1/i (we use exponent s = 1); xi is i-th nearest neighbor of x. Summing up 
these values for points xi of class 1 gives number S1, for points of class 2 number S2. Estimate of probability that 
point x is of class 1 is  
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Figure 1. Illustration of classification procedure for the simplest case of two classes and of the same number of 
samples of both classes. 
 

The classification procedure is depicted in Fig. 1. The problem is: What is color of given point x depicted in 
black at the left upper part of picture? First we rank points of the learning set according to their distances from 
point x as shown at the right upper part of picture. There are 14 points here, 7 red, 7 green as shown in the upper 
lines in the table below pictures. Reciprocals of rank numbers are in the third line. In the fourth and fifth line 
there are reciprocals of ranks of points xi from sets Uc=red and Uc=green. In the rightmost two columns of table are 
corresponding sums and estimated probabilities that point x is red (0.526967) or green (0.473033). Setting 
threshold � = 0.5 we can state that point x is red. 
 

From another point of view, let ( )cxTcxT i == )(|)(Pr  be the probability that the given point x is of class 
c if neighbor point number i is of the same class as point x. Note that points of the learning set U are indexed so 
that for any two points xi, xj  ∈ U  there is i < j if ri < rj; i, j = 1, 2, ... N. In the following K is a constant that is 
used to normalize the probability that point x belongs to a class to 1: 

For the first (nearest) point i = 1           ( )
1
1

)(|)(Pr 1 KcxTcxT === , 

for the second point i = 2                      ( )
2
1

)(|)(Pr 2 KcxTcxT ===  , 

and so on, generally for point No. i       ( )
i

KcxTcxT i

1
)(|)(Pr === . 

Individual points are independent and then we can sum up these probabilities. Thus, we add the partial influences 
of k individual points together by summing up 
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Note that the sum goes over indexes i for which the corresponding samples of the learning set are of class c, 
c = 1, 2, … C, where C is the number of classes.  

 
Let  
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where HN is the N-th harmonic number. The estimation of the probability that the given point x belongs to class c 
is 

N

c

H
S

cxp =)|(ˆ . 

This approach is based on hypotheses that the weight of a neighbor is proportional just to reciprocal of its 
order number as to its distance from the given point, see Theorem 1.  

It can be seen that 
i

K
1

is also the value (at point x) of kernel function with its center at point xi and having 

form of Zipfian probability mass function (1) for s = 1. Summing up these values over all centers that belong to 
class Uc gives (2).       

                   

B. The Classification Procedure 
The probability estimation above can be used for classification. Let the samples of the learning set (i.e. all 
samples irrespective of the class) be sorted according to their distances from the given point x. Let indexes be 
assigned to these points so that 1 is assigned to the nearest neighbor, 2 to the second nearest neighbor of the 
given point x etc. 

Let us compute sums �
∈

=
1

1
1

)(
Uxc

c
i

i
N

xS , i.e. the sums of reciprocals of the indexes of samples from each 

class c separately; Nc is the number of samples of class c (cardinality of Uc) and  N1 = N2 = ... = NC .  
The estimate of the probability that point x belongs to class c is  
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In the end, the formula above is nothing else than Bayes formula.  
Usually we say that point x is of class k if )|(ˆ xkp is the largest of all )|(ˆ xcp ;  
In the case of two classes, when some discriminant threshold � is chosen then if p(c = 1| x) � � point x is of class 
1, else it is of class 2. This is the same procedure as in other classification approaches where the output is 
estimation of probability (naïve Bayes) or any real valued variable (neural networks). The value of the threshold 
can be optimized with respect to loss function.  
For classification into more than two classes we use this formula for all classes and we assign to the given point 
x a class c for which p(c | x) is the largest.  
 

Formally we can rewrite (3) into more comprehensive form. For two class problem with different number of 
samples of one and the other class formula we have 
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It is seen here the introduction of the relative representation of different numbers of samples of one and the 
other class, i.e. introducing a priori probabilities. 

For C classes there is  
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IV. APPROXIMATION OF PROBABILITY OF CLASS 

A. Zipfian kernel approach 
Let indexes i be assigned to points (samples) of the learning set without respect to a class so that i = 1 is assigned 
to the nearest neighbor of point x, i = 2 to the second nearest neighbor etc. We have a finite learning set of size N 
samples and Nc samples of individual class.  
Using Zipfian probability mass function (1) as a kernel function, we have the kernel function in the form K(||x-
xi||/h)=1/(isHN,s). At the same time, product Nh, i.e. the number of samples times the smoothing factor has no 
significance here and we set Nh = 1. Then we get approximation of probability that the given point x belongs to 
class c in the form 
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where the sum goes over indexes i for which the corresponding samples of the learning set are of class c. 

Summing up approximations of probability densities at point x for all classes, we get apparently �
=

N

i
s

sN iH 1,
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that is equal to 1 and thus fulfills assumption that the given point belongs to some class. 
Two classes only and the same number of samples of both classes are assumed without loss of generality in the 
theorem and the proof as follows. 
 
Theorem 1. Let the task of classification into two classes be given and let the size of the learning set be N and 
let both classes have the same number of samples, i.e. there is the same a priori probability. Let i be the index 
(rank) of the i-th nearest neighbor xi of point x (without considering the neighbor’s class) and ri be its distance 
from the point x. Then 

)|(
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lim xcp
H

i

N

Ux

N

ci =
�
∈

∞→
  .                                                                (5) 

where p(c|x) is the probability that point x belongs to class c.  
 
In the following proof we use some notions known from [10], [11], [12] and shortly summarized as follows. 
 

1) Mapping the distribution 
Let us have an example of a ball in an n-dimensional space containing uniformly distributed points over its 

volume. Let us divide the ball on concentric “peels” of the same volume. Using the formula n
ii nSVr )(/= , 

which is, in fact, inverted formula for volume Vi of n-dimensional ball of radius ri, we obtain a quite interesting 
succession of radii corresponding to the individual volumes - peels. The symbol S(n) denotes the volume of a 
ball with unit radius in En; note S(5) = 4/3π . A mapping between the mean density �i  in an i-th peel and its 
radius ri is �i = p(ri); p(ri) is the mean probability density in the i-th ball peel with radius ri. The probability 
distribution of points in the neighborhood of a given point x is thus simplified to a function p(ri) of a scalar 
variable ri. We call this function a probability distribution mapping function D(x, r) and its partial differentiation 
with respect to r the distribution density mapping function d(x, r). Functions D(x, r) and d(x, r) for x fixed are, in 
fact, the probability distribution function and the probability density function of variable r, i.e. of distances of all 
points from the given point x. More exact definitions follow [11]. 
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Definition 1. Probability distribution mapping function D(x, r) of the given point x is function 

�=
),(

)(),(
rxB

dzzprxD , where r is distance from the given point and B(x, r) is ball with center x and radius r. 

Definition 2. Distribution density mapping function d(x, r) of the given point x is function ),(),( rxD
r

rxd
∂
∂= , 

where D(x, r) is a probability distribution mapping function of the given point x and radius r. 
Note. When it is necessary to differentiate class of point in distance r from point x, we write D(x, r, c) or 
d(x, r, c). 
 

2) Correlation dimension 
It is seen that for fixed x the function D(x, r), r > 0 is monotonously non-decreasing from zero to one. Functions 
D(x, r) and d(x, r) for x fixed are one-dimensional analogs to the probability distribution function and the 
probability density function, respectively. In fact, D(x, r) is the distribution function of distances of points from 
the given point x and d(x, r) is corresponding probability density function. So we can write p(c|x, r) = d(x, r, c). 
Moreover, D(x, r) reminds the correlation integral [6].  The correlation integral 
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where x.i and x.j are points of the learning set without respect to class and h(.) is a Heaviside’s step function, can 
be written in the form [3], [4] 
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It can be seen [3], [4] that correlation integral is a distribution function of distances between pairs of data points 
given. The probability distribution mapping function is a distribution function of distances from one fixed point. 
In the case of finite number of points N, there are N(N - 1)/2 pairs of points and then distances between them, 
and from them one can construct empirical correlation integral. Similarly, for each point there are N - 1 distances 
and from these N - 1 distances one can construct empirical probability distribution mapping function. There are 
exactly N such functions and mean of these functions gives empirical correlation integral. This is valid also in 
limit for number N of points going to infinity.  
On the other hand there are essential differences. The probability distribution mapping function is a local feature 
dependent on the position of point x. Empirical distribution mapping function also includes boundary effects [2] 
of true data set. The correlation integral is a feature of the fractal or data generating process and should not 
depend on the position of the particular point considered or on the size of the data set at hand.  
In a log-log graph of the correlation integral, i.e. the graph of the dependence of C on r, the slope gives the 
correlation dimension ν. In the log-log graph of the probability distribution mapping function D(x, r) the curve is 
also close to a monotonously and nearly linearly growing function. The slope (derivative) is given by a constant 
parameter. Let us denote this parameter q and call it the distribution mapping exponent. This parameter is rather 
close but generally different from ν. 
The linear part of the log-log graph means  

νlog)(log += arC , 

where a is a constant, and then νarrC =)( . Thus, C(r) grows linearly with variable νrz = .  
Similarly the probability distribution mapping function grows linearly with rq at least in the neighborhood of 
point x. Its derivative, the distribution density mapping function, is constant there. 
 

3) Proof of Theorem 1 
There are c spatial distributions pc(x) of probability that any point x (on the support considered) is of class c. 

Then for each point x and C classes there is 1)(
1

=�
=

C

c
c xp . For each given point x one can state the probability 

distribution mapping function D(x, ri, c). We approximate this function so that it holds (K is a constant) 
q

i
q

i KrcrxD =),,(  

in the neighborhood of point x. Using derivation, according to variable z = q
ir , we get 

Kcrxd q
i =),,( . It means that by the use of z = q

ir , the space is mapped (“distorted”) so that 
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the distribution density mapping function is constant in the neighborhood of point x for a 

particular distribution. Let us consider sum�
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because d(x, q
ir , c) = d(x, z, c) = p(c|x) for all i (the uniform distribution has a constant density).  

By the use of zi  = q
ir , the space is nonlinearly rescaled so that the distribution density mapping function 

),,( czxd i  is constant in the neighborhood of point x. Then q
ir is proportional to i, ikr q

i 1= ; k1 is a constant. 
Exponent q need not be a constant but can be a function q = q(x, c); we write it for point xi in form q = q(i, c). 

Let  ikr ciq
i 1

),( =  for all i of class c. (From the last formula one could derive the q(i, c), but we need not do it.) 

We rewrite the equation (6) in the form  
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Given the learning set, we have the space around point x “sampled” by individual points of 
the learning set. Let pc(ri) be an a-posteriori probability that point i in distance ri from the 
given point x is of the class c. Then pc(ri) is equal to 1 if point i is of class c and pc(ri) is equal 
to zero, if the point is of the other class. Then the particular realization of NHxcp )|(  is 

sum �
∈ ci Ux

i/1 .  Using this sum, we can write 
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Dividing this equation by the limit of sum on the left hand side, we get  
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and due to the same limit transition in the numerator and in the denominator we can rewrite it 
in the form (5). 

 
B.  Bayes Risk 

 We have shown that estimate (4) converges to true probability p(c|x). Considering 
two-class classification with simple loss matrix L(1, 1) = L(2, 2) = 0, L(1, 2) = L(2,1) = 1 
there is conditional Bayes risk of estimating a class of point x 

))|(1(2)|()|()( xcpxcnotRxcRxR −=+= . 

It is apparent that its estimate ))|(ˆ1(2)(ˆ xcpxR −=  converges to R(x) as )|(ˆ xcp converges 

to )|( xcp . The )(ˆ xR can be computed easily having classification error that is equal to 
)|(ˆ1 xcp−  and can be found e.g. in Table 1, see Chap. 5. 
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C. Computational complexity 
For total N samples and single given point x the procedure consists of three steps: 

• Computation of distances; the computational complexity for one distance is proportional to 
dimensionality n, of all N distances nN. 

• Sorting distances is proportional to Nlog N. 
• Summing up of reciprocals of indexes is proportional to N. 

Then the total complexity is anN +bNlog N + dN = N(an +blog N + d ), where a, b, d are implementation 
dependent constants. For larger learning data sets the complexity is governed by sorting. It is also seen that the 
computational complexity directly depends on the learning set size N and in small extend on dimensionality n. 

V. EXPERIMENTS 

A. Tasks from UCI Machine Learning Repository – Comprehensive Tests 
Data sets ready for a run with a classifier were prepared by Paredes and Vidal and are available on the net 

[13]. For small data sets in this corpus each task consists of 50 pairs of training and testing sets corresponding to 
50-fold cross validation. For large data sets, i.e. DNA data [16], Letter data (Letter recognition [1]), and 
Satimage (Statlog Landsat Satellite [1]) the single partition into training and testing sets according to 
specification in [1] was used. We also added the popular Iris data set [1] with ten-fold cross validation. 

In Table 1 the results obtained by different methods are summarized. The methods are as follows: 
 

L2 The nearest neighbor method by [17] 

1-NN L2 The nearest neighbor method computed by authors 

sqrt-NN 
 L2 

The k-NN method with k equal to square root of the number of samples of the 
learning set computed by authors 

Bayes 10 

The Bayes naive method with ten bins histograms, computed by authors 

CDM 

The learning weighted metrics method with class dependent Mahalanobis by [17] 

CW 

The learning weighted metrics method with class dependent weighting by [17] 

PW 

The learning weighted metrics method with prototype dependent weighting by [17] 

CPW 

The learning weighted metrics method with class and prototype - dependent 
weighting by [17] 

IINC L1 The method presented here with Manhattan L1 metrics 

IINC L2 The method presented here with Euclidean L2 metrics 
 
In Table 1 in each row the best result is denoted by bold numerals. Furthermore, in the last column, the values 
for IINC better with L2 metrics than with L1 metrics are shown in italics. There are five such cases out of a total 
of 24. 
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Table 1. Classification error rates for different datasets and different approaches. Empty cells denote not available data. For legend see text above. 
        \Method 
Dataset \ 

L2 1-NN L2 sqrt-NN 
L2 

Bayes 10 SVM CDM CW PW CPW IINC L1 IINC L2 
Australian 34.37 20.73 15.50 13.88 35.99 18.19 17.37 16.95 16.83 13.31 14.75 
Balance 25.26 23.61 32.06 15.17 45.48 35.15 17.98 13.44 17.6 32.58 30.80 
Cancer 4.75 5.07 3.25 2.68 16..34 8.76 3.69 3.32 3.53 3.28 3.48 
Diabetes 32.25 29.48 26.46 24.19 29.64 32.47 30.23 27.39 27.33 26.21 25.52 
DNA 23.4 25.72 34.06 6.66  15 4.72 6.49 4.21 27.82 31.03 
German 33.85 32.76 30.90 24.97 27.25 32.15 27.99 28.32 27.29 30.91 31.13 
Glass 27.23 32.72 42.10 47.37  32.9 28.52 26.28 27.48 33.01 35.18 
Heart 42.18 25.11 16.89 17.44 38.89 22.55 22.34 18.94 19.82 17.96 17.93 
Ionosphere 19.03 14.05 14.70 9.26          10.82 14.81 
Iris 6.91 5.91 7.91 9.82 6.55         7.91 4.91 
Led17 20.5 11.50 0.12 0.00          0.46 0.45 
Letter 4.35 4.80 18.70 28.98 40.53 6.3 3.15 4.6 4.2 4.85 4.98 
Liver 37.7 39.59 41.48 39.42 37.68 39.32 40.22 36.22 36.95 38.29 39.13 
Monkey1 2.01 2.01 9.27 28.01 23.54         4.79 4.79 
Phoneme 18.01 11.83 20.71 21.47 21.71         17.55 18.06 
Satimage 10.6 10.65 15.20 19.15 44.85 14.7 11.7 8.8 9.05 11.00 11.55 
Segmen 11.81 3.81 11.41 9.85          4.12 5.05 
Sonar 31.4 18.37 32.51 31.46          19.89 22.85 
Vehicle 35.52 30.51 31.51 38.40  32.11 29.38 29.31 28.09 29.40 29.34 
Vote 8.79 8.74 9.60 9.70  6.97 6.61 5.51 5.26 8.52 8.89 
Vowel 1.52 1.19 46.68 26.64  1.67 1.36 1.68 1.24 2.73 2.74 
W aveform 21 24.1 23.73 14.71 19.26          16.15 16.38 
W aveform 40 31.66 28.22 16.24 20.31          17.59 18.08 
Wine 24.14 5.42   6.15 4.50  2.6 1.44 1.35 1.24 4.24 5.66 
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B. Standalone Real-life Comprehensive Classification Task  
This data set was available for tests described in [7] as one of many simulation studies for data processing relating ATLAS 
experiment at CERN, Geneva, Switzerland. For the description of the particle physics problem we cite [7] verbatim in Table 
2 as follows: 
 
Table 2. Problem formulation from the point of view of physics. 
 

 
... 

 
(Note that references relate to [7].) 

 
The data set consists of 7 dimensional vectors of real numbers and class mark, which differentiates between signal samples 
(events) and background samples. The data set is split into learning and testing set, each of 3279 samples. 
 

Data w3p0-200 - Tau decay for Higgs boson search

Bold blue - SUM 1/i L1 method
Thin red, magenta, orange, yellow - Statistical(?) NN, different networks
Lone diamond - cuts method used in physics
Black - GMDH
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Figure 2. ROC curves for different separation/classification tools including the “cut” method. 
 
In Fig. 2 well-known ROC curves are shown for different separation/classification tools including the “cut” method popular 
in physics studies.  
The result obtained with “cuts” method is depicted by the black diamond. 
The result obtained by GMDH-MIA algorithm is depicted by the lower bold black line  
The results obtained by STATISTICA Neural Networks are depicted by two sets of red, magenta, orange and yellow lines. 
Each set corresponds to four best results out of ten networks generated. The set going more to the left at level 0.4 or 0.6 of 
sensitivity (signal acceptance) corresponds to its being set as a classifier; the other set (closer to the black line of GMDH-
MIA) corresponds to its being set as an approximator.  
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The upper bold blue line was obtained by the IINC method described in this paper with L1 metrics.  

VI. DISCUSSION 

We have proved that the probability density approximation can be based on the Zipfian kernel. In the proof we have shown a 
close relation of the Zipfian distribution (and of the selected harmonic series as well) to the local fractal nature of data. 
Especially the use of 1/i has a close connection to the scaling exponent, eventually to correlation integral, and thus to the 
dynamics of the processes that generate data we wish to separate.  We have shown, in fact, that the influence to the 
probability that point x is of class c is 1/i if the i-th nearest neighbor is of class c. We sum up these influences so that the sum 
goes over the indexes i for which the corresponding samples of the learning set are of class c. In the case of two classes we 
get two numbers S1 and S2 which together give the sum of N first terms of harmonic series HN = 1 + ½ + �+ ¼ + … + 1/N. (N 
is the size of the learning set.)  

An interesting finding is that the method proposed here and the proof of the theorem uses the notion of distance but no 
explicit metrics need to be specified.  

The method designed has no parameters to be tuned. There is also no problem with the convergence and the curse of 
dimensionality. The computational complexity grows at most linearly with the dimensionality and quadratically or less with 
the learning set size depending on the sorting algorithm used.  

The main merit of the new method presented here is a new view on the data space. This view is based on a strange 
geometry with polynomially expanded distances in dependence on the local dimensionality of data denoted as the distribution 
mapping exponent. This leads to the use of reciprocals of the neighbor indexes and finally to the probability density 
estimation. The reciprocals of the neighbor indexes can be understood as “weights” of the learning set samples. It means, in 
fact, that the probability that the i-th neighbor and the given point are of the same class is given by the Zipfian distribution. In 
this context the Zipfian distribution gets a much broader role than its use in linguistics and psychology.  

The other question is how the method presented here can be further improved. We suspect e.g. that data of one and the 
other class can be similarly distributed in the space even if data have different intrinsic dimensionality. Data often lie in 
clusters, which is a fact not tackled here. For given points outside these clusters or on boundaries of clusters the sum of 
reciprocals of the neighbor indexes of the opposite class may prevail, thus causing misclassification. This is a theme for 
further research in this field. 
 

Acknowledgments 
This work was supported by Technology Agency CR under project of series ALFA No. TA01010490 and by the Czech 
Technical University in Prague: RVO: 68407700.  We also thank the Institute of Computer Science of the Czech Academy of 
Sciences for its support in submitting application of patent [9] for the classifier described. 

 

References 
[1] A. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository [online],  

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and 
Computer Science, 2011. 

[2] Arya, S., Mount, D.M., Narayan, O.: Accounting for boundary effects in nearest neighbor searching, Discrete and 
Computational Geometry, Vol. 16 (1996) 155-176. 

[3] Camastra, F.: Data dimensionality estimation methods: a survey. Pattern recognition Vol. 36 (2003), pp. 2945-2954. 
[4] Camastra, P., Vinciarelli, A.: Intristic Dimension Estimation of Data: An Approach based on Grassberger-Procaccia’s 

Algorithm. Neural Processing Letters Vol. 14 (2001), No. 1, pp. 27-34. 
[5] Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Transactions in Information Theory, Vol. IT-13, 

No. 1, January 1967, pp. 23-27. 
[6] Grassberger, P., Procaccia, I.: Measuring the Strangeness of Strange Attractors. Physica Vol. 9D (1983), pp. 189-208. 
[7] Hakl, F., Jirina, M., Richter-Was, E.. Hadronic tau’s identification using artificial neural network. ATLAS Physics 

Communication, ATL-COM-PHYS-2005-044, CERN, Geneve http://documents.cern.ch/cgibin/ 
setlink?base=atlnot&categ=Communication&id= com-phys-2005-044, (2005) 

[8] Herbrich, R.: Learning Kernel Classifiers. Theory and Algorithms. The MIT Press, Cambridge, Mass., London, England, 
2002. 

[9] Ji�ina, M.,  Ji�ina, jr., M.: Apparatus for assessing a control value. Patent pending under number PV 2008-245; Z 7576 
submitted on 22 April 2008 to the Industrial Property Office, Prague, Czech Republic. 



 

13 

[10] Ji�ina, M., Ji�ina jr., M. Correlation Integral Decomposition for Classification. In Artificial Neural Networks - ICANN 
2008 Part II.. Berlin : Springer, 2008. S. 62-71. ISBN 978-3-540-87558-1. [ICANN 2008. International Conference on 
Artificial Neural Networks /18./, Prague, 03.09.2008-06.09.2008, CZ].  

[11] Ji�ina, M., Ji�ina jr., M.: Utilization of Singularity Exponent in Nearest Neighbor Based Classifier. Journal of 
Classification. In print, 2012.  

[12] Ji�ina, M., Ji�ina jr., M.: Classification by the Use of Decomposition of Correlation Integral. /Foundations of 
Computational Intelligence/. Berlin: Springer, 2009 - (Abraham, A.; Hassanien, A.; Snášel, V.) S. 39-55. ISBN 978-3-
642-01535-9. - (Studies in Computational Intelligence. 205) 

[13] Lucas, S. M., Algoval (2008). Algorithm Evaluation over the Web, \online], 2008, \cited November 23, 2008]. 
Available: _http://algoval.essex.ac.uk/data/vector/UCI/> 

[14] Mandelbrot, B.B.: The Fractal Theory of Nature. W. H. Freeman and Co., New York, 1982. 
[15] Maslov, V.P.: On a General Theorem of Set Theory Leading to the Gibbs, Bose–Einstein, and Pareto Distributions as 

well as to the Zipf–Mandelbrot Law for the Stock Market. Mathematical Notes, vol. 78, no. 6, 2005, pp. 807–813. 
[16] Paredes, R. (2008). CPW: Class and Prototype Weights learning, \online], 2008, \cited November 23, 2008]. 

Available:_http://www.dsic.upv.es/~rparedes/research/ CPW/index.html> 
[17] Paredes, R., Vidal, E. (2006). Learning Weighted Metrics to Minimize Nearest Neighbor Classification Error. IEEE 

Transactions  on Pattern Analysis  and M achine  Intelligence, pp. 1100-1110, Vol. 20, No. 7 
[18] Schmuland, B: Random Harmonic Series, American Mathematical Monthly 110, 407-416, May 2003.  
[19] Schölkopf, B., Smola, A.J.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and 

Beyond. The MIT Press, Cambridge, Mass., London, England, 2002. 
[20] Scott, D.W.: Multivariate Density Estimation. Theory, Practice, and Visualization. John Wiley and Sons, New York, 

1992.  
[21] Zipf, G.K.: The Psycho-Biology of Language. An Introduction to Dynamic Philology. The MIT Press, 1968. 

(Eventually: http://en.wikipedia.org/wiki/Zipf's_law) 
[22] Zuo, W., Wang, K., Zhang, H., and Zhang, D.: Kernel Difference-Weighted k-Nearest Neighbors Classification In: D.-S. 

Huang, L. Heutte, and M. Loog (Eds.): ICIC 2007, LNAI 4682, pp. 861–870, 2007,  Springer-Verlag Berlin Heidelberg 
2007. 

  
 
 
 
 


