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Abstract :

We propose to use the Zipfian dlstrlbutlon asa kernel for demgn of a nonparametric classifier in contrast to the
Gaussian distribution used in most of kernel methods. We show that the Zipfian distribution takes into account
multifractal nature of data and gives a true picture.of scaling.properties inherent in data. We also show that this
new look at data structure can lead to a simple classifier that can, for some tasks, outperform more complex
systems. 8
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L INTRODUCTION

The proper selection of the kernel and window width are essential for good classification in classification tasks
[19], [20]. This problem is solved solely from statistical point of view. However, the role of spatial correlations
and the effective data dimensionality are not considered in kernel methods.

Here we show that a suitable alternative to the standard kernel functlons can be the Zipfian distribution [15], [21]
which can take into the account a fractal nature of data. ) -

Furthermore, this classification method is truly nonparametric as there is no need to set up the window width
common in most kernel methods. A new kind of nonparametric classifier of multivariate data is proposed.

In our method we center Zipfian kernel to each point x; of learning data set. At point x the kernel gives value
(probability density, in fact probability mass as Zipfian-distribution is discrete) 1/i; x; is i-th nearest neighbor of
x. In the two class classification problem summing up these-vatues for all points x; “of class 1 gives S, for points
of class 2 gives S,. Estimate of probability that pomtx is of class 1 1s '

S, (%)
S, (x)+S, (x)

Then if there is given threshold € and if the estimate above is greater than chen we say that pomt xis of class 1
else it is of class 2. :
We prove here that the kernel method w1th the leflal’l kernel gives an unbiased appr0x1mat10n of the" probablllty
of class of the given point. For proof we use here or necessarilyredefine some notions from the multifractals
theory. Singularity exponents, also scaling.exponents are widely used-in multifractal chaotic series analysis and
can be related to data that do not form a series. It was showii already by Mandelbrot [14] that any data may
possess a fractal or multifractal nature. We use: these exponents for proof of -our method of classification. As
there is no time scale, even no ordermg of samples, one cannot use such a 'tool as wavelet functions.

Our results demonstrate that the kernel method can be related to the fractal nature of data and to the harmonic
series [15], [18] via the Z1pf1an distribution [21] ’ e
This work can be a starting point for-more detalled description of local behavior of multivariate and not exactly
self-similar fractal data, and for the- development of*new approaches to data analysm including classification
problems. i . ;

p(c=11x)=



II. KERNEL ESTIMATOR

A. Data and the learning set

Let the learning set U of total N samples be given. Each sample x={x;;, X»,... X;,}; t=1,2, .. N, x4 € R; k=1,
2, ..., n corresponds to a point in n-dimensional metric space M,, where n is the sample space dimension. For
each x, € U a class function T: R" — {1, 2, ... C}: T(x;) = ¢ is introduced. With the class function the learning set

U is decomposed into disjoint classes U.= {x;,€ Ul T(x;)=c}; ce {1, 2,4, C}, Ule UC LU NU=0; ¢, d

c )
e {1,2, .., C}; c #d. Cardinality of set U, letbe N, ; ZC:INC_.': N .

As we need to express which sample is closer or further from some given point x, we can rank points of the
learning set according to distance r; of point x; from point x:.Therefore, let points.of U be indexed (ranked) so
that for any two points x;, x; € U there is i <j if , <71, ] =172, ... N, and class U= {x;e Ul T(x;) =c}. Of
course, the ranking depends on point x and eventually metrics of M;. We use Euclldea_n (L,) and absolute
(Manhattan, L) metrics here. In the following indexing by i means ranking just introduced.

B. Zipfian kernel
The Zipfian distribution (Zipf's law) [15][21] predlcts that out of a populatlon of N elements, the frequency of
elements of rank i, f(i;s,N), is given by probablhty mass function. ., _ '
1 l-s S . . ’ . K
f(zsN)— il _ . )

ZI/t. -

where N is the number of elements iis ‘their rank s is.the value of the expone.nt characterlzmg the distribution.
The law may also be written as:

1

AT N )
. N,s

where Hy,, is the Nth generalized harmonlc number ‘
The simplest case of Zipf's.law is“a "1/f function" ansmg ‘when s =-1. Given a set of Zipfian distributed
frequencies of occurrence of soriie- abjects, sorted from the most common to the least.common, the second most
common frequency will occur ¥ as often as the first. The-third most commen frequency will occur 1/3 as often
as the first, and so on. Over fairly wide ranges, and to a fa1r1y ‘good approximation, many natural phenomena
obey Zipf's law. Note that in the case-of a "1/f function", i.e. s =1, N must be finite and its denominator is equal
to Hy, the so-called harmonic number, i.e:-the sum of truncated harmonic sefies. [18]; otherwise the denominator
is a sum of harmonic series, which is, d1vergent This is not true 1f exponent s exceeds 1, s> 1, then the series is
convergent,

. -1 -
C (s )_ = ZF <o,
=1 b
where { is Riemann's zeta function.

III. THE METHOD

A. Intuitive basis

The method of probability estimation proposed is based on the following illustrative example. Let us consider
partial influences of individual points to the probability that point x is of class ¢; we consider two classes only
here. Both classes have the same cardinality. Each point of class c in the neighborhood of point x adds a little to
the probability that point x is of class ¢, where ¢ = {1, 2} is the class mark. This influence is the larger the closer
the point considered is to point x and vice versa. This observation is based on the finding of [5] that the first
nearest neighbor has the largest influence on proper estimation to what class point x belongs. Suppose that the
influence on the probability that point x is of class ¢ of the nearest neighbor of class c is 1, the influence of the
second nearest neighbor is ¥2, the influence of the third nearest neighbor is 1/3 etc. Just these values are related to
Zipfian distribution.

From kernel methods point of view, we center Zipfian kernel to each point x; of data set. At point x the kernel
gives probability mass proportional to 1/i (we use exponent s = 1); x; is i-th nearest neighbor of x. Summing up
these values for points x; of class 1 gives number S, for points of class 2 number S,. Estimate of probability that
point x is of class 1 is
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p(c=1lx)=—"-—"— .
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Figure 1. Illustration of classification procedure for-the simplest case of two classes and of the same-number of
samples of both classes. : ‘ ‘

The classification procedure is depicted in Fig.“t. The problem is: What is color of given point x depicted in
black at the left upper part of picture? First we rank points of the learning set according to their distances from
point x as shown at the right upper part of picturé: There are 4. points here, 7 red; 7 green as shown in the upper
lines in the table below- pictiires.. Reciprocals of rank numbers are-in the third line. In the fourth and fifth line
there are reciprocals of ranks of points x; from sets U,_;., and UC —green- Intthe rightmost two columns of table are
corresponding sums and estimated probablhtles that point xis red (0. 526967) or green (0.473033). Setting
threshold 6 = 0. 5 we can state that- pomt x is‘red. i

From another point of.view, le't Pr(T(x) =c I-T(x ) —'C) be the probability that the given point x is of class
c if neighbér poiiit *number i"is of the same class as “point.x. Note-that points of the learning set U are indexed so

that for any two points x;; x; € U.thereisi<jif ri<r; i, j=1, 2,.,. N. In'the following K is a constant that is
used to normalize the probability. that pomt X belongMo aclass to It

1\'

For the first (nearest) p(.)ll’lt i=1 Pr(T(x) =cl T()C1 —‘C)_ K 1
for the second point.i = 2 " _ . P.r(T(x) = C.| T(x,) = C_) = K% ,
and so on, generally for point No. i . Pr(TI'(x) =c I'T(x.) = C) K1

Individual points are independent and then we can sum up these probablhtles Thus, we add the partial influences
of k individual points together by summiig up



plelx)=Y Pr(T(x)=cIT(x)=c)=K Y 1/i. )

xeU, xeU,
Note that the sum goes over indexes i for which the corresponding samples of the learning set are of class c,
c=1,2, ... C, where C is the number of classes.

Let

S.= i,

x;eU,

S5,

where Hy is the N-th harmonic number. The estlmatlon of the probablhty that the given point x belongs to class ¢
is .

Then there is

A S

pxlc)=—

H, .

This approach is based on hypotheses that the weight of a neighbor is proport10nal Just to.reciprocal of its
order number as to its distance from the given p01nt see Theorem 1.

It can be seen that K —is also the valie (at point x) of kernel function with its center at point x; and having
i -

form of Zipfian probability mass function (1) for s'=-1. Summmg up these Values over all centers that belong to
class U, gives (2). . .

B. The Classification, Procedure .. - T T

The probability estimation above can  be. used for clasmflcatuan Let the samples of the'learning set (i.e. all
samples irrespective of the class)-be sorted according.to their distances from the given-point x. Let indexes be
assigned to these ‘points so that 1 is a551gned to the nearest neighbor, 2 to the second nearest neighbor of the
given point x etc. ) »

1

Let us compute sums” S ()= Zl/ I,1ie. the sufis- of re01proca1s of the indexes of samples from each
¢ xel; .

class ¢ separately; N, is the number.of samples of class c»(cardmahty of T, and Ny=N,=..=Nc.

The estlmate of the probablhty that point x belongs to'elass ¢'is.._ :

Blelx) =

C 3)

Z S,
) - k=1 )

In the end, the formula above is nothing else than Bayes formula.
Usually we say that point x is of clziss.k_ if ]A?(k | x) is the largest of all f)(c | x);
In the case of two classes, when some discrtminant thresHold 6 is chosen then if p(c =1lx) > @ point x is of class
1, else it is of class 2. This is the same procedure _as in other classification approaches where the output is
estimation of probability (naive Bayes) or any real.valued variable (neural networks). The value of the threshold
can be optimized with respect to loss function.

For classification into more than two classes we use this formula for all classes and we assign to the given point
x a class ¢ for which p(c | x) is the largest.

Formally we can rewrite (3) into more comprehensive form. For two class problem with different number of
samples of one and the other class formula we have
— Zl/ i

plelx) =— N e

— ZI/H—— Zl/z

1 xel; 2 xeU,




It is seen here the introduction of the relative representation of different numbers of samples of one and the
other class, i.e. introducing a priori probabilities.
For C classes there is

- d/i

c X»EU.

Z Zl/l ..

k=1 kerk

plclx) =

IV.  APPROXIMATION OF PROBABILITY OF CLASS

A. Zipfian kernel approach

Let indexes i be assigned to points (samples) of the learning set without- respect to a class so that i = 1 is assigned
to the nearest neighbor of point x, i =2 to the second-nearest neighbor etc. We have a finité learnlng set. of size N
samples and N, samples of individual class. . .

Using Zipfian probability mass function (1) as-a kernel funetlon we have the kernel function in the form K(llx-
x/h)=1/("Hy,). At the same time, product N, i.€. the number.of samples times the smoothing factor has no
significance here and we set Nh = 1. Then we~get approx1mat1on of probability that the given point x belongs to

class c in the form ]
25 e @

NgleUl

e p(c lx) =
where the sum goes over indexes-i for Wthh the corresponding samples of the” learnlng set are of class c.
) 1
Summing up approx1mat;10ns of probabﬂlty densmes at pomt x for all classes we' get apparently 72*

- S . R . N,s i=l l
that is equal to 1 and thiis' fulfills-assumption that the given point belongs to some class.
Two classes only and the same-number of samples of both classesare assumed without loss of generality in the
theorem and the proof-as. follows S o T e
Theorem 1.-Let the task of clas'sification into two classes be given and let the size of the learning set be N and
let both classes have the same number of saniples, i:e. there i$-the same a priori probability. Let i be the index
(rank) of the i-th nearest ne1ghbor x; of ‘point x (without cons1denng the neighbor’s class) and #; be its distance
from the point x. Then

Zl/i

lim 2% — = p(clx) . 5)
HN

N —>oo

where p(clx) is the probability that point x belongs to class c.
In the following proof we use some notions known from [10], [11], [12] and shortly summarized as follows.

1) Mapping the distribution
Let us have an example of a ball in an n-dimensional space containing uniformly distributed points over its

volume. Let us divide the ball on concentric “peels” of the same volume. Using the formular, =2/V,/S(n) ,

which is, in fact, inverted formula for volume V; of n-dimensional ball of radius r;, we obtain a quite interesting
succession of radii corresponding to the individual volumes - peels. The symbol S(n) denotes the volume of a
ball with unit radius in E,; note S(5) =4/31. A mapping between the mean density p; in an i-th peel and its
radius r; is p; = p(r;); p(r;) is the mean probability density in the i-th ball peel with radius r;. The probability
distribution of points in the neighborhood of a given point x is thus simplified to a function p(r;) of a scalar
variable r;. We call this function a probability distribution mapping function D(x, r) and its partial differentiation
with respect to r the distribution density mapping function d(x, r). Functions D(x, r) and d(x, r) for x fixed are, in
fact, the probability distribution function and the probability density function of variable r, i.e. of distances of all
points from the given point x. More exact definitions follow [11].



Definition 1. Probability distribution mapping function D(x,r) of the given point x is function

D(x,r)= I p(2)dz , where r is distance from the given point and B(x, r) is ball with center x and radius r.
B(x,r)

Definition 2. Distribution density mapping function d(x, r) of the given point x is function ;(, - 9 D(x,r)"

where D(x, r) is a probability distribution mapping functionfo'f the-given point x and radius 7.
Note. When it is necessary to differentiate class of point in distance r from point x, we write D(x, r, ¢) or
d(x, r, ). '

2) Correlation dimension
It is seen that for fixed x the function D(x, r), r > 0-i is monotonously non-decreasmg from zero to one. Functions
D(x, r) and d(x, r) for x fixed are one- -dimensional an_alogs to.the . probability distribution function and the
probability density function, respectively. In fact, D(x, r) is-the-distribution function of distances of points from
the given point x and d(x, r) is correspondmg probability den51ty function. So we can erte p(clx r)=d(x, r, c).
Moreover, D(x, r) reminds the correlation mtegral [6]. The correlation integral

C(r)= hm—Zh(r—lx —x
' L1, j=1
where x; and x; are points of the learmng set w1th0ut respect to class and h( ) isa Heav151de s step functlbn can
be written in the form [3], [4] * . -

c(r)—NﬁmN(N 1),1,% (r=lx, —x; -

It can be seen [3], [4] that Cﬁr-re.Latlon integral is a dlStI‘lbuthl’l funcuon of dlstances between pairs of data points
given. The probability distribution mapping function is-a dlst_mbutlon function of distances.from one fixed point.
In the case of finite number of points N;.there are. N(N - 1)/2 pairs of points-and then distances between them,
and from them one-can construct empirical cerrelation integral: Similarly, for eachpoint.there are N - 1 distances
and from these N1 distances.one can_construct empirical probability distribution mapping function. There are
exactly N such functions and mean of these functions gives empirical correlation integral. This is valid also in
limit for number N of points going to 1nf1n1ty

On the other hand there are essential differences. The probablhty distribution mapping function is a local feature
dependent on the position ‘of. point-x. Empirical distribution mapping function also includes boundary effects [2]
of true’data set. The correlation-integral is a featufe-of the fractal ‘or_data.generating process and should not
deperid. on the positionof-the particular point considéred or on the size of the data set at hand.

In a log-log graph of the coirelation integral; i.e. the graph of the, deperidence of C on r, the slope gives the
correlation dimension v. In the log-log graph of the-probability. dlstrlbutlon mapping function D(x, r) the curve is
also close to a monotonously -and nearly llnearly growing function, The slope (derivative) is given by a constant
parameter. Let us denote this parameter ¢ and call it.the dlstrlbutlon mapping exponent. This parameter is rather
close but generally different from v. "

The linear part of the log-log graph means.

logC(r)=a+logv,

where a is a constant, and then C(r) = -arv‘. Thus, C(r) .érows linearly with variable 7 = rY.

Similarly the probability distribution mapping function grows linearly with r7 at least in the neighborhood of
point x. Its derivative, the distribution density mapping function, is constant there.

3) Proof of Theorem 1
There are ¢ spatial distributions p.(x) of probability that any point x (on the support considered) is of class c.

c
Then for each point x and C classes there is Z p.(x) =1. For each given point x one can state the probability
c=1

distribution mapping function D(x, r; ¢). We approximate this function so that it holds (K is a constant)
D(x,r?,c) = Kr/!

in the neighborhood of point x. Using derivation, according to variable z = r?

1

, we get

d(x,r’,c)=K . It means that by the use of z =r?, the space is mapped (“distorted”) so that



the distribution density mapping function is constant in the neighborhood of point x for a

N
particular distribution. Let us consider sumZd (x,r”,c)/r? . For this sum we have
i=1

hmzmxrcﬂﬂ—mdwhmZUr (6)

N—oo0

because d(x, 17, ¢) = d(x, z, ¢) = p(clx) for all i (the unlform dlstnbutlon has a constant density).

l

By the use of z; = i, the space is nonhnearly rescaled so that the distribution density mapping function

d(x,z;,c) is constant in the neighborhood of point x. Then .};q is propertional to 4, rl.q = k,i; k is a constant.
Exponent g need not be a constant but can be a function, q = q(x, ¢); we write_it for point x; in form g = ¢q(i, c).

q(ic) _

Let r; k i for all i of class c. (From.the last formula one could derive the q(l c), but we need not do it.)

We rewrite the equation (6) in the form

lim Zd(x r 1) c)/r a0l — p(clx) hmZI/r 4(0)

N —o0

and then in the form - S,

hmZd(x ! C)/l" p(clx) hmZI/z —p(c4x) hmH

N—

Given the learning set, we have the" space around pomt X sampled” by individual points of
the learning set..Let p.(r;) be an a-posteriori probability that’ point i in distance r; from the
given point x is of the class c: Then pc(r;)is equal to 1 if point i is of class ¢ and p.(r;) is equal
to zero, if the” peint is-of the other class. Then the particular realization of p(clx)H,

sum 21/1 Using thls surh; we can write. . T

er

pmmmH_mZM

er

Dividing this equatlon by the limit of sum on the left hand side, we get

hm 21/1

N—oo |
xeU,. — p(ClX)

lim H

N—eo

and due to the same limit transition in the numerator and in the denominator we can rewrite it
in the form (5).

B. Bayes Risk

We have shown that estimate (4) converges to true probability p(clx). Considering
two-class classification with simple loss matrix L(1,1)=L(2,2)=0, L(1,2)=L(2,1)=1
there is conditional Bayes risk of estimating a class of point x

R(x)=R(clx)+ R(not clx)=2(1- p(clx)).

It is apparent that its estimate ﬁ(x) =2(1- p(clx)) converges to R(x) as p(clx)converges

to p(clx). The ﬁ(x) can be computed easily having classification error that is equal to
1—- p(clx) and can be found e.g. in Table 1, see Chap. 5.



C. Computational complexity

For total N samples and single given point x the procedure consists of three steps:

e  Computation of distances; the computational complexity for one distance is proportional to

dimensionality n, of all N distances nN.

e  Sorting distances is proportional to Nlog N.

e Summing up of reciprocals of indexes is proportlonal to N .
Then the total complexity is anN +bNlog N+ dN = N(an +blog N+'d ), where a, b, d are implementation
dependent constants. For larger learning data sets _the complexity is,governed by sorting. It is also seen that the
computational complexity directly depends on the learning set size N'and in small extend on dimensionality 7.

V.  EXPERIMENTS

A.  Tasks from UCI Machine Learning Repository — Comprehensive Tests.

Data sets ready for a run with a classifier were prepared by Paredes and Vidal and are available on the net
[13]. For small data sets in this corpus each task consists of 50 pairs of training and testing sets corresponding to
50-fold cross validation. For large data sets,-i.e. DNA-data [16], ‘Letter data (Letter recognition [1]), and
Satimage (Statlog Landsat Satellite_[1]) the single partition into training and testing sets accord1ng to
specification in [1] was used. We also added the popular.Iris data set [1] w1th ten-fold cross validation,

In Table 1 the results obtained by different methods are summanzed The methods are as follows:*

L2 The nearest neighbor method by 17] )
1-NN L2 ~—The. nearest nelghbor methed computed by authors
sqri-NN The k- NN_method ‘with k equal- 1o square root of . the number of samples of the

12 ‘ learning set computed by authors b

The Bayes naive method with ten bins histograms, compfite_d by authors

Bayes 10

e “-The learning_\;veighted .'r;n_e_t_rics method with class dependent Mahalanobis by [17]
DM e e :
The Jearning weighted-metrics method with class dependent weighting by [17]
CW . . ) . ] - . " ) - - ':-.'
. The _learning weighted metrics method w_ith prototype dependent weighting by [17]
PW - . .
The learnlng weighted metrlcs method with class and prototype - dependent
CPW - Welghtlng by [17]
IINC L1 The method presented here with Manhattan L, metrics
IINC L2 The method presented here with Euclidean L, metrics

In Table 1 in each row the best result is denoted by bold numerals. Furthermore, in the last column, the values
for IINC better with L, metrics than with L, metrlcs are shown in italics. There are five such cases out of a total
of 24. “



Table 1. Classification error rates for different datasets and different approaches.Empty-cells denote not available data. For legend see text above.

\Method | 2 1-NN L2  $sart-NN  Bayes 10 SVM CDM  [CW- PW CPW IINCL1 |INCL2
Australian 34.37  0.73 1550  [13.88 18599 . |l1819 [17.37 [16.95 [16.83  [13.31 14.75
Balance 2526  P3.61 32.06  [1517 (#5487 3515 |17:.08  [13.44 (176 32.58  |30.80
Cancer 4.75 5.07 3.25 2.68 16.34 “-876 369 . B.32 3.53 3.28 3.48
Diabetes 32.25  29.48 °6.46 419  P964  3p47 - B0.23  p7.39  p7.33  pe21 2552
DNA 234  P5.72 3406  [6.66 - 150 W72 - 49 @21 07.82  31.03
German 33.85 [(2.76 30.90 2497 . 2725 3215 p7.99 832 "R729  B0.91  B1.13
Glass 27.23 32.72 U210  W7.37 . ‘329  p852  pe28. 2748  33.01 3518
Heart 4218 P5.11 16.89  [17.44 (3889 o5 p234. 1894 1982 . [17.96  |17.93
lonosphere 19.03 14.05 14.70 9.26 “--. ’ T 10.82 14.81
Iris 6.91 5.91 7.91 '0.82 6:35 . 7.91 4.91
Led17 20.5  [11.50 0.12 0.00 e ' . 0.46 0.45
Letter 435  14.80 1870  pp8o9g~. A053  B3-.  B15 4:6 4.2 4.85 4.98
Liver 37.7  139.59 41.48 ~-.39.42 (3768 7"-3932> 4022 . 136.22-. 36.95 3829  39.13
Monkey1 2.01 2.01 9.27 08.01.  23.54 I ' 4.79 4.79
Phoneme 1801 [11.83 o7t pray - R1L71 ' T 1755  [18.06
Satimage 10.6 10.65 . [15.20 1915  (4.85 147 117 .. 88 - 9.05 11.00 11.55
Segmen 11.81  [3.81 1.41 @85 - - S S 4.12 5.05
Sonar 31.4 18,37 .. 3251 [31.46 | : : 19.89 12285
Vehicle 35.52  30.51 3151, ~138.40 3211 [9.38 * [20.31  28.09  P9.40  [29.34
Vote 879 B74 0.60 .9.70. .. 697  B.61. . B.51 5.26 8.52 8.89
Vowel 152 “-1.19 U668 12664 - S {B7. .36 7 [1.68 1.24 073 0.74
Waveform 21£24.1 03.73 14.71 -[19.26 - | - e 16.15  [16.38
Waveform 40831.66 [£8.22 *- [16.24.  P0:31 : ~ 17.59  [18.08
Wine 2414  5.42 15 450 - 2.6 .44 1.35 1.24 4.24 5.66
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B. Standalone Real-life Comprehensive Classification Task

This data set was available for tests described in [7] as one of many simulation studies for data processing relating ATLAS
experiment at CERN, Geneva, Switzerland. For the descrlptlon of the partlcle physics problem we cite [7] verbatim in Table
2 as follows:

Table 2. Problem formulation from the point of view of physws

Identification of hadronic v decays will be the key to the possible HIUQS boson discovery in the wide
range of the MSSM parameter space [1]. The i /H/A — 77 and H* — 7v are promising channels
m the mass range spanning from roughly 100 GeV to 800 GeV. The sensitivity increases with large
tan [ and decreases with rising mass of the Higgs boson. The H — 77 decays will give access to the
Standard Model and light Minimal Supersymmetric Standard Model Higgs boson observability around
my = 120 GeV, with Higgs boson produced by vector-boson fusion [2]. The hadronic 7 identification
1s also very important in searching for supersymmetric particles, particularly at high tan 5 values [3].

The same signal and background samples, as discussed in [4], are used to evaluate performance of
the proposed methods. As signal, we consider reconstructed candidates from tau decays in pp — W —
v and pp — Z — 77 events. As background, we consider candidates from QCD shower in the same
pp— W — rv,.pp — Z — 77 events and in QCD dljet events (sample with ;J"““ d > 35 GeV).

(Note that references relate to [7].) o -

The data set consists of 7 dimensiona]‘ vectors of teal numbér"s -and class 'fnalgl_(, xwhi,ch difféfentiates between signal samples
(events) and background-samples. The dataset is split into learning and testing sét;.each of 3279 samples.

1,00

0,80 1

> 0,60 -
s
£ 2
c
o
9 0,40 -
Data w3p0-200 - Tau decay for Higgs boson search
Bold blue - SUM 1/i L1 method
0,20 Thin red, magenta, orange, yellow - Statistical(?) NN, different networks
Lone diamond - cuts method used in physics
Black - GMDH
0,00 T T ‘ ‘ f
0,00 0,20 0,40 0,60 0,80 1,00

1-Specificity

Figure 2. ROC curves for different separation/classification tools including the “cut” method.

In Fig. 2 well-known ROC curves are shown for different separation/classification tools including the “cut” method popular
in physics studies.

The result obtained with “cuts” method is depicted by the black diamond.

The result obtained by GMDH-MIA algorithm is depicted by the lower bold black line

The results obtained by STATISTICA Neural Networks are depicted by two sets of red, magenta, orange and yellow lines.
Each set corresponds to four best results out of ten networks generated. The set going more to the left at level 0.4 or 0.6 of
sensitivity (signal acceptance) corresponds to its being set as a classifier; the other set (closer to the black line of GMDH-
MIA) corresponds to its being set as an approximator.
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The upper bold blue line was obtained by the IINC method desctibed in this paper with L; metrics.

VI. DISCUSSION

We have proved that the probability density approximation can be based on the Zipfian kernel. In the proof we have shown a
close relation of the Zipfian distribution (and of the selected harmonic-series as well) to the local fractal nature of data.
Especially the use of 1/i has a close connection to thé-scaling exponent, eventually to correlation integral, and thus to the
dynamics of the processes that generate data we’ wish. to. separate.-. We have shown, in fact, that the influence to the
probability that point x is of class c is 1/i if the i-th nearest neighbor is of ¢class c. We-sum up these influences so that the sum
goes over the indexes i for which the corresponding samples .of the learning set are of class c. In the case of two classes we
get two numbers S and S, which together glve the sum of N first terms of harmonic series Hi=1+%+%+Y+ ...+ 1/N.(N
is the size of the learning set.)

An interesting finding is that the method proposed here and the, proof of the theorem uses the notion of distance but no
explicit metrics need to be specified. "

The method designed has no parameters to_be tuned There is also no problern with the convergence ‘and the curse of
dimensionality. The computational ‘complexity grows at most linearly with the dimensionality and quadratically or less with
the learning set size depending on the sorting algorithm-used.

The main merit of the new method presented-here is a new view-on the data_space. This view is based on a strange
geometry with polynomially expanded distariees in dependence ofr-the local- dimensionality of data denoted as the distribution
mapping exponent. This léads t6-the use of reciprocals of the nerghbor indexes and-finally to the probability density
estimation. The reciprocals of the neighbor indexes can be understood as “weights” of the learning set samples. It means, in
fact, that the probability that the i-th neighbor and the ‘given point dre of the same’class is given by the Zipfian distribution. In
this context the erflan distribution Zets a much broader role than its use in hngurstlcs and psychology.

The other questionis how the method presented, here can be further improved. We stspect e.g. that data of one and the
other class can be similarly distributed in the space, even if data have different intrinsic dimensionality. Data often lie in
clusters, which-is-a-fact not tackled hete. ‘For given:peints outside these clusters or on boundaries of clusters the sum of
reciprocals of the neighbor-indexes of the opposite class may- preva11 thus causrng misclassification. This is a theme for
further research in this field. .
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