Mathematics in Image Processing

Michal Šorel Department of Image Processing Institute of Information Theory and Automation (ÚTIA) Academy of Sciences of the Czech Republic http://zoi.utia.cas.cz/

Mathematics in image processing

Mathematics in image processing , CV etc.	My subjective importance
Linear algebra	70%
Numerical mathematics – mainly optimization	60%
Analysis (including convex analysis and variational calculus)	50%
Statistics and probability – basics + machine learning	30%
Graph theory (mainly graph algorithms)	15%
Universal algebra (algebraic geometry, Gröbner bases)	not much

Probably similar for many engineering fields...

Talk outline

- What is digital image processing? Typical problems and their mathematical formulation.
- Bayesian view of inverse problems in (not only) image restoration, analysis and synthesis based sparsity
- Discrete labeling problems and Markov random fields (MRFs, CRFs)

Image processing and related fields

- Image processing
 - Image restoration (denoising, deblurring, SR)
 - Computational photography (includes restoration)
 - Segmentation
 - Registration
 - Pattern recognition
 - Many applied subfields image forensics, cultural heritage conservation etc.
- Computer vision recognition and 3D reconstruction but growing overlap with image processing
- Machine learning
- Compressive sensing (intersects with computational photography)

Image restoration (inverse problems)

- Denoising
- Deblurring (defocus, camera motion, object motion)

Image segmentation and classification

 Separating objects, categories, foreground/background, cells or organs in biomedical applications etc.

Image Registration

- Transforming different sets of data into one coordinate system
- Transform is constrained to have a specific form (rotation, affine, projective, splines etc.)
- Important general forms optical flow & stereo

Optical flow

Sequence of images contains information about the scene, We want to estimate motion – special case of image registration

2D Motion Field = Optical Flow

Optical flow example

Source: CBIA Brno, http://cbia.fi.muni.cz

Stereo reconstruction

Principle

Result (**depth map** or **disparity map**)

Result (3D model)

original mesh 4M triangles simplified mesh 500 triangles simplified mesh and normal mapping 500 triangles

Source: http://lcav.epfl.ch

Image processing problems

- Image restoration
 - denoising
 - deblurring
 - tomography
- Segmentation and classification
- Image registration
 - optical flow
 - stereo

Mathematical image

- Greyscale image
 - Continuous representation $u: R^2 \rightarrow \langle 0, 1 \rangle$
 - Discrete matrix or vector $u \in R$

$$u \in R^{m \times n}, \ u \in R^{mn}$$

- Both can be extended to 3D
- Color image = set of 3 or more greyscale images
 - − RGB channels are highly correlated → many algorithms work with greyscale only

Inverse problems in image restoration

- Denoising
- Linear image degradations
 - Deconvolution and deblurring
 - Super-resolution
 - CT, MRI, PET etc. reconstruction (reconstruction from projections)
- JPEG decompression

Image degradations

- Gaussian noise $z = N(u, \sigma I) = u + N(0, \sigma I)$
- Homogeneous blur = convolution with a kernel h (PSF – Point-spread function)

$$z(x) = \int h(x-s)u(s)ds = h * u = Hu$$

Spatially-varying blur

$$z(x) = \int h(x - s; s)u(s)ds = Hu$$

Presentation outline

- What is digital image processing? Typical problems and their mathematical formulation.
- Bayesian view of inverse problems in (not only) image restoration, sparsity
- Discrete labeling problems and Markov random fields (MRFs, CRFs)
 - Surprising result: a large family of non-convex MRF problems can be solved exactly in polynomial time/ reformulated as convex optimization problems

z ... observation, u ... unknown original image Maximum a posteriori (MAP): max p(u|z) Maximum likelihood (MLE): max p(z|u)

MAP corresponds to regularization

 $\max_{u} p(u|z) \propto p(z|u)p(u)$

Data term for image denoising

$$\max_{u} p(u|z) \propto p(z|u)p(u)$$

$$\min_{u} -\log p(u|z) \propto -\log p(z|u) -\log p(u)$$

$$p(z|u) = \frac{1}{(2\pi\sigma^{2})^{N/2}} \prod_{i=1}^{N} e^{\frac{(z_{i}-u_{i})^{2}}{2\sigma^{2}}}$$

$$-\ln p(z|u) = -\ln k \prod_{i} e^{\frac{(z_{i}-u_{i})^{2}}{2\sigma^{2}}} = \frac{1}{2\sigma^{2}} \sum_{i} (z_{i}-u_{i})^{2} + c$$

Theory on when we can do this will be given later (CRF)

Tikhonov versus TV Image Prior

$$Q(u) = \lambda \int |\nabla u|^2 = \lambda \|\nabla u\|_2^2$$

Tikhonov regularization

$$p(\mathbf{u}) \propto \prod_{i} e^{-\lambda |\nabla u_i|^2} = e^{-\lambda \mathbf{u}^T \mathbf{L} \mathbf{u}}$$

$$Q(u) = \lambda \int |\nabla u| = \lambda \|\nabla u\|_{2,1}$$

TV regularization

(isotropic)

Non-convex Image Prior

$$Q(u) = \lambda \int |\nabla u|^{0.8}$$
$$Q(u) = \lambda \int |\nabla u|^{0.4}$$

Non-convex regularization

Bayesian MAP approach for denoising

 $\min_{\mathbf{u}} \frac{1}{2\sigma^2} \sum_{i} (z_i - u_i)^2 + \lambda \sum_{i} |\nabla u_i|_p^p$

Analysis-based **sparsity**

• TV regularization can be extended to other sparse representations

$$\min_{u} \frac{1}{2} \|z - u\|^{2} + \lambda \|\nabla u\|_{2,1} \\
\min_{u} \frac{1}{2} \|z - u\|^{2} + \lambda \|Wu\|_{1}$$

- W often a set of convolutions with highpass filters
 - Wavelets (property of the Daubechie wavelets)
 - Learned by PCA

Synthesis-based sparsity

Bayesian approach applied on transform coefficients:

$$\begin{split} \min_{u} \frac{1}{2} \|z - u\|^2 + \lambda \|Wu\|_1 \\ \downarrow \\ \min_{u} \frac{1}{2} \|z - W^T w\|^2 + \lambda \|w\|_1 \\ \end{split}$$
(for a Parseval frame W)

PETER G. CASAZZA AND JANET C. TREMAIN: A BRIEF INTRODUCTION TO HILBERT SPACE FRAME THEORY AND ITS APPLICATIONS

Measures of sparsity

•
$$l_p$$
, $0 norms $\|\mathbf{a}\|_p^p$
 $\|\mathbf{a}\|_p = \left(\sum_i |a_i|^p\right)^{\frac{1}{p}}$$

- *l*⁰ norm, counts nonzero elements
- many other sparsity measures

– smooth
$$l_1$$

$$\rho(\mathbf{a}) = \|\mathbf{a}\|_1 - \epsilon \log\left(1 + \frac{\|\mathbf{a}\|_1}{\epsilon}\right)$$

• l_1 is the only sparsity enforcing convex p-norm

l_2 unit ball

l_1 unit ball

$l_{0.9}$ unit ball

Deblurring

• Denoising $z = u + N(0, \sigma^2 I)$

$$\min_{u} \frac{1}{2} \|z - u\|^2 + \lambda \|\nabla u\|_{2,1}$$

• Deblurring

$$z = h * u + N(0, \sigma^2 I) = Hu + N(0, \sigma^2 I)$$

$$\min_{u} \frac{1}{2} \|z - Hu\|^2 + \lambda \|\nabla u\|_{2,1}$$

Super-resolution (with deblurring)

Several possibly shifted blurred images

$$z_i = DH_i u + N(0, \sigma^2 I)$$

$$\min_{u} \frac{1}{2} \sum_{i} \|z_i - DH_i u\|^2 + \lambda \|\nabla u\|_{2,1}$$

D_i ... downsampling operator

Convolutions represent also the shift

Super-resolution

$$\min_{u} \frac{1}{2} \sum_{i} \|z_i - DH_i u\|^2 + \lambda \|\nabla u\|_{2,1}$$

http://zoi.utia.cas.cz/bsr-toolbox
Optical flow

 Based on the assumption of constant brightness and Taylor series

 $I(t, x(t), y(t)) = I(t_0, x(t_0), y(t_0))$

$$\left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}\right) \cdot \nabla I + \frac{\partial I}{\partial t} = 0 \text{ at } t = t_0$$

• Optical flow is the velocity field

$$\mathbf{v}(t_0) = \left(\frac{\partial x}{\partial t}(t_0), \frac{\partial y}{\partial t}(t_0)\right)$$

Optical flow

JPEG compression

50 jpg

Bayesian MAP restoration

MAP – maximum a posteriori probability

$$\min_{u} -\log p(z|u) - \log p(u)$$

$$-\log p(u) = \tau ||Wu||_1$$
$$-\log p(z|u) = \begin{cases} 0 & QCu \in (QCz - 0.5, QCz + 0.5) \\ \infty & otherwise \end{cases}$$

C ... 2D cosine transform (orthogonal 64x64 operator) Q ... diagonal quantization operator (division by entries q_i of the quantization table)

Bayesian JPEG decompression

Using total variation (TV)

$$\min_{u} \|\nabla u\|_{2,1}, s.t. \quad QCu \in (QCz - 0.5, QCz + 0.5)$$

(Bredies and Holler, 2012)

Or using redundant wavelets

$$\min_{u} \|Wu\|_{2,1}, s.t. \quad QCu \in (QCz - 0.5, QCz + 0.5)$$

C ... 2D cosine transform (orthogonal 64x64 operator)

Q ... diagonal quantization operator (division by entries q_i of the quantization table)

50 jpg

50 est

Convex variational problems

- Denoising, deblurring, SR, optical flow, JPEG decompression ...
- Solution by convex optimization (interior point, proximal methods)
 N. Parikh, S. Boyd: Proximal Algorithms
- What to do for discrete or non-convex problems such as segmentation and stereo?

Discrete labeling problems

- For each site (pixel) we look for a label (or a vector of labels)
- Labels depend on local image content and a smoothness constraint
- Image restoration, segmentation, stereo, and optical flow are all labeling problems

Discrete labeling problems

- For each site (pixel) we look for a label (or a vector of labels)
- Labels depend on local image content and a smoothness constraint

Segmentation	foreground/background or object number	{0,1} {1 k}
Stereo	disparity (inverse depth)	-kk
Optical flow	local motion vector	(-kk) x (-kk)
Restoration	intensity	0255

Segmentation by graph cuts

Graph cuts & Belief propagation

Graph cuts

Belief propagation

"Classical local algorithms"

Markov Random Fields (MRFs)

- Markov Random Field, Gibbs Random Field
 MRF ⇔ GRF (Hammersley-Clifford theorem)
- MRF models including smoothness priors
 - stereo
 - segmentation
 - restoration (denoising, deblurring)
- Discrete optimization on MRFs based on graph cuts

Markov Random Field (MRF)

- sites S = {1, ... , m}
- F ... set of random variables defined on S
- N ... neighborhood system
- $f_i \in \mathcal{L}$... (possibly discrete) label
- configuration $f = \{f_1 \dots f_K\},\$

$$P(f_i|f_{S-\{i\}}) = P(f_i|f_{N_i})$$

P(f) > 0

Other possible properties – homogeneity, isotropy

Gibbs Random Field

P(f) > 0!

$$P(f) = \frac{1}{Z}e^{-\frac{1}{T}U(f)}$$

Partition function

$$Z = \sum_{f} e^{-\frac{1}{T}U(f)}$$

Energy function U(f)

$$U(f) = \sum_{c \in \mathcal{C}} V_c(f) = \sum_{i \in \mathcal{S}} V_1(f_i) + \sum_{i \in \mathcal{S}} \sum_{i' \in \mathcal{N}_i} V_2(f_i, f_{i'})$$

 $V_{c}(f)$... clique potentials

Hammersley-Clifford theorem

MRF = GRF

F is an MRF on S with respect to N

if and only if

F is a Gibbs random field on S with respect to N

- MRF ... conditional independence of non-neighbor nodes (variables)
- GRF ... global function depending on local "compatability functions"

Hammersley-Clifford theorem - proof

- An MRF is also a GRF complicated, introduction of canonical potentials needed
- A GRF is a MRF $P(f_i|f_{S-\{i\}}) = P(f_i|f_{N_i})$

$$P(f_i|f_{S-\{i\}}) = \frac{P(f)}{\sum_{f_i \in \mathcal{L}} P(f')} = \frac{e^{-\sum_{c \in \mathcal{C}} V_c(f)}}{\sum_{f'_i} e^{-\sum_{c \in \mathcal{C}} V_c(f)}}$$

$$P(f_i|f_{S-\{i\}}) = \frac{e^{-\sum_{\{c,i\in c\}} V_c(f)}}{\sum_{f'_i} e^{-\sum_{\{c;i\in c\}} V_c(f)}}$$

MRF = GRF

MAP-MRF

$$\max_{f} p(f) = \frac{1}{Z} e^{-E(f)}$$
$$\min_{f} (-\ln p(f)) = \min_{f} E(f) + const$$

How to incorporate smoothness?
– Penalties/potentials similar for most applications

Smoothness prior

Priors on derivatives, usually first derivative

 $V(f_i, f_j) = \kappa_{ij} \ \delta(f_i - f_j)$ $V(f_i, f_j) = \kappa_{ij} \ (f_i - f_j)^2$

segmentation, sometimes in stereo

Tikhonov regularization

Discontinuity preserving penalties $V(f_i, f_j) = \kappa_{ij} |f_i - f_j|$ $V(f_i, f_j) = \kappa_{ij} \min((f_i - f_j)^2, const)$ Interpretation $V(f_i, f_j) = \kappa_{ij} \min((f_i - f_j)^2, const)$

MAP-MRF for stereo (Boykov & al.)

2 images d¹,d² on the input

$$\begin{split} E(f) &= \sum_{i} V_1(f_i, d^1, d^2) + \kappa \sum_{i} \delta(f_{i+1} - f_i) \\ \text{Birchfield-Tomasi matching cost} - \text{insensitive to} \\ \text{sampling:} \end{split}$$

$$V_1(f_i, d^1, d^2) = \min(\min_{\Delta \in \langle f_i - \frac{1}{2}, f_i + \frac{1}{2} \rangle} |d_i^1 - d_{i+\Delta}^2|, \dots, const)^2$$

MAP-MRF for segmentation

 "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts", C. Rother, V. Kolmogorov, A. Blake, SIGGRAPH 2004

MAP-MRF for segmentation

• "Grab cut" example

 $V_2(f_i, f_j) = \kappa_{ij} \,\,\delta(f_i - f_j) = \gamma e^{-\frac{||d_i - d_j||^2}{2\sigma^2}} \delta(f_i - f_j)$

$$V_1(f_i, d_i) \cong -\ln p(f_i | d_i) \cong -\ln p(d_i | f_i) - \ln p(f_i)$$

V₁(f_i,d_i) ~ probability to be in fg/bg based on a feature space (intensities, texture features etc...)
– modeled for example as a mixture of Gaussians

MAP-MRF for restoration

Denoising (with anisotropic TV regularization)
– 2D indexing - only this slide

$$E(f) = \frac{1}{\sigma^2} \sum_{ij} (f_{ij} - d_{ij})^2 + \kappa \sum_{ij} |f_{i+1,j} - f_{ij}| + \kappa \sum_{ij} |f_{i,j+1} - f_{ij}|$$

• Deblurring (with TV regularization)

$$E(f) = \frac{1}{\sigma^2} ||f * h - d||^2 + \kappa \sum_{ij} |f_{i+1,j} - f_{ij}| + \kappa \sum_{ij} |f_{i,j+1} - f_{ij}|$$

Discrete methods not efficient for restoration!

MRFs - Summary

- Common framework for many image processing a CV problems
- Fits well to the Bayesian framework
- MRF = GRF

MAP-MRF using graph cuts

• MAP – Maximum a posteriori probability

$$\max_{f} p(f) = \frac{1}{Z} e^{-E(f)}$$
$$\min_{f} (-\ln p(f)) = \min_{f} E(f) + const$$

- Graph cuts = min-cut ~ max-flow (Ford-Fulkerson theorem)
- Much better than simulated annealing based methods, often very close to global optimum

Graph cuts minimization

$$E(f) = \sum_{i} V_1(f_i) + \sum_{ij} V_2(f_i, f_j)$$

For $V_2 \ge 0$ metric

-
$$V_2(a,b) = 0 \iff a = b$$

- $V_2(a,b) = V_2(b,a)$ (actually not necessary)

- V₂(a,b) ≤ V₂(a,c) + V₂(c,b)

or semimetric (without Δ -inequality)

Metric:

$$\delta(f_i - f_j)$$

min($|f_i - f_j|, const$) for any norm [.]

Semimetric:
$$\min((f_i - f_j)^2, const)$$

Graph cuts minimization

$$E(f) = \sum_{i} V_1(f_i) + \sum_{ij} V_2(f_i, f_j)$$

- General strategy minimum if no possible decrease of E(f) in one "move"
- Iterated conditional modes (ICM) iteratively minimizes each node (pixel) easily gets trapped in a local minimum (~ gradient descent)
- Simulated annealing global moves but without any specific direction
 slow
- Graph cuts use much larger set of "moves" so that the minimum over the whole set can be found in a reasonable (polynomial) time

α - β swap and α -expansion moves

α -expansion algorithm

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each label $lpha \in \mathcal{L}$
 - 3.1. Find $\hat{f} = \arg\min E(f')$ among f' within one α -expansion of f
 - 3.2. If $E(\hat{f}) < E(f)$, set f := \hat{f} and success := 1
- 4. If success = 1 goto 2
- 5. Return f

- Arbitrary **metric** $V_2(\alpha,\beta)$ (Δ -inequality)
- Not worse than 2x optimum

α - β swap algorithm

- 1. Start with an arbitrary labeling f
- 2. Set success := 0
- 3. For each pair of labels $\{\alpha, \beta\} \subset \mathcal{L}$ 3.1. Find $\hat{f} = \arg \min E(f')$ among f' within one α - β swap of f3.2. If $E(\hat{f}) < E(f)$, set $f := \hat{f}$ and success := 1
- 4. If success = 1 goto 2
- 5. Return f

- Arbitrary semimetric V₂(α,β) (without Δ-inequality)
- No optimality guaranteed

α - β swap move graph

$$E(f) = \sum_{i} V_1(f_i) + \sum_{ij} V_2(f_i, f_j)$$

Proof step 1: For each p in the set $P_{\alpha\beta},$ the minimum cut contains exactly one edge t_p

t_p^{lpha}	$V_p(\alpha) + \sum_{\substack{q \in \mathcal{N}_p \\ q \notin \mathcal{P}_{\alpha\beta}}} V(\alpha, f_q)$	$p \in \mathcal{P}_{lphaeta}$
$t_p^{m eta}$	$V_p(\beta) + \sum_{\substack{q \in \mathcal{N}_p \\ q \notin \mathcal{P}_{\alpha\beta}}} V(\beta, f_q)$	$p \in \mathcal{P}_{lphaeta}$
$e_{\{p,q\}}$	V(lpha,eta)	$\substack{\{p,q\}\in\mathcal{N}\ p,q\in\mathcal{P}_{lphaeta}}$

α - β swap move graph

 $E(f) = \sum_{i} V_1(f_i) + \sum_{ij} V_2(f_i, f_j)$

Proof step 2: go through 3 types of pairwise configurations. We need binary V to be semi-metric $V(\alpha,\alpha)=0$

t_p^{lpha}	$V_p(\alpha) + \sum_{\substack{q \in \mathcal{N}_p \\ q \notin \mathcal{P}_{\alpha\beta}}} V(\alpha, f_q)$	$p \in \mathcal{P}_{lphaeta}$
t_p^{eta}	$V_p(\beta) + \sum_{\substack{q \in \mathcal{N}_p \\ q \notin \mathcal{P}_{\alpha\beta}}} V(\beta, f_q)$	$p \in \mathcal{P}_{lphaeta}$
$e_{\{p,q\}}$	V(lpha,eta)	$\substack{\{p,q\}\in\mathcal{N}\ p,q\in\mathcal{P}_{lphaeta}}$
α - β swap - summary

 We know how to transform minimization of E(f) over all possible α-β swap moves to graph cut problem

α -expansion move graph

$$E(f) = \sum_{i} V_1(f_i) + \sum_{ij} V_2(f_i, f_j)$$

$t^{ar{lpha}}_p$	∞	$p\in\mathcal{P}_{lpha}$
$t_p^{ar{lpha}}$	$V_p(f_p)$	$p ot\in \mathcal{P}_{lpha}$
$t_p^{oldsymbol{lpha}}$	$V_p(\alpha)$	$p\in \mathcal{P}$
$e_{\{p,a\}}$	$V(f_p, \alpha)$	
$e_{\{a,q\}}$	$V(\alpha, f_q)$	$\{p,q\} \in \mathcal{N}, \ f_p \neq f_q$
$t^{ar{lpha}}_{m{a}}$	$V(f_p, f_q)$	
$e_{\{p,q\}}$	$V(f_p, \alpha)$	$\{p,q\} \in \mathcal{N}, \ f_p = f_q$

α -expansion graph - cuts

$$t_{p}^{\alpha}$$

$$t_{q}^{\alpha}$$

$$t_{q}^{\alpha}$$

$$t_{q}^{\alpha}$$

$$t_{q}^{\alpha}$$

$$t_{q}^{\alpha}$$

$$t_{q}^{\alpha}$$

$$t_{q}^{\overline{\alpha}}$$

$$t_{q}^{\overline{\alpha}}$$

$$E(f) = \sum_{i} V_1(f_i) + \sum_{ij} V_2(f_i, f_j)$$

$t_p^{ar{lpha}}$	∞	$p\in\mathcal{P}_{lpha}$
$t_p^{ar{lpha}}$	$V_p(f_p)$	$p ot\in \mathcal{P}_{lpha}$
t_p^{lpha}	$V_p(lpha)$	$p\in \mathcal{P}$
$e_{\{p,a\}}$	$V(f_p, \alpha)$	
$e_{\{a,q\}}$	$V(\alpha, f_q)$	$\{p,q\} \in \mathcal{N}, \ f_p \neq f_q$
$t^{ar{lpha}}_a$	$V(f_p, f_q)$	
$e_{\{p,q\}}$	$V(f_p, \alpha)$	$\{p,q\} \in \mathcal{N}, \ f_p = f_q$

 Δ - inequality !

α -expansion - summary

- We know how to transform minimization of E(f) over all possible α -expansion moves to graph cut problem
- What remains? how to find the minimum cut

Graph cuts algorithm

- "Augmenting path" type algorithm with simple heuristics
 - Looks for a non-saturated path ~ path in residual graph
 - Simultaneously builds trees from α and β
- Maximum complexity O(n²mC_{max}), C_{max} cost of the minimum cut
- Actually typically linear with respect to the number of pixels
- On our problems faster than good combinatorial algorithms Dinic O(n²m), Push-relabel O(n²√m)

Graph cuts - summary

 Minimization of E(f) by finding min-cut in a graph in polynomial time

2 label minimization can be done in polynomial (and typically linear) time with respect to the number of pixels

- K>2 labels NP hard
 - Equivalent to Multiway Cut Problem
 - α -expansion finds a solution $\leq 2^*$ optimum
 - In practice both α - β swap and α -expansion algorithms get very close to global minimum

Graph cuts – additional example

 "GrabCut" — Interactive Foreground Extraction using Iterated Graph Cuts", C. Rother, V. Kolmogorov, A. Blake, SIGGRAPH 2004

Discrete optimization in MRFs - summary

- Conditional independence is strong structural information that can be exploited
- Gives useful approximations for difficult (NPhard) problems
- For convex problems mostly better to use continuous methods

References

- Graph Cuts
 - "Fast Approximate Energy Minimization via Graph Cuts" Y. Boykov, O. Veksler, R. Zabih, PAMI 2001 (Augmenting path mincut algorithm)
 - "An Experimental Comparison of Min-Cut/Max-flow Algorithms for Energy Minimization in Vision" – Y. Boykov, V. Kolmogorov, PAMI 2004 (Graph construction for α-β swap and α-expansion moves)
 - "GrabCut" Interactive Foreground Extraction using Iterated Graph Cuts", C. Rother, V. Kolmogorov, A. Blake, SIGGRAPH 2004
- Belief propagation
 - "Understanding Belief Propagation and its Generalizations" -J.S. Yedidia, W.T.Freeman, Y.Weiss (Mitsubishi electric research laboratories, Technical report, 2002)

Convex formulation of multi-label problems

- Continuous counterpart of Ishikawa's pairwise MRF problem taking huge memory
- "Arbitrary" non-convex data term

$$\min_{u} \left(\int_{\Omega} \rho(u(x), x) dx + \int_{\Omega} |\nabla u(x)| dx \right)$$

Pock, Schoenemann, Graber, Bischof, Cremers: <u>A Convex Formulation of Continuous Multi-</u> <u>label Problems</u> (2008)

Functional lifting

$$\min_{u} \left(\int_{\Omega} \rho(u(x), x) dx + \int_{\Omega} |\nabla u(x)| dx \right) \quad u: \Omega \to \Gamma, \ \Gamma = <\gamma_{\min}, \gamma_{\max} > 0$$

 $\phi(x,\gamma) = \mathbf{1}_{\{u(x) > \gamma\}}(x) \qquad \text{ Representing u in terms of its level sets }$

Layer cake formula
$$u(x) = \gamma_{min} + \int_{\Gamma} \phi(x, \gamma) d\gamma$$
$$\min_{\phi \in D'} \left(\int_{\Sigma} \rho(x, \gamma) |\partial_{\gamma} \phi(x, \gamma)| + |\nabla \phi(x, \gamma)| d\Sigma \right)$$

$$D' = \{\phi : \Sigma \to \{0, 1\} \mid \phi(x, \gamma_{min}) = 1, \ \phi(x, \gamma_{max}) = 0\}$$
$$D = \{\phi : \Sigma \to \langle 0, 1 \rangle \mid \phi(x, \gamma_{min}) = 1, \ \phi(x, \gamma_{max}) = 0\}$$

Mathematics in image processing

Many image processing/CV problems can be formulated as optimization problems and solved by variational or discrete algorithms within a common framework

- image restoration (denoising, deblurring, SR, JPEG decompression)
- image segmentation
- optical flow
- stereo

