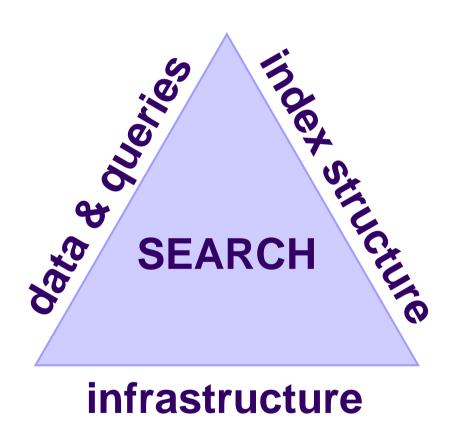
MUFIN Basics


MUFIN team
Faculty of Informatics,
Masaryk University
Brno, Czech Republic
mufin@fi.muni.cz

SEMWEB 1

Search problem

The thesis (intellectual proposition)

- Search systems are more and more complex
- Future search system will be born on the divergence of:

scale and determinism

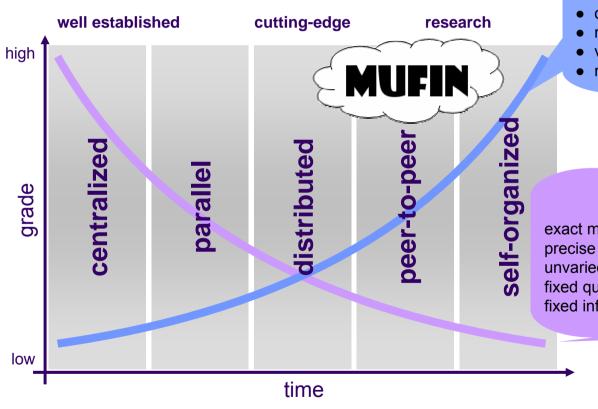
Trends in Scalability of Search

- data volume
- number of users
- variety of data types
- multi-queries

- exponential growth
- increasing fast
- digital databases
- lingual, feature, modal

Trends in Determinism of Search

- Exact match
- Precise answer
- Unvaried answer
- Fixed query
- Dedicated hardware


- Similarity
- Approximate answer
- Satisfactory answer (advice, recommendation)
- Personalized, context aware, proximate
- Dynamic mapping, mobile devices, infrastructure services

Search systems

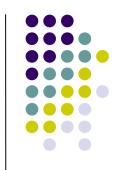
Scalability

- data volume exponential grows
- number of users (queries) increase
- variety of data types digitization
- multi-lingual (feature, modal) queries

Determinism

exact match

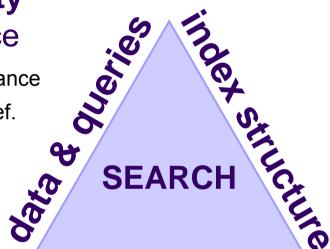
fixed query


- ► similarity
- ► approximate
- unvaried answer ► good answer; advice
 - ► personalized; context aware
- fixed infrastruct. ► dynamic mapping; mobile

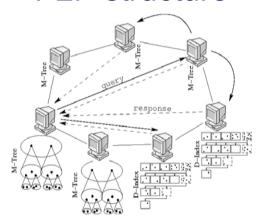
The MUFIN Approach

MUFIN: MUlti-Feature Indexing Network

Extensibility


metric space

Edit distance


Jaccard's coef.

Hausdforff distance

Minkowski distance
Mahalanobis distance
etc.

Scalability P2P structure

infrastructure

Cloud computing

infrastructure as a service

EXTENSIBILITY Metric Space: Abstraction of Similarity

- Metric space: $\mathcal{M} = (\mathcal{D}, d)$
 - *𝔻* − domain
 - distance function d(x,y)

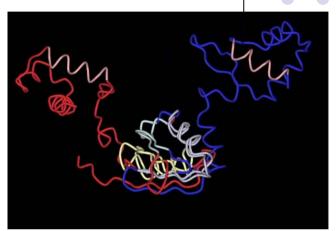
$$\forall x,y,z \in \mathcal{D}$$

•
$$d(x,y) > 0$$

•
$$d(x,y) = 0 \Leftrightarrow x = y$$

$$d(x,y) \le d(x,z) + d(z,y)$$

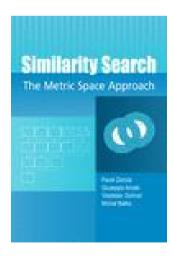
- identity
- symmetry
 - triangle inequality



Why Can the Metric Approach be Useful

- Many application areas:
 - biology, security
 - audio-visual, geo. search
 - software copy detection
 - data cleaning, integration,
 - etc.
- Query by example paradigm
 - one query image contains a lot of information
 - one image is worth 1000 words
 - advantage for mobile devices min. click

Metric Search Grows in Popularity



Hanan Samet
Foundation of Multidimensional and
Metric Data Structures
Morgan Kaufmann, 2006

Foundations of Multidimensional and Metric Data Structures

We substant number of participation of the substantial polytic in grant pages (single state substantial polytic in grant pages (single state substantial polytic in grant pages (single state substantial polytic) in the recording of constitution pages (single state substantial pages).

P. Zezula, G. Amato, V. Dohnal, and M. Batko Similarity Search: The Metric Space Approach Springer, 2006

Examples of Distance Functions

- L_p Minkowski distance of order p
 - L₁ city-block distance
 - L_2 Euclidean distance
 - L_{∞} infinity
- edit distance (for strings)
 - minimal number of insertions, deletions and substitutions
 - d('application', 'applet') = 6
- Jaccard's coefficient (for sets A,B)

$$L_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

$$L_2(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$L_{\infty}(x, y) = \max_{i=1}^{n} |x_i - y_i|$$

$$d(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

- Mahalanobis distance
 - for vectors with correlated dimensions
- Hausdorff distance
 - for sets with elements related by another distance
- Earth movers distance
 - primarily for histograms (sets of weighted features)
- and many others

Image MUFIN overlay

A <u>demo</u> on Cophir 50 M dataset (280 dim vectors)

Five combined MPEG7 global descriptor:

Color Structure, max. dist.: 40, weight: 3

Color Layout, max. dist.: 300, weight: 2

Scalable Color, max. dist.: 3000weight: 2

Edge Histogram, max. dist.: 68, weight: 4

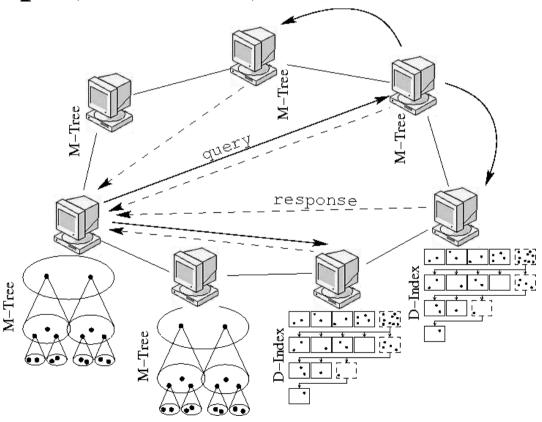
Homogeneous Texture, max. dist.: 25, weight: 0.5

Face search

- Face search <u>demo</u> 6k images with people
 - face detection 10k detected faces
 - face description 64 dimensional vectors
 - face comparison advanced face des. MPEG7
- Based on a publicly available software

SCALABILITY Structured P2P networks

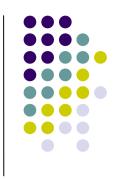
- Objectives
 - To scale into contemporary audio-visual data volume and query execution throughput, i.e.:
 - billions of objects
 - online response time
 - hundreds of queries per sec.
- A peer
 - Contains metric objects, can issue/answer queries, and knows few other peers


- Structured P2P network employ a globally considered protocol to ensure that any peer can efficiently route a search to some peer that has the desired data
- Structured P2P networks are used in MUFIN for:
 - no bottleneck, no central component
 - multiple access points to the networks
 - distribution of workload parallel query execution
 - dynamic structure of peers (controlled) resilience, join, leave
 - mechanisms for fault tolerance, replication and load balancing

P2P Architecture of MUFIN

- Native metric techniques: **GHT***, **VPT***
- Transformation techniques: MCAN, M-Chord (Skip-Graphs, Kademlia, etc.)

P2P Architecture of MUFIN



- Peers are not necessarily computers
- A peer size determines a lower-bound on the query response time
- Peer's data can be searched by:
 - Filtering
 - M-tree
 - D-index
 - I-distance
 - Etc.

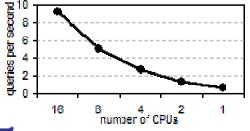
Scalability test

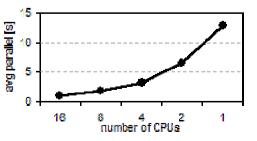
- 1M: 50 peers memory based
- 10M: 500 peers memory based
- 50M: 2000 peers disk based

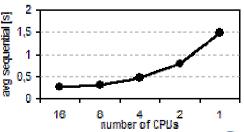
- Effectiveness improves with data volume
- Efficiency
 - lower-bounded by the peer size (20k, 20k, 25k)
 - does not change significantly

Infrastructure as a Service

- Why:
 - Performance tuning
 - Query response time
 - Query execution throughput
 - Performance adjustment
 - Different performance requirements (day night, weekend – working days)
 - Experimental trials
 - Test an application
 - Purchase a new hardware
 - Availability reliability

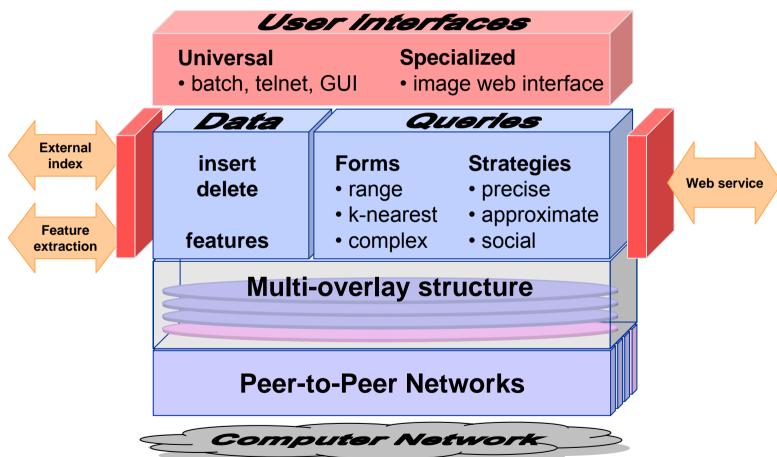






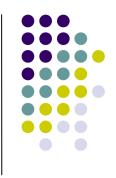
- 10M network, 500 peers, memory-based
- Batch of 250 queries started from 10 peers

CPUs	Parallel from 10 peers					Sequential from 1 peer			
	total [s]	queries/s	single query [ms]			total (s)	single query [ms]		
			avg	min	max	total (s)	avg	min	max
16	27	9,26	958	184	2691	67	259	183	1605
8	49	5,10	1787	181	5736	87	324	170	1806
4	94	2,66	3265	165	10355	122	468	162	1847
2	186	1,34	6654	165	24483	203	780	168	2320
1	380	0,66	12810	169	69692	379	1472	169	3248

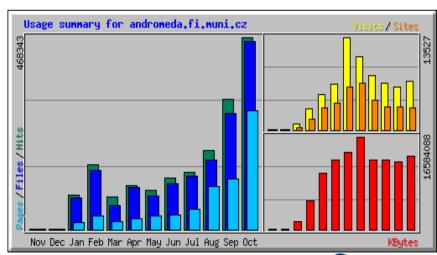


MUFIN Overview

MUFIN plugin



- News web-sites contain images
 - CNN, BBC, SEZNAM, iDNES
- Photography collection of US National Parks
 - TERRA GALLERIA
- Image text search
- Google, Yahoo, Yandex, Ask, Seznam,
 Rajče, exalead



Use of MUFIN in SAPIR Demos

- Caching to locate cashed queries
- Text+Image to perform content similarity
- Video search to perform content similarity
- Mobile interface to perform content similarity
- Some statistics
- Permanent demo: coming soon

