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Abstract. Amorphous computing differs from the classical ideas about
computations almost in every aspect. The architecture of amorphous
computers is random, since they consist of a plethora of identical compu-
tational units spread randomly over a given area. Within a limited radius
the units can communicate wirelessly with their neighbors via a single-
channel radio. We consider a model whose assumptions on the underlying
computing and communication abilities are among the weakest possible:
all computational units are finite state probabilistic automata working
asynchronously, there is no broadcasting collision detection mechanism
and no network addresses. We show that under reasonable probabilistic
assumptions such amorphous computing systems can possess universal
computing power with a high probability. The underlying theory makes
use of properties of random graphs and that of probabilistic analysis of
algorithms. To the best of our knowledge this is the first result showing
the universality of such computing systems.

1 Introduction

Classical models of universal computations, such as Turing machines, RAMs,
etc., are rigorously defined mathematical structures in whose design there is
no room for randomness. The situation is slightly different when the comput-
ing systems represented by networks of processors (such as the Internet, wireless
networks, etc.) are considered: here, the network topology may result from a ran-
dom process. In order to “compute” bold assumptions about such networks have
been usually made: at least we require that all network nodes are connected by
communication links, that prior to the start of computation each network node
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possesses a unique “network address”, that there are communication primitives
supporting message exchange and, last but not least, that each network node
does possess a universal computing power. Such models have been the domain of
the classical computational theory of distributed systems. However, recent de-
velopments in micro-electro-mechanical systems, wireless communications and
digital electronics have brought yet a new challenge into the area of distributed
computing systems. Their new instances integrate sensing, data processing and
wireless communication capabilities. Typical representatives of such systems are
sensor, mobile, or ad-hoc wireless networks (cf. [12]). At an extreme end, people
consider exotic systems such as smart dust (cf. [15]) or amorphous computers (cf.
[1], [2], [5]). In these systems the miniaturization is pushed to its limits resulting,
presumably, into processors of almost molecular size with the respective com-
munication and computing facilities adequately (and thus severely) restricted.
These limitations call for the change of the basic computational and communi-
cation model of distributed computing systems which must subsequently be also
reflected in the design of the corresponding algorithms.

It seems that so far the related research has mainly concentrated on the con-
crete hardware, software and algorithmic issues neglecting almost completely
the computational and complexity aspects in that kind of computing (cf. [14]).
Very often the designers of such algorithms have paid little attention to the
underlying computational model and, e.g., they have taken for granted the uni-
versal computing power of all processors, synchronicity of time in all processors,
the existence of unique node identifiers and those of communication primitives
allowing efficient message delivery.

In our paper we concentrate on a computational model of a wireless com-
munication network where such assumptions do not hold. This could be the
case of e.g., the smart dust mentioned earlier. Our model, called amorphous
computer works under very week assumptions: basically, it is a random graph
which emerges by distributing the nodes randomly in the bounded planar area.
The graph’s nodes are processors represented by probabilistic finite state au-
tomata possessing no unique identifiers (“addresses”). The graph’s edges exist
only among the nodes within the bounded reach of each node’s radio. Each
node operates asynchronously, in either broadcasting or listening mode, hearing
a message only if it is sent exactly by one of the node’s neighbors. That is, there
is no mechanism distinguishing the case of a multiple broadcast from the case of
no broadcast. This model has been introduced recently by the authors in [13].

Due to its weak (and thus, general) underlying assumptions which correspond
well to various instances of amorphous computing as described in the literature,
we believe that such a model presents a fundamental model of amorphous com-
puting (cf. [1], [2], or an overview in [5]). Within the theory of computation a
model of an amorphous computer, as given by our definition, represents an inter-
esting object of study by itself since it contains elements of randomness built–in
into both the computer’s “set–up process” and its operations. The fundamental
question is, of course, whether such a model does possess a universal compu-
tational power. The first steps towards this end have been taken in [13]. Here,
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under the above mentioned mild assumptions concerning the communication
among the nodes of an amorphous computer and under reasonable statistical
assumptions on the underlying graph a scalable randomized auto-configuration
protocol enabling message delivery from a source node to all other nodes has been
designed. For networks whose underlying communication graph has N nodes, di-
ameter D and node degree Q, the complexity of this protocol is O(DQ log(N/ε))
with probability ε > 0 of failure.

For the synchronous case, the problem of message delivery similar to the
one mentioned above has been studied in the seminal paper by Ben-Yehuda,
Goldreich and Itai in 1993 [4]. Under the same notation as above, the algorithm
of Ben-Yehuda et al. runs in time O((D + log(N/ε)) log N). This algorithm is
faster than the former one, but the assumption of synchronicity (allowing that
all nodes can start a required action simultaneously) is a crucial one for its
correctness. However, synchronization is exactly the feature excluded by the
very definition of amorphous computing.

In the present paper the protocol introduced in [13] is used in designing
an algorithm simulating a unit–cost RAM (for inputs of bounded size). This
simulation shows that systems of amorphous computers do possess a universal
computing power. To the best of our knowledge this is the first result of this
kind.

A formal model of the amorphous computer is described in Section 2. In Sec-
tion 3, for the sake of completeness, the asynchronous communication protocol
from [13] is briefly presented followed by a new version of the broadcasting algo-
rithm. Some useful properties of random graphs pertinent to our application are
mentioned in Section 4. The main result of the paper, i.e., an algorithm simulat-
ing a unit-cost RAM with a bounded-size input on our model of the amorphous
computer, and its complexity analysis, is given in Section 5. Section 6 is devoted
to conclusions.

2 Model

In order to be able to prove universality of any model of computation we have to
define this model quite rigorously: only then we can design plausible algorithms
for it. To that end we give the definition of an amorphous computer as introduced
in [13].

Definition 1. An amorphous computer (AC) is a sextuple A = (N,S, P,A, r, T )
where

1. N is the number of processors (also called nodes) in the underlying network.
Each node is a RAM enhanced by a module for wireless sending and receiving.
All nodes are identical, controlled by the same program, except of a single
distinguished node called the base station. In addition to the standard node
facilities (see below) this node is capable to send and receive data to/from a
remote operator and is used to enter the data into the AC and to send the
results of AC data processing to the operator.
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2. Each RAM has a fixed number of registers. Each register has length s bits
and can contain one of S = 2s different values. Every RAM is equipped by
a special read-only register called rand, a special read-only register rin and
a special write-only register rout. On each read, register rand delivers a new
random number. The registers in all nodes are initialized by the same starting
values.

3. P is a random process assigning to each node a position with continuous
uniform distribution over a planar area A, independently for each node.

4. r gives the radius of a communication neighborhood. Any two nodes at dis-
tance at most r > 0 are called neighbors. All neighbors of a node form the
node’s neighborhood.

5. T > 0 is transmission time of a message within a neighborhood of any node.
6. (Asynchronicity:) In each RAM any instruction takes one unit of time. The

actions (computations, communication) of all processors are not synchro-
nized.

7. The nodes communicate according to the following rules:
– all nodes broadcast on the same channel;
– if a node writes a value representing a message to rout, this message is

broadcasted to its communication neighborhood;
– if none of the given node’s neighbors is broadcasting a message, then the

given node register rin contains an empty message λ;
– if exactly one of a given node’s neighbors is broadcasting a message m,

then after time T register rin in the given node contains m;
– if two or more of the node’s neighbors are broadcasting a message and

the time intervals of broadcasting these message transfers overlap, then
there is a so–called collision and the rin register of the receiving node
contains empty message λ;

– the nodes have no means to detect a collision, i.e., to distinguish the case
of no-broadcast from the case of a multiple broadcast.

Note that since the register size of each RAM is finite, each RAM including its
random number generator can be seen as a probabilistic finite automaton of size
O(S) (because each RAM has but a constant number of registers). However,
we have chosen to see each automaton as a “little RAM” since such a view
will support the result we are after (i.e., a simulation of a unit-cost RAM) and
corresponds more to practice.

An AC operates as follows. The input data enter the AC via its base station.
From there, the data (which might also represent a program for the processors)
spread to all nodes accessible via broadcasting. In a “real” AC additional data
might also enter into individual processors via their sensors which, however,
are not captured in our model since they do not influent the universality result.
Then the data processing within processors and data exchange among processors
begins. The results are delivered to the operator again via the base station.

In practice, nobody would probably try to simulate a universal computation
by an AC. Nevertheless, a proof that this is in principle possible hints to the
flexibility of the proposed model and shows that whatever computational prob-
lem will be encountered in practice, it would be solvable on our model. In this
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sense, the proof of universality presents a “killer application” for the underlying
model.

3 Asynchronous Communication Protocol

In order to enable communication among all (or at least: a majority of) available
processors the underlying communication graph of our AC must have certain de-
sirable properties. The properties which are of importance in this case are: graph
connectivity, graph diameter and the maximal degree of its nodes. Obviously,
a good connectivity is a necessary condition in order to be able to harness a
majority of all processors. Graph diameter bounds the length of the longest
communication path. Finally, the node degree (i.e., the neighborhood size of a
node) determines the collision probability on the communication channel.

An instance of an amorphous computer A whose underlying computational
graph has a maximal connected component of size N containing the base station
is called a well–formed instance of A of size N.

Assuming that the nodes of an AC could participate in its computation there
must exist an algorithm of node–to–node communication used by the nodes to
coordinate their actions. Such an algorithm will consist of two levels. The lower
level is given by a basic randomized broadcasting protocol enabling each node to
broadcast a message to its neighborhood. Making use of this protocol we extend
it, on the second level, to a broadcasting algorithm that can be used to broadcast
a message from a given node to all other network nodes.

Protocol Send: A node is to send a message m with a given probability ε > 0 of
failure. The protocol must work correctly under the assumption that all nodes
are working concurrently, asynchronously, using the same protocol and hence
possibly interfering one with each other’s broadcast.

The idea is for each node to broadcast sporadically, minimizing thus a com-
munication collision probability in one node’s neighborhood. This is realized as
follows. Each node has a timer measuring timeslots (intervals) of length 2T (T is
time to transfer a message between any two neighbors). During its own timeslot,
each node is allowed either to listen, or to send a message at the very beginning
of its timeslot (and then listen till the end of this timeslot). At the start of each
timeslot a node sends m with probability p and this is repeated for k subsequent
timeslots. The probability of sending m is determined by the node’s random
number generator. The values of p and k are given in the proof of the following
theorem.

Theorem 1 (Sending a message). Let A be a well–formed instance of an
amorphous computer. Let the underlying computational graph have the maximal
neighborhood size bounded by Q. Let 1 > ε > 0 be an priori given allowable
probability of failure. Assume that all nodes send their messages asynchronously
according to the Protocol Send. Let X be a node sending message m and Y be
any of X’s neighbors. Then Protocol Send delivers m to Y in time O(Q log(1/ε))
with probability at least 1− ε.
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Sketch of the proof: Thanks to our choice of the length of the timeslots, for each
timeslot of a given node X there is exactly one corresponding timeslot of some
other node Y such that if both nodes send asynchronously in their timeslots,
only a single collision will occur. This is so because if X has started its sending
at the beginning of its timeslot, X’s and Y ’s sendings overlap if and only if Y
had started a sending in a timeslot that was shifted with respect to the beginning
of X’s timeslot by less than T time units in either time direction. The timeslots
of length shorter than 2T could cause more than a single broadcast collision
between the arbitrary pairs of nodes, whereas longer timeslots would delay the
communication.

We will treat message sendings as independent random events. Message m is
correctly received by Y in one timeslot if X is transmitting m (the probability
of such event is p) and none of Y ’s neighbors is transmitting (the corresponding
probability is (1 − p)Q), giving the joint probability p(1 − p)Q. The value of
p(1 − p)Q is maximized for p = 1/(Q + 1). The probability of a failure after
k timeslots is [1 − p(1 − p)Q]k = ε. Hence, k = log ε/log[1− p(1− p)Q]. The
denominator in the latter expression equals −∑∞

i=1[p(1−p)Q]i/i ≤ −p(1−p)Q =
−1/(Q + 1)(1 + 1/Q)−Q ≤ −e−1/(Q + 1) leading to k = O(Q log(1/ε)).

2

Note that the protocol can work for any value of ε. However if we want k to
fit into one register then k ≤ S must hold. This would impose a bound in the
form ε ≥ [1− p(1− p)Q]S on the allowable value of ε.

In order to send a message to any node of an AC we use the idea of flooding
the network by that message, i.e, broadcasting the message to all nodes of the
network.

Algorithm Broadcast. This algorithm is used to deliver a message m from a
node X in the network to all remaining nodes which are not locked with respect
to to m. A node is called locked with respect to a message z if and only if except
of z, the node transmits any other incoming message. To broadcast m to the
network, X sends m using Protocol Send with probability ε/N of failure. Upon
receiving m, any node sends m using Protocol Send with failure probability ε/N .
The locking mechanism is implemented straightforwardly: each node remembers
the last sent message and ignores it if it is received again—it “locks itself” with
respect to that message.

Theorem 2 (Broadcasting). Let D be the diameter of the communication
graph. Then, for any ε : 0 < ε ≤ 1, Algorithm Broadcast delivers m to each
node that has not been locked with respect to m in time O(DQ log(N/ε)) and
with probability 1− ε. Afterwards, all nodes will be in a locked state with respect
to m.

Sketch of the proof: Starting from X, m spreads through the network in waves
as a breadth-first search algorithm of the communication graph starting in X
would do it. Transmission between waves takes time O(Q log(N/ε). Afterwards,
the nodes of the previous wave enter a locked state. Obviously, after repeating
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this process in parallel, asynchronously, at most D times, m will reach all nodes
and all nodes will be in a locked state with respect to m. The algorithm thus
takes time O(DQ log(N/ε)). For one node the failure probability is ε/N and for
the whole network this probability will rise to ε.

2

Again as with the sending protocol, the achievable error ε is bounded if we
want value k of the Protocol Send to fit into one register. For the error probability
of algorithm broadcast it holds that ε ≥ N [1− p(1− p)Q]S .

Note that our broadcasting protocol can reliably handle only one message
at a time transferred through the network and that no same messages following
one after the other can be processed by the protocol, since after re-sending it
the nodes get locked with respect to the first message and remain locked until a
different message arrives.

4 Properties of random networks

Note that our definition of an AC makes no assumptions about the underlying
communications graph whereas the statements of both Theorems 1 and 2 have
referred to the underlying communication graphs. This has been so since only
some graphs are “good” for our purposes while the others cannot support any
interesting computations. In the previous theorems the appropriateness of the
underlying graphs has been ensured in theorems’ assumptions. However, by the
definition of an AC, its communication network is shaped by process P as a
result of the node placement (cf. Definition 1, item 3), which means that the
resulting network has a random structure. Now we will be interested under what
conditions a randomly emerging network will have the properties assumed in the
previous theorems. As we have seen, for the basic protocol to work we needed
connected networks. Moreover, in order to estimate the efficiency of the protocol
we made use of the diameter and of the maximum neighborhood size of the
respective networks. Therefore we will focus onto the latter mentioned properties
of random networks.

For an amorphous computer A = (N, S, P, A, r, T ) its node density d is de-
fined as d = Nπr2/a (a denotes the size of area A). In the rest of the paper
we assume that the nodes constituting a network are distributed uniformly ran-
domly (by process P ) over a square area A with a given density.
Connectivity A connected component of a graph comprises all nodes among
which a multi-hop communication is possible.

The existence of an edge between two nodes is a random event depending on
the random positions of the nodes. The probability of edge presence is higher
with larger communication radius r and is lower when the nodes are spread over
a larger area A.

Node density d gives the average number of nodes in the communication
area of one node. Depending on the node density we expect to observe different
topology of the node connections graph. For low densities, the majority of the
nodes will be isolated with high probability. For medium densities connected
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components of fixed average size (not depending on the total number of nodes)
will be formed with high probability.

Similar model to ours is studied by percolation theory (cf. [8]). In the so-called
continuum percolation model, circular disks are placed at random positions in
an infinite plane. This would correspond to our model of amorphous computer,
where the radius of the disk would be r/2. The percolation theory shows that
there is a critical density of the disks above which there emerges an infinite con-
nected component. The critical density is computed numerically and its value is
around 4.5 (see [7]). This result tells us that we will not obtain any large com-
ponent with density lower than this. However, even this critical density does not
guarantee reasonably large component in our amorphous computer. We would
like that there is only a little fraction of nodes that are not connected to the sin-
gle large component. For this we need density even higher than the percolation
threshold.

In order to find out which node density ensures reasonably large connected
component we made experiments for several node counts. For each node count
the experiment consisted of 400 runs. In each run we created one random graph
and observed the size of its largest component. Then we estimated the compo-
nent size such that it was not achieved only in 2 % of the experimental runs
(i.e., we estimate the 2nd percentile). The results are shown in Fig. 1. We have
verified that density d = 6 gets components of reasonable size, and all presented
experiments are using this density.

The interpretation of the results is following. Let’s take the case N = 100.
The obtained value 0.48 means that a random realization of a graph with N
nodes will have a component with more than 0.48N nodes with probability
98 %. As can be seen from our figure, for larger node counts the fraction tends
to rise.

Thus, whenever an AC with at least 100 connected nodes is needed, we should
actually create an AC with 100/0.48 = 210 nodes. The expected AC will then
have a component containing 100 connected nodes with 98 % probability. The
penalty of this scenario is that a constant factor of nodes gets wasted which may
only be acceptable for cheap devices. This is in contrast with, e.g., the ad-hoc
networks scenario using expensive devices, where full connectivity is sought and
the node density must rise above the connectivity threshold which is of order
Ω(log N) (cf. [9]).

Diameter The diameter of a graph is the maximum length of a shortest path
between any two vertices of that graph.

Analytically, the size of a random graph diameter has been derived, e.g., in [6].
It shows that the diameter is about O(D/r), where D is the diameter of a circle
circumscribing the area containing the nodes. But we cannot directly apply this
result to our AC. First, the result has been proved only for the asymptotic case
when number N of nodes goes to infinity. Second, the referred result holds only
when the node density is above the connectivity threshold (which is Ω(log N)).
In our scenario, we have used constant node density that is above the percolation
threshold but below the connectivity threshold.
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In [11] an experiment was carried out measuring the diameter size while
varying both the number of nodes and the transmission range. However, we are
interested in the behavior of the graph diameter when the node density remains
fixed. Therefore we performed 400 test runs with various numbers of nodes with
density d = 6 and measured the 98th percentile of a graph diameter. The results
are shown in Fig. 2.
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Our experiments show that the graph diameter follows the asymptotic ex-
pression derived in [6] also below the connectivity threshold. When the node
density d is fixed, then O(D/r) = O(

√
N/d). In Fig. 2, the node count increases

quadratically and it can be easily seen that the graph diameter rises roughly
linearly with

√
N . We see that an upper bound in the form diameter = 2.7

√
N

holds. We expect that at most in 2 % of random realizations the graph diameter
will be larger than this value.

Maximum neighborhood size can be estimated by applying the techniques
known from the solutions of the classical occupancy problem.

Theorem 3. Let A = (N,S, P, A, r, T ) be an AC with N nodes randomly uni-
formly dispersed by process P with density d over a square area A, let Q =
d8 log N/ log log Ne. Then for a sufficiently large N, the probability that there
are more than 12Q nodes in any communication neighborhood of a node is less
than 4/(dN).1

Proof: We start by exactly covering A of size a by H = h×h squares, with h ∈ N;
the size of each square is chosen so that its size is maximal, but not greater than
the area πr2 of a communication neighborhood. Then (h− 1)2πr2 < a ≤ h2πr2

and since a = Nπr2/d, we get N/H ≤ d and for h ≥ 4, H/N < 2/d.
We estimate the probability p=k that in a randomly selected square there

will be exactly k nodes for k “not too small” (see in the sequel). Let us consider
all sequences of length N over {1, 2, . . . , H} of node “throws” into H squares

1 All logarithms are to the base 2.
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numbered by 1, 2, . . . H. There are HN of such sequences, each of them being
equally probable. Consider any i, 1 ≤ i ≤ H. There are (H − 1)N−k

(
N
k

)
se-

quences containing exactly k occurrences of i. Then p=k =
(
N
k

) (H−1)N−k

HN =(
N
k

)
1

Hk

(
1− 1

H

)N−k and the probability that there are at least k nodes in a

square is p≥k =
∑N

j=k p=j =
∑N

j=k

(
N
j

) (
1
H

)j (
1− 1

H

)N−j
. Using Stirling’s ap-

proximation
(
N
j

) ≤ (eN/j)j and upper-bounding the last factor in the last ex-

pression by 1 we get p≥k ≤
∑N

j=k

(
eN
jH

)j

≤ ∑N
j=k

(
ed
j

)j

≤ (
ed
k

)k ∑∞
j=0

(
ed
j

)j

≤
(

ed
k

)k ∑∞
j=0

(
ed
k

)j
. The latter infinite series converges to 1/(1− ed/k) providing

ed < k. Consider k such that ed < k/2; then the sum of the series is at most 2
and for k ≥ (ed)2, p≥k ≤ 2

(
ed
k

)k ≤ 2.2−1/2k log k.

For k = Q we get p≥k ≤ 2.2−
1
2

8 log N
log log N (3+log log N−log log log N) ≤ 2/N2 (tak-

ing into account that for a sufficiently large N, 3 + log log N − log log log N ≥
1
2 log log N). It follows that the probability that in any of the H squares there
will be at least Q nodes is 2H/N2 < 4/(dN).

Finally, note that for h ≥ 2 the size of a square is s > ((h − 1)/h)2πr2 ≥
1/4πr2. Hence, the area of a communication neighborhood is smaller than the
area of four squares. After realizing that the nodes from at most 12 squares can
enter a circular neighborhood of area πr2 the claim of the theorem follows. 2

From Theorems 1 and 2 it follows that for graphs with the maximum neigh-
borhood size bounded as in Theorem 3 the asymptotic time complexity of
ProtocolSend is O(log N log(1/ε)/ log log N) and that of AlgorithmBroadcast
O(
√

N log N log(N/ε)/ log log N), with high probability.
Note that the statistical properties of random networks do not depend much

on the presence or non-presence of small random subsets of nodes. This is vital
when considering the failure resilience of amorphous computers with respect to
random node faults.

5 The universal computing power of an AC

In this section we show how to program the nodes of an amorphous computer so
that it can actually compute according to an arbitrary unit-cost RAM program.
Rather then relying on simulations and observation of properties of graphs as
discussed in the previous section, everything in the sequel will only depend on
proved facts about the communication graphs.

Prior to the start of the simulation we must perform a setup procedure dur-
ing which we initialize the amorphous computer. This initialization procedure
consists of two phase: address assignment phase, and input reading phase.

After the computer is set up, the computation can start and run in an unat-
tended way. After the termination of a computation, output data are obtained
through the base station, using similar mechanism as that for entering the input
data.
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Each phase—address assignment, input entering, and simulation—can be
performed with a given failure probability as decided by the operator. The failure
probability of the complete simulation algorithm will then be the sum of failure
probabilities of the individual phases.

5.1 Address assignment

Initially, all nodes of the amorphous computer are identical. The purpose of
the address assignment phase is to break this symmetry and to assign different
addresses to the different nodes. In the first part of the respective algorithm, the
symmetry gets broken with the help of a random number generator: each node
generates its own “random” address. In the second part of the algorithm, the
node addresses are transformed into a continuous range between one and the
number of different addresses generate in the previous part.

Assume that in order to perform the intended computation we need an ad-
dress space of size M > 0. Assume that any register can hold log M + O(1) bit
numbers. The following randomized algorithm makes use of N = 2M processors
in order to generate at least M different addresses of the registers with a high
probability (the occurrence of registers with the same address does not harm).

The operator chooses the allowed error probability ε1 with which the al-
gorithm can fail due to a communication error. From this value the operator
estimates the value k = k(ε) for ε = ε1/N

2, to be used by the underlying Pro-
tocol Send. Before the algorithm starts, the base station broadcasts the values
of p, k and D to all nodes (cf. Theorem 1). The nodes will use parameter D
to compute the so-called flooding period. This is the maximum time in which a
broadcasted message reaches all nodes with an allowed failure probability. Ac-
cording to Theorem 1 and 2, flooding period has the length of 2TkD. After that
time all nodes stop sending that message.

Algorithm Generate Addresses

1. All processors randomly generate and store a binary string of length dlog(2M+
1)e in a variable called address;

2. The base station initializes two variables, round := 1 and max := 1;
3. Using Algorithm Broadcast, the base broadcasts pair (round, max) to all

processors;
4. Upon receiving this message, each processor whose address = round waits

for the length of one flooding period. Then, using Algorithm Broadcast the
node sends a confirmation — message “0” — back to the base and resets its
address to max;

5. If within the time of three flooding periods the base receives at least one
confirmation, max is increased by 1;

6. After the time of three flooding periods has elapsed, round is increased by
1.

7. If round < 2M then go to step 3;
8. If max ≥ M then HALT else go to step 1.
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Clearly, variable max counts the number of processors with different ad-
dresses whose confirmation has been delivered to the base station. In Step 4
waiting for one flooding period before sending a confirmation for each node is
necessary in order to ensure that no two different messages travel in the network
simultaneously (remember that the broadcasting protocol only works correctly
under the latter assumption). Waiting for three flooding periods in Step 5 and
6 is sufficient for a message sent by the base station to reach the farthest node
in the network, for this node to wait for the duration of one flooding period and
eventually for a confirmation sent by this node to return back to the base station,
with high probability. Finally, note that in order to reach the failure probability
of algorithm Generate Addresses to be less or equal ε1 the failure probability of
a single invocation of Protocol Send must have been set to ε1/N

2 since during a
single run of the previous algorithm this protocol is invoked O(N2) times in the
worst case.

Algorithm Generate Addresses is repeated until at least M different ad-
dresses are generated. The probability that this happens already after the first
trial is high and tends to 1 with the increasing M :

Lemma 1. Choosing 2M random numbers uniformly distributed in interval 1
to 2M , the probability that only M or less different numbers were chosen is less
than 1/

√
M + 1.

Proof: There are (2M)2M sequences of length 2M over {1, 2, . . . ,M}. Among
them, there are M2M sequences “made of” at most M different numbers which
can be selected in

(
2M
M

)
different ways. Hence the probability that a sequence

contains M or less different numbers is
(
2M
M

)
M2M/(2M)2M . By induction, one

can prove that
(
2M
M

)
< 22M/

√
M + 1. The claim of the theorem follows. 2

Theorem 4. In a well-formed instance of an amorphous computer of size N =
2M algorithm Generate Addresses generates M different addresses with proba-
bility 1− 1/

√
M + 1− ε1 in time O(NDQ log(N2/ε1)).

5.2 Input entering and register initialization

The operator chooses allowed error probability ε2 for communication failure in
the process of input entering and computes value k = k(ε) for ε = ε2/(MN),
to be subsequently used by the underlying Protocol Send. Before the algorithm
starts, the base station broadcasts the values of p, k and D to all nodes.

To make the subsequent simulation completely independent from the inter-
action of the AC with its operator, we will request that the input data of size n
will be initially stored in the first n nodes of our AC. Originally, the input data
are available to the base station which obtains them in a sequential manner from
the operator and broadcasts it, one by one, to the respective registers. For each
address i in the range 1...M the base station broadcasts a message of the form
(STORE, i, xi), where xi is the initial value of register i. The base station waits
for one flooding period after each broadcasted message.
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In principle, this above described input entering scenario allows entering of
data also during an interactive computation (which might be a more natural
way of utilizing an AC than its use as a universal computer) through the sensors
of individual nodes.

5.3 Simulation

We show the universal computing power of on AC by letting it simulate a unit–
cost RAM. We will assume that the entire RAM program as well as two RAM
accumulators are stored in the base station. In addition to the input data, the
contents of the RAM registers will be also held in the individual AC processors.

The RAM program will consist of the usual kind of instructions. For simplic-
ity we will assume that all instructions requiring two operands (indirect address-
ing, arithmetical operations) are realized in the following way. The first operand
is assumed to be in the first accumulator. The second operand (if any) is to
be delivered into the second accumulator. An instruction moving the register
contents between a register and the accumulator is realized as follows. The base
station broadcasts the current instruction holding the address of the register to
which the instruction is pertinent to all nodes of the AC. The instruction is real-
ized in the requested register (processor) which then sends back the confirmation
along with the current contents of that register.

In order to perform a simulation the operator chooses an allowed communi-
cation failure probability ε3. From this the operator computes value k = k(ε)
for ε = ε3/(2T (n)N), to be used by the underlying Protocol Send. Before the
algorithm starts, the base station broadcasts the values of p, k and D to all
nodes.

Then the simulation proceeds in rounds. In each round, the base station issues
the instruction to be realized. The network is “flooded” by this instruction using
Algorithm Broadcast. Upon arriving into any processor holding the respective
register the instruction is realized. Subsequently, after waiting for one flooding
period, a confirmation is broadcasted back to the base station, again by using
the broadcast algorithm.

Algorithm Broadcast allows only one message at a time to be travelling over
the network. As in the algorithm for addresses generation, the purpose of the
flooding period is to allow all nodes to enter the locked state. Before replying to
the base station’s instruction message a node waits for one flooding period. On
the other hand, the base station may send next instruction message only after
delay of three flooding periods allowing enough time for the message to spread
to the farthest node, a node’s waiting for one flooding period and sufficient time
for the reply to reach the base station.

In more detail, the simulation of the t-th instruction in the t-th round pro-
ceeds as follows.
Algorithm Simulate: Let εB be the probability of error of protocol Broadcast,
εB = Nε in a single round of the simulation. At the beginning of the t–th round,
we assume that the following invariant holds: the probability that communication
error occurred up to this round is 2(t− 1)εB .
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In order to realize an instruction requiring a load from register i, or a store
of value contents into register i, the base station broadcasts a triple of the
form (i, instr, contents), where instr is either LOAD or STORE. In the former
case, contents is empty, whereas in the latter case contents holds the value to be
stored in the i-th register. Upon arriving at any processor which is not in a locked
state, the processor starts re-sending of the triple using Protocol Send. Moreover,
upon arriving at a register whose address = i, after elapsing of one flooding
period a load instruction makes the processor to broadcast a confirmation pair
of form (LOAD, reg[i]) where reg[i] is the contents of the i-th register. A store
instruction is realized by performing the assignment reg[i] := contents within
the processor and again, after elapsing of one flooding period, by broadcasting
a confirmation pair of the form (STORE, empty). The base station waits for
three flooding periods within which it should receive a confirmation of the t-
th instruction realization. If during that time no confirmation is obtained, the
simulation ends with an error.

By that time, the t-th instruction has been issued with probability of com-
munication error εB . With the same probability of error, the base station has
obtained the respective confirmation. The total probability of communication
error up to now is 2(t− 1)εB + 2εB = 2tεB , hence the invariant holds.

Note that the assumption on no two same instructions following one after
another is fulfilled since each transmitted instruction is followed by a confirma-
tion.

2

As far as the reliability of our simulation algorithm is concerned, note that the
algorithm consists of T (n) rounds, where T (n) denotes the time complexity of the
original RAM algorithm. If each round fails with the probability 2εB , the entire
simulation will fail with probability 2εBT (n). Thus, choosing εB = ε3/(2T (n))
leads to a simulation algorithm with the probability of failure at most ε3.

Putting all the results together we see that in order to simulate for a given
input of size n a unit cost RAM of time complexity T (n) and space complexity
S(n) with error probability at most ε3, we must first “set up” a well-formed in-
stance of an amorphous computer of size at least N ≥ max{2S(n), n} processors
(the size of the amorphous computer must be at least n in order to accommodate
the input data). We get the following result:

Theorem 5 (Simulation). Let R be a unit-cost RAM of time complexity T (n)
and space complexity S(n). Let A = (N,S, P,A, r, T ) be a well–formed instance
of an amorphous computer of size N ≥ max{2S(n), n} with a communication
graph of diameter D and with maximal neighborhood size Q. Then for any input
of size n : N ≥ max{2S(n), n} and any 0 < ε3 ≤ 1, any computation of R
can be simulated by A in time O(T (n)DQ log(2NT (n)/ε3)), with probability of
failure at most ε3.

Proof: Each simulation round consists of sending the instruction message by
the base station and sending an answer by some node. Thus, communication
in each round must be done with error probability εB = ε3/(2T (n)). Thus,
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each round takes time O(DQ log(2NT (n)/ε3)). The whole simulation takes time
O(T (n)DQ log(2NT (n)/ε3)).

2

Requiring that k must fit into one register of size s the smallest error we can
achieve is 2T (n)N [1 − p(1 − p)Q]S . Thus, for larger N and T (n) we may need
nodes with longer registers allowing computation with higher-precision numbers.
But in any practical realization of an amorphous computer this should not be
a significant limitation because the necessary register size rises very slowly, S =
O(log(T (n)N)).

Note that the simulation algorithm can be changed so that the RAM program
to be simulated need not be contained within the base station. Rather, as a num-
bered ordered sequence of instructions the program can be stored, instruction by
instruction, in the nodes of amorphous computer, one program instruction per
node. In this form, prior to the start of simulation, the RAM program must be
broadcasted by the base unit to the network. Afterwards, during the simulation,
the role of the base station from the previous simulation is taken over by the
registers containing the currently simulated instruction.

6 Conclusion

We have shown a universal computing power of a formalized model of an amor-
phous computer. The main departure point of the amorphous computing struc-
tures from other models of wireless networks or distributed computing is the
randomness of the underlying network topology, anonymity of processors not
possessing universal computing power and a principal lack of synchronicity com-
bined with the impossibility to detect broadcasting collisions. Unlike the ma-
jority of the known models which work whenever appropriately programmed,
this need not be the case with an amorphous computer since its nodes can be
dispersed in an unlucky manner that does not support the computer’s function-
ality. For our model we have designed and analyzed an algorithm simulating a
unit-cost RAM with bounded size inputs. To the best of our knowledge, our
simulation algorithm seems to be the first result showing the universal comput-
ing power of a family of amorphous computers of the type we have considered.
This result is interesting from the viewpoint of the computability theory since it
shows that universal computing power can also emerge in randomly organized
“amorphous”, non-uniform communication structures consisting of anonymous
building elements not possessing universal computing power.

For future research the next natural step could be to consider a “flying”
amorphous computer with randomly mobile processors. Along these lines, the
series of papers by Angluin et al. (cf. [3] and its follow-ups) could serve as an
inspiration.
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