
B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 540–550, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Architecture for Combining Semantic Web
Techniques with Intelligent Tutoring Systems

Pedro J. Muñoz Merino and Carlos Delgado Kloos

Carlos III University of Madrid, Department of Telematics Engineering,
Avda de la Universidad, 30, E-28911 Leganés (Madrid), Spain

{pedmume,cdk}@it.uc3m.es

Abstract. There are several possible applications of Semantic Web techniques
in Intelligent Tutoring Systems (ITSs) and important advantages can be ob-
tained from their application. This paper presents an architecture to combine
Semantic Web techniques with ITSs, explaining its elements, relationships,
challenges, and the different design criterions, offering some guidelines to make
decisions when different implementation solutions are possible. We have im-
plemented an instance of this architecture using the XTutor ITS and the CWM
(Closed World Machine) Semantic Web reasoner. The implemented framework
permits personalization of problems with hints for students. The paper also de-
scribes this specific implementation of the general architecture as well as some
user adaptation examples with the implemented framework.

1 Introduction

There are many different ITSs; a categorization of them can be seen in [1]. The func-
tions that such systems can perform vary; some examples are student assessment [2],
or adaptive hypermedia [3], [4]. Some ITSs use educational information in a proprie-
tary way, while others follow educational standards to enable interoperability.

There are several advantages in using Semantic Web techniques with ITSs, which
justifies its combination. At present, few works have discussed architectures for ena-
bling this combination. Reference [6] presents a Web service-based architecture to
enable Semantic Web methods in adaptive hypermedia. Our architecture approach
presents a different point of view, because it focuses on the relationship between
Semantic Web reasoners (from now on reasoners) and existing ITSs, explaining its
architectural elements, design criterions, implementation problems, etc. Moreover, a
few works exist which explain specific system solutions but they do not cover the
different architectural design criterions and implementation problems. In this work,
we contribute to these issues, explaining an architecture for combining Semantic Web
with ITSs that is general enough. Furthermore, we explain some challenges that Se-
mantic Web techniques present when applied with ITSs; those challenges require
architecture implementation decisions, and we give some recommendations.

We illustrate a specific case of the general architecture with the implementation of
a framework to provide adaptive hints in problem-based learning based on this archi-
tecture and using the CWM reasoner [7], a new specification of hints we defined [8],
and a hint player [8] that we implemented into the XTutor ITS [9].

 An Architecture for Combining Semantic Web Techniques with ITSs 541

The remainder of this paper is organized as follows. In Section 2, there is an out-
line of the related work about hint tutors and Semantic Web applications in education.
Section 3 explains the general proposed architecture for combining Semantic Web
with ITSs. Section 4 presents a specific implementation of the architecture for adap-
tive hints. In Section 5, some user adaptation examples with the implemented frame-
work for adaptive hints are shown. Finally, Section 6 is devoted to the conclusions.

2 Related Work

2.1 Hint Tutors

It is clear that the provision of hints as a teaching methodology during problem solv-
ing has a positive impact on student learning (e.g. [10]). Therefore, several hint ITSs
exist, as well as related works about this topic (e.g. [11], [12], [13]). Several of these
systems allow the personalization of hints but using techniques different from the
Semantic Web, such as Bayesian Networks (e.g. [11]).

2.2 Semantic Web Applications in Education

Ontology engineering is a key aspect for the success of Semantic Web. In [14] there is
a clear vision of the use of ontologies for Artificial Intelligence in education. There
are educational ontologies for different purposes such as competences [15], or domain
ontologies that can be derived from the text [16]. A repository of ontologies for edu-
cation was built [17]. Some ontologies have also been created to enable the inclusion
of e-learning standards into the Semantic Web, such as for SCORM (Sharable Con-
tent Object Reference Model) [18], or IMS-LD (Learning Design) [19], [20].

There are different possible applications of Semantic Web in education. We focus
on adaptive applications. The different types of adaptive hypermedia are explained in
[3]. Adaptive applications using the Semantic Web have been proposed for contents
[21], assessments [22] or educational feedback [23]. In the implemented framework
described in this paper, we focus on a different domain, which is the provision of
adaptive hints, taking into account the defined elements of our specification of hints.

3 General Architecture

Fig. 1 shows a graphical representation of the proposed architecture. Section 3.1 ex-
plains its elements and relationships. Section 3.2 describes the design criterions, ana-
lyzing the advantages and disadvantages of the different possible decisions.

3.1 Description of the Elements and Their Relationships

The Data Storage contains the main information that the system can use. The data is
divided into two groups: static and dynamic. Information is considered static when it
does not change (e.g. specific course objectives), while information is considered
dynamic when it can change (e.g. the number of times a student has visited some
content). In any case, teachers or system designers must provide all the static informa-
tion at the beginning, and the initial state of dynamic information when applicable.

542 P.J.M. Merino and C.D. Kloos

Fig. 1. General Architecture for Combining Semantic Web techniques with ITSs

The Semantic Web reasoner is a tool that permits logic reasoning based on a set of
rules, resources and facts according to defined ontologies, reaching conclusions as a
result. Rules, resources and facts must be in specific formats (e.g. RDF/XML [24] or
N3 [25]). Therefore, a transformation module is required to convert the different in-
formation formats into Semantic Web annotations (unless some information resources
are directly annotated in Semantic Web languages, for which the transformation mod-
ule does nothing).

The Arbiter and reasoned conclusions memory selects the conclusions to store in
each moment in order not to repeat already made inferences. The reasoned conclu-
sions of the reasoner are in a format that is not usually understandable by ITSs. There-
fore, another transformation module is required to convert those conclusions into ITS
known formats. Here again, some conclusions may not need transformation if the ITS
does not use this information (but the reasoner may use it again, if it represents feed-
back conclusions to the reasoner as shown in Fig. 1).

Lastly, the ITS receives Resources Requests from students that are then transmitted
to the ITS Processing module which takes the proper actions, having data storage
information as input. Dynamic data can be modified as a result of the ITS processing
module. Finally, some resources (responses to requests) must be presented to the
students, using the ITS Presentation module that can obtain any information from the
Data Storage. Defined educational specifications may bring together (e.g. in XML
files) processing and presentation information.

3.2 Design Criterions and Decisions

Several design criterions and decisions must be taken when implementing the archi-
tecture. Fig. 2 shows an overview of the different issues to decide.

 An Architecture for Combining Semantic Web Techniques with ITSs 543

Fig. 2. List of decisions to be taken in the defined architecture

In Which Formats Is the Information Stored? The same information can be stored
in different formats (e.g. a data base format, XML, N3 or ITS variables). We must
make a decision about which format to use, based on the following points:

1) Desired level of interoperability. The desired level of interoperability should be
decided (e.g. with educational systems that interpret XML specifications, or with
Semantic Web tools that interpret Semantic Web formats such as RDF or N3). It may
be the case that interoperability is not important, so any formats are possible.
2) Existing implemented tools: For example, if we had an ITS player already imple-
mented which interprets an XML format for assessments, then information about
assessment description might be put into this format to take advantage of the tool.

Sometimes the information must be replicated in different formats. The designer
can write the information directly or a transformation module can be used.

Which Element Performs Specific Processing Tasks? To decide which element
will perform each specific task, we should achieve a balance between these issues:

1) The formats of the existing information.
2) The desired rules for reuse. If we want to reuse some Semantic rules between dif-
ferent systems (e.g. ITSs), then the reasoner should do the processing.
3) Execution Time. In general, an ITS performs a processing task more quickly than
the reasoner. For tasks where execution time is critical, this is important.

544 P.J.M. Merino and C.D. Kloos

How is the Reasoner Executed? The reasoner can be executed as a response to a
student resource request or in background. The advantages of the former are:

1) Responses to the students are up to date, because the reasoner is executed for each
specific request.
2) It is not necessary to store past reasoned conclusions. Since each request is trans-
mitted to the reasoner, then the conclusion can be reached at that moment.
But the main advantage of executing the reasoner in background is the reduction of
the system response time to the user. When a user request arrives, the system may
respond to the user with some data that had been inferred previously, so there is no
extra time for reasoning on that specific request.

Finally, it is important to note that both methods can be combined.

How Are the Reasoned Conclusions Stored? For each application, there is a set of
different input combinations that need reasoning processing. For example, it could be
the combinations between the different user states and educational resources. The
different possibilities regarding which reasoned conclusions should be stored are:

1) All past states: All conclusions from any past states are stored. Indeed, all the states
can be reasoned before the system starts working. With this solution, we save reason-
ing time, not having to repeat the same thing several times. This is recommended if
there are few states, no storage limitations, and the response time is critical.
2) Some past sates. Techniques similar to cache memory can be used to select the past
stored states. This is recommended when there are a lot of different possible states,
some memory limitation or the response time is not so critical.
3) None. This is recommended when the response time for a request is not critical.
4) Some Future States. It consists of doing the reasoning for selected future states
considering the greatest likelihood of appearing based on the present ones. This is
recommended in the same cases as Some past states, and they can be applied together.

How Are Concurrent User Requests Addressed? Concurrent user request problems
occur whenever the reasoner or/and the ITS try to write simultaneously to data that is
common to several users. Solutions can include a specific storage area for each user
or synchronize the part of code that accesses shared resources. Another effect of the
concurrency problem is that the response time can increase because of the techniques
to avoid it. This is particularly important for the reasoner. For each user request, at
least one process related to the reasoning is created. This is more time-consuming
than a thread for each request. In addition, if there are synchronized parts, then only
one request is at the CPU at each time which increments the response time.

4 Framework Implementation for Personalized Hints

This section presents a specific implementation of the general architecture for achiev-
ing personalized hints. Section 4.1 introduces XTutor and the extension module of
hints we developed. Section 4.2 explains the specific elements of the architecture.
Finally, Section 4.3 explains the different design criterions and implementation deci-
sions.

 An Architecture for Combining Semantic Web Techniques with ITSs 545

4.1 Overview of XTutor and Its Hint Player

XTutor [9] is an ITS developed at the Massachusetts Institute of Technology. It in-
cludes a library of standard tags to provide some types of questions for students. We
complemented it with a new library (hints.tags.py) to allow XTutor to provide hints.
Full details of our specification of hints are in [8]. The questions with hints are cre-
ated as XML files (called XDOCs) and XTutor is able to interpret and run them [8].

4.2 Elements of the Implemented Architecture

Fig. 3 shows the architecture that we implemented to obtain adaptive hints. This ar-
chitecture is a particular case of the architecture presented in Fig. 1, and the same
colour denotes the same function. In this implementation, the reasoner used is CWM
[7], the ITS used is XTutor, and the Semantic Web language is N3 [25].

Fig. 3. Implemented Architecture for achieving personalized hints

The student requests an URL resource. This request is received by the cwm.tags.py.
That is a program file we have implemented which executes some processing tasks. It
calls CWM several times. Reasoning is performed by CWM based on the personal-
ization rules, obtaining conclusions. The data that CWM receives as input are previ-
ous CWM conclusions related to the same user request; and Semantic annotations
about users (preferences, knowledge, etc.), problems and hints (such as the number of
students that solved the problem correctly without hints), and the subject domain. For
each of these aspects, there is an ontology. Some static information (XML, rules and
Semantic annotations) is written at the beginning (e.g. the XDOC initial files that
teachers create that are XML files representing problems and hints), while other

546 P.J.M. Merino and C.D. Kloos

information changes dynamically and is stored as XTutor variables (such as the num-
ber of students that answered a problem without hints correctly) and needs a conver-
sion from XTutor to N3, so a transformation module is required.

Once the whole sequence of specific rules is performed, a final conclusion is ob-
tained by CWM. This conclusion is related to the types, number of hints, etc. that will
be applied to the requested resource. Next, as part of the cwm.tags.py file there is a
transformation module from the N3 final conclusions and the initial XDOCs to a final
XDOC compliant with the defined specification of hints. The initial XDOC is trans-
formed to a different XDOC based on the reasoned conclusions. At present, the initial
XDOC is not used as an input for reasoning by CWM so it is only generated in XML
format by the teacher; however we will introduce it too in the future. To do so, a
transformation module from XDOC formats into N3 annotations will be required.

Finally, the cwm.tags.py calls the hint player we implemented. This module re-
ceives the final XDOC as input and it runs it. The hint player performs processing and
presentation tasks. The hint player processes information using state variables (e.g.
present scoring, hints viewed or hints answered correctly), modifies variables accord-
ing to the interaction, and presents an HTML response page to the student with the
problem with hints. The problem with hints is personalized according to the conclu-
sions inferred by CWM. Some of the variables modified in XTutor as a result of the
interaction have an effect on the next CWM reasonings. For example, if a student
responds incorrectly to a problem, then the student’s knowledge level will decrease in
the concepts covered by such problem. These necessary dynamic data variables are
transmitted through the transformation module to obtain N3 annotations to be used in
reasonings.

4.3 Decisions in the Specific Implemented Architecture

Now, we tackle the decisions made. Firstly, we have the following information:

1) XDOCs describing problems with hints. This is to allow interoperability at the
XML level, to have data in a format understandable by the XTutor hint player (as it
can perform quick processing and presentation of XML files), and because at this
moment we do not need to reason about this aspect in CWM.
2) Some information about users, problems, hints, subject concepts and rules in N3.
This is because we want to perform all the processing related to personalization with
CWM (this is for code reuse, high level abstraction language, etc.), so it is necessary
to write it in a CWM understandable format. In addition, we want to have Semantic
Web interoperability of such aspects.
3) Dynamic information that changes between interactions. The database and the
XTutor variables are the dynamic information. Since we do not need interoperability
for this information, the quickest way for processing is to store such information in
XTutor proprietary formats. But the information that is needed for reasoning is trans-
formed, so this information will be replicated in two different formats.

CWM performs some processing tasks (to determine the personalized hints) be-
cause of rule reuse, while XTutor performs the other processing tasks.

At present, CWM is executed for each user request, but not in background. In addi-
tion, there are no conclusions stored (neither past nor future conclusions). This is

 An Architecture for Combining Semantic Web Techniques with ITSs 547

because we have not had time response problems with the present implemented rules
and number of users accessing to the system. But in case rules implied a higher proc-
essing time, it would then be worthwhile to consider other techniques.

Finally, we are using different access areas per user to avoid concurrent user re-
quests problems. There is no concurrency problem for static or dynamic data that is
controlled by XTutor because XTutor controls concurrency by itself. The only data
that can bring concurrency problems are the final XDOC generated. Note that if some
conclusions were stored (past or future conclusions), then a possible solution would
be to store them as a part of the final generated XDOC (this is permitted by the speci-
fication of hints defined). In this case the initial XDOC for each request would be the
latest XDOC generated and it would be necessary to synchronize access to the final
XDOCs, since several users may want to write concurrently in the same XDOC. Fur-
thermore, CWM would be executed as a response to a request only in case the data
related to the incoming request would not have been reasoned previously.

5 User Adaptation Examples

Figures. 4, 5, 6 and 7 show four different user adaptation examples in our framework.
All the users request the same URL resource, so they obtain the same root problem (a
multiple choice about servlets). But each student receives different personalized hints
as a result of the reasoning performed by CWM. The first student (Fig. 4) does not
receive a hint because he/she has a strong knowledge level in all the concepts.

Fig. 4. User 1 adaptation example

The second student (Fig. 5) receives one problem as a hint about the only concept
included in the root problem that the student does not master. Among the candidate
hints, the one whose level of difficulty is appropriate to the student level is selected.

Fig. 5. User 2 adaptation example

Fig. 6 shows a student that has a low knowledge level for all the concepts included
in the root problem, so he/she is presented with a sequence hint composed by four
problems, one for each concept.

548 P.J.M. Merino and C.D. Kloos

Fig. 6. User 3 adaptation example

User 4 does not receive the hints immediately (Fig. 7). Instead, he/she receives a
list with meta-information about the concepts covered for each hint he/she can see
(which it is in our hint terminology a hint group). This is because User 4 has a combi-
nation of features in his/her personality model, so CWM always provides a hint group
for this user, and it will always provide as many hint possibilities as concepts included
in the initial root problem, but he/she will be able to select only a maximum of n
hints, being n the number of concepts the student does not know well. In this case
User 4 had a low level only on one concept, so he/she could only select a maximum
of one hint out of the four available.

Fig. 7. User 4 adaptation example

In these user adaptation examples, the number and types of hints provided, the con-
cepts chosen, etc. for each specific student are a result of the reasoning by CWM
based on the different data. Finally, the conclusion results are transformed into XML
files understandable by the XTutor hint module, which is the one that performs the
final presentation to the users.

6 Conclusions and Future Work

In this paper we have presented an architecture for combining Semantic Web tech-
niques with ITSs. This architecture is feasible to develop as we have implemented a
specific case of it, for the provision of personalizing hints using the CWM Semantic
Web reasoner, and the XTutor ITS.

 An Architecture for Combining Semantic Web Techniques with ITSs 549

During the implementation we encountered different problems and specific design
criterions were required. We analyzed these different problems and made decisions
for our particular case, but then we generalized the different design criterions which
we explain in this paper together with some guidelines for taking decisions.

The implemented framework introduces Semantic Web techniques in the provision
of adaptive hints that are personalized for students. In addition, it combines the use of
a new defined XML specification of hints, the XTutor hint player that we imple-
mented, the CWM reasoning capabilities, and other features of the XTutor.

At present, we are working in introducing more personalized rules in the system,
extending the existing ones. We are planning to introduce this framework in class-
room during this year.

Acknowledgments. Work partially funded by Programa Nacional de Tecnologías de
la Sociedad de la Información, MEC-CICYT project MOSAIC-LEARNING
TSI2005-08225-C07-01 and 02.

References

1. Murray, T.: Authoring intelligent tutoring systems: An analysis of the state of the art. In-
ternational Journal of Artificial Intelligence in Education 10, 98–129 (1999)

2. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L.: Andes physics
tutoring system: Five years of evaluations. In: 12th International Conference on Artificial
Intelligence in Education, pp. 678–685. IOS Press, Amsterdam (2005)

3. Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interac-
tion 11(1/2), 87–110 (2001)

4. Brusilovsky, P., Peylo, C.: Adaptive and intelligent Web-based educational systems. Inter-
national Journal of Artificial Intelligence in Education 13(2-4), 159–172 (2003)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American (May 17, 2001)

6. Henze, N., Krause, D.: Personalized access to web services in the semantic web. In: The
3rd Int. Semantic Web User Interaction Workshop, SWUI (2006)

7. Berners-Lee, T.: CWM, http://www.w3.org/2000/10/swap/doc/cwm
8. Muñoz Merino, P., Delgado Kloos, C.: A software player for providing hints in problem-

based learning according to a new specification. Computer Applications in Engineering
Education (Accepted January 12, 2008) (in Press, 2008)

9. XTutor Intelligent Tutoring System, http://xtutor.org/
10. Harskamp, E., Ding, E.: Structured collaboration versus individual learning in solving

physics problems. International Journal of Science Education 28(14), 1669–1688 (2006)
11. Gertner, A., Conati, C., VanLehn, K.: Procedural Help in Andes: Generating Hints using a

Bayesian Network Student Model. In: 15th National Conference on Artificial Intelligence,
Madison, pp. 106–111 (1998)

12. Guzman, E., Conejo, R.: Self-assessment in a feasible, adaptive web-based testing system.
IEEE Transactions on Education 48(4), 688–695 (2005)

13. Razzaq, L., Heffernan, N.: Scaffolding vs. hints in the Assistment System. In: Ikeda, M.,
Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 635–644. Springer, Hei-
delberg (2006)

550 P.J.M. Merino and C.D. Kloos

14. Riichiro, M., Bourdeau, J.: Using Ontological Engineering to Overcome Common AI-ED
Problems. International Journal of Artificial Intelligence in Education 11, 107–121 (2000)

15. Lefebvre, B., Gauthier, G., Tadié, S., Duc, T., Achaba, H.: Competence ontology for do-
main knowledge dissemination and retrieval. Applied Artificial Intelligence 19(9), 845–
859 (2005)

16. Zouaq, A., Nkambou, R., Frasson, C.: Building Domain Ontologies from Text for Educa-
tional Purposes. In: Duval, E., Klamma, R., Wolpers, M. (eds.) EC-TEL 2007. LNCS,
vol. 4753, pp. 393–407. Springer, Heidelberg (2007)

17. Dicheva, D., Sosnovsky, S., Gavrilova, T., Brusilovsky, P.: Ontological Web Portal for
Educational Ontologies. In: Workshop on Applications of Semantic Web in E-Learning at
12th International Conference on Artificial Intelligence in Education, Amsterdam (2005)

18. Aroyo, L., Pokraev, S., Brussee, R.: Preparing SCORM for the Semantic Web. In: Meers-
man, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 621–628.
Springer, Heidelberg (2003)

19. Psyche, V., Bourdeau, J., Nkambou, R., Mizoguchi, R.: Making Learning Design Stan-
dards Work with an Ontology of Educational Theories. In: 12th Artificial Intelligence in
Education, Amsterdam, pp. 539–546 (2005)

20. Lama, M., Sánchez, E., Amorim, R.R., Vila, X.A.: Semantic Description of the IMS
Learning Design Specification. In: Workshop on Applications of Semantic Web in E-
Learning, Amsterdam, pp. 37–46 (2005)

21. Henze, N., Dolog, P., Nejdl, W.: Reasoning and Ontologies for Personalized E-Learning in
the Semantic Web. Journal of Educational Technology and Society 7(4), 82–97 (2004)

22. Cheniti-Belcadhi, L., Henze, N., Braham, R.: An Assessment Framework for eLearning in
the Semantic Web. In: 12th GI- Workshop on Adaptation and User Modeling in interactive
Systems, Berlin, pp. 11–16 (2004)

23. Jovanović, J., Gašević, D., Brooks, C., Eap, T., Devedzic, V., Hatala, M., Richards, G.:
Leveraging the Semantic Web for Providing Educational Feedback. In: 7th IEEE ICALT
Conf., Niigata, pp. 551–555 (2007)

24. RDF/XML Syntax Specification,
http://www.w3.org/TR/rdf-syntax-grammar/

25. Berners-Lee, T. (ed.): Notation3,
http://www.w3.org/DesignIssues/Notation3.html

	An Architecture for Combining Semantic Web Techniques with Intelligent Tutoring Systems
	Introduction
	Related Work
	Hint Tutors
	Semantic Web Applications in Education

	General Architecture
	Description of the Elements and Their Relationships
	Design Criterions and Decisions

	Framework Implementation for Personalized Hints
	Overview of XTutor and Its Hint Player
	Elements of the Implemented Architecture
	Decisions in the Specific Implemented Architecture

	User Adaptation Examples
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

