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Increasing Demand for Reasoning Tools

Description logics form a basis for web ontology languages, OWL DL
and OWL 1.1

Modal and dynamic logics are useful in multi-agent reasoning

Metric logics are intended to be helpful in classification problems

Fuzzy logics . . . , etc

Reasoning tools are of increased demand.
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Reasoning Tools

Tableau provers: FACT++, RACERPRO, PELLET, DLP, . . .
are highly optimised but not generic

Resolution provers: MSPASS, VAMPIRE, . . .
are difficult to tune to decide a particular logic (a first-order fragment)

Generic interactive platforms: ISABELLE, COQ, . . .
do not provide automated decision procedures

Tableau prover engineering platforms: LWB, TWB, LOTREC, . . .
allow to play with rules but do not always ensure termination

Other: KAON2, . . . . . .

Answer to the increased demand for decision procedures for logical systems
from existing automated reasoning tools is not sufficient.
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Our Approach
Tableau Prover Synthesis

Application
Domain

Logic

Ontology

Property

Choice
D

es
cr

ip
tio

n

D
escription

Synthesiser

Prover
` : C, ` : ¬C

⊥
` : (C t D)

` : C | ` : D

· · · · · ·

Input

O
utput

Input

Ontology ` Property?

Yes: Proof of
Ontology ` Property

No: Model M such that
M |= Ontology and

M 6|= Property
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Tableau Termination Problem

How to ensure termination of a tableau algorithm?
An appropriate blocking mechanism is needed, e.g.:

subset or equality blocking,
dynamic or static blocking,
successor or anywhere blocking,
combinations of the above.

Problem: How to
define a general blocking mechanism which unifies all the standard
ones and
describe a class of logics for which the general blocking mechanism
ensures termination of corresponding tableau algorithms?
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Motivation Summary

Absence of general decision procedures in automated reasoning for
tableaux and instantiation-based methods.

Absence of a theoretical foundations for generic platforms in which
tableau decision procedures can be built in a uniform way for different
logics and different applications.

The work is based on observation that proofs of termination of tableau
algorithms and proofs of the effective finite model property by the
filtration argument are very similar.
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Syntax and Semantics

Concepts: C,D def
= p | ¬C | C tD | ∃R.C | {`}

individual

| ` : C

Roles: R,Ri
def
= r | ρ0(R1, . . . ,Rµ0 ) | ρ1(R1, . . . ,Rµ1 ) | . . .

Interpretation (model): I = (∆I , ·I) satisfying

pI ⊆ ∆I rI ⊆ ∆I ×∆I `I ∈ ∆I

(¬C)I = ∆I \ CI (C tD)I = CI ∪DI

(∃R.C)I = {x | ∃y ∈ CI (x, y) ∈ RI} ({`})I = {`I}

(` : C)I =

(
∆I , if `I ∈ CI ,
∅, otherwise, and

additional semantic conditions for ρ0, ρ1, . . .

.
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Example: SO — Logic with Transitive Roles

Language extended by transitive role constants s ∈ Trans.

For every s ∈ Trans and a model I, the interpretation of sI is a transitive
relation on I:
(x, y), (y, z) ∈ sI implies (x, z) ∈ sI for all x, y, z ∈ ∆I .

Prague, 11 June 2008 10 / 28
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Example: ALBO — Logic with Boolean Role Operators

Extra operators on roles: role inverse R−1, role complement ¬R, and
role union R t S.

Interpretations of the operators:

(¬R)I
def
= (∆×∆) \ RI

(R t S)I
def
= RI ∪ SI

(R−1)I
def
= (RI)−1 = {(x, y) | (y, x) ∈ RI}

Properties

ALBO is out of the mainstream DLs.

ALBO subsumes two variable fragment of first-order logic.

ALBO is decidable by resolution.

Satisfiability problem for ALBO is NExpTime-complete.

Very expressive: universal modality and Boolean combinations of role inclusions
R v S, concept inclusions C v D, concept assertions ` : C, role assertions
(`, `′) : D, etc are expressible in ALBO.
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Closure operator

sub is a monotone operator on sets of expressions.

Σ ⊆ sub(Σ) for every Σ.

sub is finite iff sub(Σ) is finite whenever Σ is finite.

A finite sub can be replaced by an equivalent notion of a well-founded
ordering on expressions.

Σ is sub-closed, or a signature iff Σ = sub(Σ).

Usually, there is a lot of flexibility in choice of sub.

Example

sub for SO and ALBO can be chosen as the subexpression operator,
i.e. sub(Σ) is a set of all subexpressions of expressions in Σ.

sub for PDL includes more expressions.
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Filtration

I is a model

∼ is an equivalence relation on ∆I

[x]
def
= {y ∈ ∆I | x ∼ y}

Filtration of I is a structure I = (∆I , .I) such that
∆I = {[x] | x ∈ ∆I},
CI = {[x] | x ∈ CI},
`I = [`I ], and
([x], [y]) ∈ RI whenever ∃x′ ∼ x∃y′ ∼ y (x′, y′) ∈ RI

L admits finite filtration iff for every finite L-signature Σ and every
L-model I of the signature Σ there exists an equivalence relation ∼ on I
such that there is a ∼-filtration I of I which is a finite L-model of the
signature Σ.

Theorem

Let L be a logic and sub be a finite expression closure operator. If L admits
finite filtration then L has the effective finite model property.
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SO Filtration

Given an SO-model I and a signature Σ, let

τΣ(x)
def
= {C ∈ Σ | x ∈ CI}.

The equivalence ∼ defined by

x ∼ y def⇐⇒ τΣ(x) = τΣ(y)

for every x, y ∈ ∆I .

An interpretation of every role r in the ∼-filtration I of I is defined by

rI def
= {([x], [y]) | y ∈ CI implies x ∈ (∃r.C)I for every ∃r.C ∈ Σ}.
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ALBO Filtration

Given an ALBO-model I and a signature Σ, let

τΣ(x, y)
def
= {R ∈ Σ | (x, y) ∈ RI}.

Standard filtration:
The equivalence ∼ defined by

x ' y def⇐⇒ τΣ(x) = τΣ(y)

for every x, y ∈ ∆I .
RI def

= {(bxc, byc) | ∃x′ ' x∃y′ ' y (x′, y′) ∈ RI}.
It is finite but, in general, does not produce an ALBO-model:
the property (¬R)I ⊆ (∆I ×∆I) \ RI is affected.

Nice filtration:
The equivalence ∼ satisfies

x ∼ y =⇒ τΣ(x) = τΣ(y),

x ∼ x′ ∧ y ∼ y′ =⇒ τΣ(x, x′) = τΣ(y, y′)

for every x, y, x′, y′ ∈ ∆I .
It always produces an ALBO-model but the problem is to make it finite.
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Example of a Nice ALBO Filtration

x ∼= y def⇐⇒ τΣ(x) = τΣ(y) and

τΣ(x, z) = τΣ(y, z) and τΣ(z, x) = τΣ(z, y) for all z ∈ ∆I .

It is not finite!

Counterexample

. . .r r
r r

r

p p p
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Conflict Elimination

Introduced by Gargov, Passy, and Tinchev for BML.

Works for BML and ALB but, in general, fails if individuals are in the
language.

Quasi-model: I where (possibly) (¬R)I 6⊆ (∆I ×∆I) \ RI .
If ALB-quasi-model I is finite and Σ is a finite signature then there are

a finite ALB-model I′ and
a p-morphism f (w.r.t. Σ) from I′ onto I.

Theorem

If a ALB-concept C is satisfiable in a quasi-model then it is satisfiable in a
finite model.

Corollary

ALB is complete with respect to the class of all ALB-quasi-models.

ALB admits finite filtration over the class of all ALB-quasi-models.
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A Finite Nice ALBO Filtration

Take an ALBO-concept C and an ALBO-model I satisfying C.
Replace all singleton subconcepts {`} in C by fresh propositional symbols p`.
Let C′ be the result of the replacement and Σ

def
= sub(C′).

Make an ALB-model I′ from I by making interpretation pI
′
`

def
= {`}I .

Clearly, I′ satisfies C′.
Obtain a finite ALB-quasi-model I satisfying C using the standard filtration on I′.
Obtain (by the process of conflict elimination) an ALB-model I′ and a
p-morphism f from I′ onto I.
Having I′ in hand, define a nice filtration on I′:

x ∼ y def⇐⇒ x ' y and for all u, z ∈ ∆I
′

such that f (u) = bxc = byc,

τΣ(u, z) = τΣ(u, z) and τΣ(z,u) = τΣ(z,u).

This filtration is finite because I′ is finite!

Replace p` back for {`} in C′, Σ, and I′ and apply the defined nice filtration to the
original I.

Theorem

ALBO is complete with respect to the class of all ALBO-quasi-models.

ALBO admits finite (standard) filtration over the class of all ALBO-quasi-models.

ALBO admits finite (nice) filtration (over the class of all ALBO-models).
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Tableau Calculus

Tableau rule:
`1 : C1, . . . , `n : Cn

`1
1 : D1

1, . . . , `1
k1

: D1
k1
| · · · | `m

1 : Dm
1 , . . . , `m

km
: Dm

km

.

A clash rule is a tableau rule where m = 0.

Tableau calculus T is a set of tableau rules.
Given a concept C, tableau T(C) is a (completely) expanded tree of sets
of concepts such that

the root node is {` : C} for some fresh individual `;
every child node is obtained by application of some T-rule to concepts from
the parent node.

A branch of T(C) is closed if a clash rule is applied in it. A branch is
open if it is not closed.

T(C) is closed if all its branches are closed, and it is open if there is an
open branch in it.

T is sound for a logic L if T(C) is open for every L-satisfiable concept C.

T is complete for L if C has an L-model whenever T(C) is open.

T is terminating for L if every open T-tableau contains a finite open
branch.
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Common Tableau Rules

Standard rules for ALC

(⊥)
` : C, ` : ¬C

⊥
(¬¬)

` : ¬¬C

` : C

(¬t)
` : ¬(C t D)

` : ¬C, ` : ¬D
(t)

` : (C t D)

` : C | ` : D

(∃)
` : ∃R.C

` : ∃R.{`′}, `′ : C
(`′ is new) (¬∃)

` : ¬∃R.C, ` : ∃R.{`′}
`′ : ¬C

Rules for individuals

(sym)
` : {`′}
`′ : {`} (¬sym)

` : ¬{`′}
`′ : ¬{`} (ref)

` : C
` : {`}

(mon)
` : {`′}, `′ : C

` : C
(canc)

` : (`′ : C)

`′ : C

` : {`′} ≡ ` = `′
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Unrestricted Blocking Rule

(ub)
` : {`}, `′ : {`′}
` : {`′} | ` : ¬{`′}

Strategy conditions:

1 any rule is applied at most once to the same set of premises.

2 the (∃) rule is not applied to role assertion expressions.

3 if ` : {`′} in current branch and ` < `′ then no applications of the (∃) rule
to expressions `′ : ∃R.C are performed1

4 in every open branch there is some node from which point onwards, all
possible applications of the (ub) rule have been performed before any
application of the (∃) rule

1< reflects the order in which the individuals are introduced
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Constructive Completeness and sub-Compatibility

Let B be an open branch in a tableau.

`∼B `′
def⇐⇒ ` : {`′} ∈ B,

∆I(B) def
= {‖`‖ | ` : {`} ∈ B}.

A tableau calculus TL is constructively complete for L iff for any satisfiable
concept C and any open branch B in TL(C) there is an L-model
I(B) = (∆I(B), .I(B)) such that

` : D ∈ B implies ‖`‖ ∈ DI(B), and

` : ∃R.{`′} ∈ B implies (‖`‖, ‖`′‖) ∈ RI(B).

TL is compatible with sub iff for any concept C and ` : D in TL(C) either

D ∈ sub(C), or

D = {`′}, or D = ¬{`′}, or

D = ∃R.{`′}, or D = ¬∃R.{`′}, for some role R ∈ sub(C).
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The Main Theorem

Theorem

Let L be a (description) logic. TL + (ub) is sound, complete, and
terminating tableau calculus for L, if the following conditions all hold:

1 sub is a finite closure operator for L-expressions.
2 L is a logic which admits finite filtration.
3 TL is a sound and constructively complete tableau calculus for L

and is compatible with sub.
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Sound and Constructively Complete Tableau Calculus for SO

TSO contains the common tableau rules and the following rules for every
s ∈ Trans:

(Transs)
` : ∃s.{`′}, `′ : ∃s.{`′′}

` : ∃s.{`′′}

Soundness is trivial.

Constructive completeness is easy.

Clearly, TSO is compatible with the subexpression operator sub.

Theorem

TSO + (ub) is sound, complete, and terminating.
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Sound and Constructively Complete Tableau Calculi for ALBO

TALBO contains the common tableau rules and the following rules for complex role
operators:

Positive Role Occurrences

(∃t)
` : ∃(R t S).{`′}

` : ∃R.{`′} | ` : ∃S.{`′}

(∃−1)
` : ∃R−1.{`′}
`′ : ∃R.{`}

(∃¬)
` : ∃¬R.{`′}
` : ¬∃R.{`′}

Negative Role Occurrences

(¬∃t)
` : ¬∃(R t S).C

` : ¬∃R.C, ` : ¬∃S.C

(¬∃−1)
` : ¬∃R−1.C, `′ : ∃R.{`}

`′ : ¬C

(¬∃¬)
` : ¬∃¬R.C, `′ : {`′}
` : ∃R.{`′} | `′ : ¬C

Tq
ALBO

def
= TALBO − (∃¬)

Both calculi are sound and compatible with the subexpression operator sub.

TALBO is constructively complete w.r.t. ALBO-models.

Tq
ALBO is constructively complete w.r.t. ALBO-quasi-models.

Theorem

TALBO + (ub) is sound, complete w.r.t. ALBO-models, and terminating.
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Conclusion

A general method for turning ground semantic tableau calculi into
decision procedures is introduced.

The method is illustrated on two examples: SO and ALBO.

The method is not limited by description logic language.

It works for other ground tableau and similar decision approaches.

The framework provides a basis for enhancing prover engineering
platforms with a flexible blocking mechanism with which more general
tableau decision procedures can be constructed.

The approach also provides the theoretical background for the way
blocking is implemented in the METTEL system.

The framework is a first step towards the ambitious goal of automated
generation of provers for decidable logics.
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