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Abstract

As the XML has become a standard for data representa-
tion, it is inevitable to propose and implement techniques
for efficient managing of XML data. A natural alterna-
tive is to exploit features of (object-)relational database
systems, i.e. to rely on their long theoretical and practical
history. The main concern of such techniques is the choice
of an appropriate XML-to-relational mapping strategy.

In this paper we focus on enhancing of user-driven
techniques which leave the mapping decisions in hands of
users who specify their requirements using schema anno-
tations. We describe our prototype implementation called
UserMap which is able to exploit the annotations more
deeply searching the user-specified “hints” in the rest of
the schema and applies an adaptive method on the remain-
ing schema fragments. Using a sample set of supported
fixed mapping methods we discuss problems related to
query evaluation for storage strategies generated by the
system, in particular correction of the candidate set of an-
notations and related query translation. And finally, we
describe the architecture of the whole system.

Keywords: XML-to-relational mapping, user-driven strat-
egy, adaptivity, similarity

1 Introduction

The XML (Bray et al. 2006) has undoubtedly become a
generally acknowledged standard for data representation.
This invoked a boom of implementations of W3C rec-
ommendations based on various storage strategies from
traditional file systems to brand-new native XML storage
strategies. But currently the most practically used tech-
niques exploit a less efficient but verified and mature tech-
nology — (object-)relational database management sys-
tems ((O)RDBMS). Although the scientific world has al-
ready proven that native XML strategies perform much
better, they still lack one important aspect — a reliable and
robust implementation verified by years of both theoreti-
cal and practical effort. Thus until the native XML meth-
ods “grow up”, it is still necessary to improve XML data
management in (O)RDBMS.

Currently there is a plenty of existing works concern-

ing database-based! XML data management. Almost all
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the major database vendors more or less support XML
and even the SQL standard has been extended by a new
part SQL/XML (ISO/IEC 9075-14:2003 2006) which in-
troduces new XML data type and operations for XML
data manipulation. The main concern of the database-
based XML techniques is the choice of the way XML data
are stored into relations, so-called XML-to-relational map-
ping. On the basis of exploitation or omitting information
from XML schema we can distinguish so-called schema-
oblivious (or generic) (Florescu & Kossmann 1999) and
schema-driven (Shanmugasundaram et al. 1999) methods.
From the point of view of the input data we can dis-
tinguish so-called fixed methods (Florescu & Kossmann
1999, Shanmugasundaram et al. 1999) which store the
data purely on the basis of their model and adaptive meth-
ods (Klettke & Meyer 2001, Bohannon et al. 2002), where
also sample XML documents and XML queries are taken
into account. And there are also techniques based on user
involvement which can be divided to user-defined (Amer-
Yahia 2003) and user-driven (Balmin & Papakonstantinou
2005, Du et al. 2004), where in the former case a user is
expected to define both the relational schema and the re-
quired mapping, whereas in the latter case a user specifies
just local changes of a default mapping.

Both the user-driven and adaptive approaches try to
solve the key problem of the fixed methods — the fact that
there is no universally suitable fixed method. An illustra-
tive issue is updatability of data, where the efficient stor-
age strategies significantly differ if the feature is required
or not. A similar case is exploitation of redundancy which
in general leads to a significant space overhead, but it can
have reasonable applications, where the need of retrieval
efficiency exceeds this disadvantage (Balmin & Papakon-
stantinou 2005). And there are also various types of XML
data, such as, e.g., data related to Semantic Web, which
require special treatment (Yaghob & Zavoral 2006).

In this paper we introduce a prototype implementation
called UserMap which exploits a combination of user-
driven and adaptive strategies focusing on two persisting
disadvantages of user-driven methods. Firstly, it is the fact
that the default mapping strategy is (to our knowledge) al-
ways a fixed one. Since the corresponding system must be
able to store schema fragments in various ways, an adap-
tive enhancing of the fixed method seems to be quite nat-
ural and suitable. The second shortcoming is weak ex-
ploitation of the user-given information. The annotations
a user provides can not only be directly applied on partic-
ular schema fragments, but can be regarded as “hints” how
to store particular XML patterns. We use this information
twice again. Firstly, we search for similar patterns in the
rest of the schema and store the found fragments in a sim-
ilar way. And secondly, we exploit the information in the
adaptive strategy for not annotated parts of the schema.
Hence, UserMap proposes new types of annotations, i.e.
new storage strategies.

Next, we discuss problems related to the resulting stor-
age strategies. We deal with two key issues — correction
of the candidate set of annotations proposed by the system



and related query evaluation. In the former case we iden-
tify and discuss situations when the proposed annotations
are either meaningless or a user interaction and/or a de-
fault choice is necessary to choose from multiple possibil-
ities. In the latter case we deal with the interface between
various storage strategies and the way the system should
cope with redundancy. For this purpose we have selected
a sample representative set of annotations using which we
illustrate the related issues and open problems. Finally,
we describe and discuss the architecture of experimental
implementation of the whole system.

The paper is structured as follows: Section 2 overviews
the existing related works. In the third section we describe
the key ideas of the hybrid user-driven XML-to-relational
mapping strategy. Section 4 deals with the problem of
correction of the candidate set of annotations proposed by
the previously described system and Section 5 analyzes
and discusses the key issues related to query evaluation of
the resulting relational schema. Section 6 describes the
architecture of the system and, finally, Section 7 provides
conclusions.

2 Related Work

To our knowledge there are just two representatives
of user-driven mapping strategies — mapping definition
framework ShreX (Du et al. 2004) and system XCacheDB
(Balmin & Papakonstantinou 2005). As for the anno-
tations both support inlining and outlining of a schema
fragment, mapping a fragment to a BLOB column, re-
naming target tables or columns, and redefining column
data types. The former approach furthermore supports the
Edge mapping (Florescu & Kossmann 1999) strategy and
enables to specify the required capturing of the structure
of the whole schema (using keys and foreign keys, Inter-
val encoding, or Dewey decimal classification). The latter
approach allows a certain degree of redundancy enabling
to store the data into both set of tables and a BLOB col-
umn. In both the cases the mapping for not annotated parts
is fixed and the annotations are applied just directly on the
annotated schema fragments.

From the point of view of checking correctness of the
resulting mapping strategy and query evaluation paper (Du
et al. 2004) which introduces system ShreX also proposes
definitions of a correct and lossless mapping. In the for-
mer case it means that the mapping produces a valid re-
lational schema in terms of distinct table names, distinct
column names within a table, distinct CLOB names, and
existence of at least one key in each table. In the latter
case lossless mapping is a mapping which is correct and
maps each element and attribute of the schema and the sib-
ling order of elements. (Surprisingly, it does not consider
XML IDs and IDREFs.) The system is able to check the
correctness and losslessness of the annotations and com-
plete possible incompleteness of mapping specifications
using default mapping rules. As for the query evaluation
ShreX does not support redundancy and thus the choice
of the most efficient storage strategy for a particular query
is pointless. The interface between storage strategies is
solved using a mapping API and a mapping repository
which contains information about how each element and
attribute is stored, which mapping is used to capture the
document structure, and which tables are available in the
relational schema. Hence the system is able to get infor-
mation about storage strategy for any part of the schema
and thus both shred the documents and evaluate queries.

System XCacheDB supports only a single strategy for
shredding XML data into tables which can be modified by
inlining / outlining of a fragment, or storing a fragment to
a BLOB column. Hence, the only incorrect combination
is concurrent inlining and outlining that can be detected
easily. The information about the structure of the cur-
rent schema is again stored into the database. Contrary to
ShreX, the XCacheDB system allows a kind of redundant

annotation intersection enabling to store a schema frag-
ment to a BLOB column and, at the same time, to shred it
into a set of tables which needs to be treated in a special
way. The proposed enhancing of a classical query eval-
uator is quite simple but working. It always chooses the
query plan with minimal number of joins.

As it is obvious, in both the cases the set of possi-
ble situations is somehow simplified. In both the systems
the annotations are just directly applied on the annotated
fragments without any additional exploitation. In the for-
mer case the set of annotation intersections is restricted,
whereas in the latter case the set of mapping strategies
can be characterized as a set of modifications of a single
mapping strategy. But in our case we consider more types
of intersections, more complex combinations of mapping
strategies, and thus new related problems.

3 Hybrid User-Driven XML-to-Relational Mapping

A general idea of fixed schema-driven XML-to-relational
mapping methods is to map the given XML schema S
into a set of relations R = {ry,ra,...,7,} using a map-
ping strategy s,.;. An extreme case is when .S is mapped
into a single relation resulting in many null values. Other
extreme occurs when for each element e € S a sin-
gle relation is created resulting in numerous join oper-
ations. In user-driven strategies the mapping is influ-
enced by user-defined annotations which specify how a
particular user wants to store selected schema fragments
F = {f1, fa,.-, fm}. The user usually provides S (i.e.
selected fragments) with annotating attributes from the
predefined set of attributes €24, each of which represents
a particular fixed mapping strategy, resulting in an anno-
tated schema S’. A classical user-driven strategy then con-
sists of the following steps:

1. S is annotated using 4 resulting in S’.

2. Annotated fragments from F’ are mapped to relations
according to appropriate mapping methods.

3. Not annotated fragments of S are mapped to relations
using a default fixed mapping strategy sqe .

Our method enhances a classical user-driven strategy
combining it with the idea of adaptive approaches. We
simply add the following steps between the step 1 and 2:

a. ForV f € F we identify a set Fy = {f" € S\{f} :
sim(f, f') > Tsim}, where sim(f, f’) expresses the

similarity of fragments f and f’ and T%;,, denotes the
required minimum similarity threshold.

b. For V f € F all fragments in Fy are annotated with
annotating attributes of f and added to F.

c. S\F is annotated using an adaptive strategy and the
newly annotated fragments are added to F'.

The whole mapping process is schematically depicted
in Figure 1 where the given schema S with F' = {f, g} is
mapped to a database schema R. If the proposed enhanc-
ing, i.e. steps 1.a — 1l.c, are included, the system gradually
identifies and adds into F' new annotated fragments f7, fo,
g1, g2, and g3 which are mapped using user-required map-
ping strategies. If the enhancing is not included (i.e. in
case of a classical user-driven strategy), only fragments f
and g are annotated using user-required strategies and the
rest of the schema using sqcs. Thus, the key advantages
of the proposed enhancing are the following two:

1. The user is not forced to annotate all schema frag-
ments that have to be stored alternatively, but only
those with different structure.

2. The system can reveal structural similarities which
are not evident “at first glance” and which could re-
main hidden to the user.
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Figure 1: Schema of the mapping process

3.1 Exploitation of Annotations in More Detail

Let us view the given XML schema S as a directed
graph Gg = (Vs, Eg) whose nodes correspond to ele-
ments, attributes, and operators and edges represent re-
lationships among them. An annotation is a function
a: Vs — P(Qy4) and a node n € Vg is annotated if
a(n) # (. Each annotated node n uniquely determines
an annotated fragment f, i.e. a subgraph of G g consist-
ing of n, all descendants of n, and corresponding edges.
As each annotation «(n) determines the mapping strategy
for the whole annotated fragment f, we assume that for
eachn’ € f: a(n) C a(n'), ie. that the a(n) is “dis-
tributed” to all subfragments of f. Hence, f T f’ denotes
f being a proper subfragment of f’ and f C f’ denotes
fecfvi=r.

The main idea of the first enhancing of user-driven
techniques remains the same regardless the chosen sim-
ilarity measure sim, the threshold T;,,, or the search
algorithm. The choice of sim and Ty, influences the
precision of the system, whereas the algorithm influences
the efficiency of finding the required fragments. We deal
with the two issues, and especially avoiding the exhaustive
search and tuning of the similarity measure, in (Mlynkova
2007a,b) in detail and propose a search heuristics called
basic annotation strategy (BAS) which is able to skip pro-
cessing of schema fragments which are unlikely to be
enough similar.

Conversely, at first glance the user-driven techniques
have nothing in common with the adaptive ones. But un-
der a closer investigation we can see that the user-given
annotations provide a similar information — they “say”
how particular schema fragments should be stored to en-
able efficient data querying and processing. Thus we can
reuse the user-given information. For this purpose we de-
fine an operation contraction which enables to omit those
schema fragments where we already know the storage
strategy and focus on the remaining ones.

Definition 1 A contraction of a schema graph Gg with
annotated fragment set F' is an operation which replaces
each fragment f € F, s.t. Af' € F: f T [, with a sin-
gle auxiliary node called a contracted node. The resulting
graph is called a contracted graph G&™".

The basic idea of the adaptive strategy is as follows:
Having a contracted graph G'¢" we repeat the BAS algo-
rithm and operation contraction until there is no fragment
to annotate. The BAS algorithm is just slightly modified:

e It searches for schema fragments which are not in-
volved in the schema, i.e. it searches among all nodes
of the given graph and returns the (eventually empty)
set of identified fragments.

e For similarity evaluation we do not take into account
contracted nodes.

e The annotations of contracted nodes are always over-
riding in relation to the newly defined ones.

We denote this modification of BAS as a contraction-
aware annotation strategy (CAS). The resulting annotating
strategy is called global annotation strategy (GAS).

Hence at this stage we have an XML schema S and a
set of schema annotations F’' consisting of two subsets:

e [7,,4,1.e. annotations provided by a user and
® [4apt, 1.e. annotations denoted by GAS algorithm.

(Note that the Ff4qp¢ can be empty representing the
case of a classical user-driven strategy.) The annotations
from set Fyqqp¢ are considered as possible candidates for
annotating, but not all of them should be included in the
final storage strategy. Firstly, not all the candidate combi-
nations can be applied on a schema fragment at the same
time. And secondly, not all the candidate annotations have
to be required by the user. A user can specify final schema
fragments, i.e. fragments which should not be influenced
by the GAS algorithm, but despite this feature the system
can still propose candidates unappropriate for particular
application. Thus the natural following step is correction
of the set Fygapt-

Whenever the set of annotations is corrected, i.e. the
final user-approved storage strategy is determined, there
remains the open problem of query evaluation. Firstly,
the system must cope with the interface between mapping
methods, i.e. to be able to process parts of a single query
using different storage strategies. And considering the re-
dundancy, it must efficiently determine which of the avail-
able storage strategies should be used for evaluation of a
particular query.

4 Correction of Candidate Set

The first step related to efficient query evaluation is correc-
tion of the candidate set of annotations Fqqp¢. Apart from
checking correctness and completeness (Du et al. 2004) of
schema annotations, we can distinguish three cases corre-
sponding to the following three steps:

1. The system removes cases which are forbidden or
meaningless.

2. The system identifies cases where the user can
choose from several possibilities.

3. The system accepts further user-specified corrections
of proposed annotations which do not correspond to
intended future usage.

In the first two cases the system must be able to cor-
rectly identify the situations, the last case is rather the
question of user-friendly interface.

4.1 Missed Annotation Candidates

We can also identify situations when the system
could automatically add more annotation candidates.
We discuss them in the following examples, where
fas fas fB, fp, fia p denote schema fragments f and f’

annotated using storage strategies A, B, or both.



Situation A - Unidentified Annotated Subfragment
Let us consider the situation depicted in Figure 2 where
schema S is provided with a set of annotated fragments
Forig = {fa, [}, where fg T fa, whereas the GAS
algorithm identified a set of fragments Fogape = {f}}
(as depicted by schema S”). The question is whether it is
necessary to add also fragment fg, where fj; T f (as
depicted by schema S”).

S S’ S”

fa fa fa fa fa
fs fs fs s

Figure 2: Unidentified annotated subfragment

If we analyze the situation, the answer is obvious. If
sim(fe, fi) > Tsim, the algorithm would add f}; to
Fadapt too. Thus if f7 is not annotated, its similarity is
not high enough and thus it should not be added to Fgqqp¢-

Situation B — Unidentified Annotated Superfragment
The second situation is depicted in Figure 3. Schema
S is again provided with a set of annotated fragments
Forig ={fa, fB}. fB T fa,butthe GAS algorithm iden-
tified a set of fragments Foqqpe = {fp} (as depicted by
schema S”). In this case we do not discuss whether to add
also fragment f/,, where 5 T f/;, because we can apply
the same reason as in case of Situation A. The question is
whether f’ should be annotated using both A and B, i.e.
Fodapt = {fA)B} (as depicted by schema S”).

S s S”

fa fa fa

;
fa fa fa fa A8

Figure 3: Unidentified annotated superfragment

In this case we cannot simply state which of the pos-
sibilities should be chosen, because for both we can find
good reasons. Thus this is the case for user interaction
and/or a default setting.

4.2 Sample Set of Annotations

For demonstration of further open issues related to cor-
rection of candidate set of annotations as well as query
evaluation, we have chosen particular types of fixed map-
ping methods which represent typical and verified stor-
age strategies. The whole set of supported annotating at-
tributes, their values, and corresponding mapping strate-
gies is listed in Table 1.

Similarly to the existing works we support inlining
and outlining of a schema fragment to/from parent ta-
ble or its storing to a single CLOB column. As for the
“classical” mapping methods we support a set of schema-
oblivious storage strategies — the Edge, Attribute, and Uni-
versal mapping (Florescu & Kossmann 1999) — and a set
of schema-driven storage strategies — the Basic, Shared,
and Hybrid algorithm (Shanmugasundaram et al. 1999).
Last but not least, we support a kind of numbering schema
which speeds up processing of particular queries — the In-
terval encoding (Yoshikawa et al. 2001).

Naturally, the set of supported mapping strategies
could be much wider and involve more representatives of
the existing reasonable mapping strategies. But our aim

Attribute | Value [ Function |

INOUT inline, The fragment is inlined or outlined
outline to/from parent table.

GENERIC edge, The fragment is stored using
attribute, schema-oblivious Edge, Attribute,
universal or Universal strategy (Florescu &

Kossmann 1999).

SCHEMA basic, The fragment is stored using
shared, schema-driven Basic, Shared, or
hybrid Hybrid strategy (Shanmugasun-

daram et al. 1999).

TOCLOB true The fragment is stored to a CLOB

column.

INTERVAL | true The fragment is indexed using

the Interval encoding (Yoshikawa
etal. 2001).

Table 1: Supported schema annotations

was to choose well-known representatives of particular ap-
proaches which enable to illustrate various situations.

4.3 Annotation Intersection

As the annotated fragments can intersect as well as a
single fragment can be annotated using multiple storage
strategies, we have defined three types annotation inter-
section assuming that the system is provided with both the
set of annotations and types of their mutual intersection.

Definition 2 Intersecting annotations are redundant if the
corresponding mapping strategies are applied on the com-
mon schema fragment separately.

Definition 3 Intersecting annotations are overriding if
only one of the corresponding mapping strategies is ap-
plied on the common schema fragment.

Definition 4 Intersecting annotations are influencing if
the corresponding mapping strategies are combined re-
sulting in one composite storage strategy applied on the
common schema fragment.

Redundant annotations can be exploited, e.g., when a
user wants to store XHTML fragments both in a single
CLOB column (for fast retrieval of the whole fragment)
and, at the same time, into a set of tables (to enable query-
ing particular items). An example of overriding annota-
tions can occur when a user specifies a general mapping
strategy for the whole schema S and then annotates frag-
ments which should be stored alternatively. Naturally, in
this case the strategy which is applied on the common
schema fragment is always the one specified for its root
element. The last mentioned type of annotations can be
used in a situation when a user specifies, e.g., the 4NF de-
composition for a particular schema fragment and, at the
same time, an additional numbering schema which speeds
up processing of particular types of queries. In this case
the numbering schema is regarded as a supplemental index
over the data stored in relations of 4NF decomposition, i.e.
the data are not stored redundantly as in the first case.

Apart from the allowed types of intersection, there
are also cases when a particular combination of anno-
tations is senseless. For instance consider the situation
depicted in Figure 4, where schema S contains two an-
notated fragments frocrop and fscmema, Whereas
fscuema T frocrop and the TOCLOB annotation
overrides all the previously specified strategies. As it is
obvious, such combination of annotations is useless, since
there is no point in shredding a part of a schema fragment
stored in a CLOB column into a set of tables. The situa-
tion also depicts that the order of composition of annota-
tions is important. Obviously, the opposite order, i.e. if
frocros T fscHEMA, 1S reasonable and can result in
both redundant and overriding intersection.
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Another question is for which subsets of the supported
schema annotations the intersection type should be spec-
ified. Consider the situation depicted in Figure 5, where
schema S contains two annotated fragments f4 and f5 ¢,
whereas fp,c T fa. At this situation we naturally need
to know the result of intersection of all the three anno-
tations together. And with the above finding, it can also
differ depending on the order of their mutual composition.
Therefore, we should theoretically specify the result of in-
tersection of all possible subsets of €24 and all respective
orders. But, in fact, as there are pairs of annotations or
their orders which are forbidden, the number of such spec-
ifications significantly decreases. And, in addition, such
specifications need to be stated for the whole system only
once, not for each mapping task separately.

We demonstrate both the situations for the sample set
of annotations in the following sections.

4.3.1 Intersections of Pairs of Annotations

The specification of allowed types of intersections for
pairs of annotations is relatively simple. Four our sam-
ple set of annotations they are listed in Tables 2 and 3,
where () represents no effect of intersection, x represents
forbidden intersection, and v'represents allowed intersec-
tion. Each field of the table represents the result of ap-
plying the mapping strategy in the row on the mapping
strategy in the column.
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Table 2: Overriding and redundant intersection
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Table 3: Influencing intersection

As can be seen from the tables, the amount of reason-
able and thus allowed combinations of mapping methods
is relatively low in comparison with the theoretically pos-
sible options. Firstly, we assume that the combination
of two identical annotations results in an empty opera-
tion, i.e. it has no effect as depicted at diagonals. And,
in addition, in our case the results for overriding and re-
dundant annotations are identical and thus listed in one

common table. Another two obvious cases are INOUT
and INTERVAL annotations which are supposed to influ-
ence any other method. Therefore, they can occur only
in case of influencing intersections and only in one partic-
ular order of composition. Naturally, they can be applied
only on methods which shred a schema fragment into a set
of tables. Considering the TOCLOB annotation, it can be
also applied on a method which shreds a schema fragment
into one or more tables, since the whole fragment is then
viewed as a single attribute. As for the composition or-
ders, as depicted in Figure 4, the TOCLOB annotation can
be applied only on a mapping strategy, but not vice versa.
Note that from another point of view the TOCLOB annota-
tion can be regarded as influencing, rather than overriding.
Similarly to the INOUT annotation it influences the given
storage strategy treating a schema fragment as a single at-
tribute. But it is only a question of semantics.

Last but not least, note that if the order of composi-
tion of mapping strategies is not obvious (e.g. if a single
fragment is annotated using multiple strategies), we take
as the result union of both the possible orders.

4.3.2 Intersections of Multiple Annotations

As for the intersection of multiple annotations together we
need to distinguish several cases. We demonstrate them
using the example depicted in Figure 6, where schema
S contains three annotated fragments f4, fp, and fc,
whereas fc T fp T fa. The question is what will be
the result of annotation for their intersection.

As for the first situation let us assume that the inter-
section of f4 and fp is overriding. Then the situation
transforms to the case of intersection of two methods (i.e.
fp and f¢) as defined in the previous section. The sec-
ond situation occurs when the intersection of f4 and fp
is redundant, meaning that the common schema fragment
is stored using both the strategies A and B. Then the sit-
uation of intersection with strategy C' transforms to union
of separate intersections of two pairs of methods (i.e. fa,
fc and fg, fo). Or, also in this case the user can specify
on which of the two strategies A and B should strategy
C be applied. The third situation involves the last case
when the intersection of f4 and fp is influencing. In this
case the resulting intersection must be defined for all the
possible cases. For our sample set of annotations, the so-
lution again corresponds to union of separate intersections
of two pairs of methods (whereas one of them always re-
sults in forbidden intersection). But, in general, the result
can lead to a brand new one method and therefore a new
set of rules for intersecting.

Note that also in this case if the order of composition
of mapping strategies is not evident, we again take as the
result union of all the possible orders. And similar discus-
sion can be done for larger sets of annotations as well.

4.4 Examples of Schema Annotations

The annotations supported by system UserMap (see Ta-
ble 1) are expressed using attributes from a name space
called usermap and can be associated with element defini-
tions of XSDs. Similarly to the paper (Du et al. 2004) they
could be associated also with attributes, attribute groups,
element groups, etc. But we restrain to elements for sim-
plicity.

Example 1 - Exploitation of CLOBs The exploita-
tion of CLOBs enables to speed up reconstruction of
schema fragments. It is useful especially in cases when
the user knows that particular schema fragment is rather
document-oriented and will be retrieved as a whole. Con-
sider the example in Figure 7 where a fragment of XSD of

the Internet Movie Database (IMDb)? contains informa-

2http://www.imdb.com/



tion about actors. Each actor has name consisting of the
first name and the last name and filmography, i.e. a list
of movies each consisting of a title and a year. For bet-
ter lucidity the element names are underlined and schema
annotations are in boldface.

<xs:element name="Actor"
usermap:SCHEMA="hybrid">
<xs:complexType>
<xs:sequence>

<xs:element name="Filmography">
<xs:complexType>
<xs:sequence>
<xs:element name="Movie"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Title"

<xs:element name="Name"
usermap:TOCLOB="true">
<xs:complexType>
<xs:sequence> type="xs:string"
<xs:element name="FirstName" usermap:INOUT="outline"/>
type="xs:string"/> <xs:element name="Year"
<xs:element name=' type="xs:int"/>
type="xs:string"/> </xs:sequence>
</xs:sequence> </xs:complexType>
</xs:complexType> </xs:element>
</xs:element> </xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

Figure 7: Exploitation of CLOBs — XML schema

According to the specified annotations, the whole frag-
ment, i.e. element Actor, should be stored using the Hy-
brid algorithm, as specified by the SCHEMA="hybrid"
annotation, its subelement Name should be stored
into a CLOB column (TOCLOB="true"), and subele-
ment Title should be outlined to a separate table
(INOUT="outline").

As depicted in Tables 2 and 3 the intersection of
SCHEMA and TOCLOB annotations can be either overrid-
ing or redundant. Firstly, let us consider the overriding
case. The resulting relational schema is depicted in Figure
8 (b).

Actor(ID:integer,

FirstName:string,

LastName:string,
parentlD:integer)

Actor(ID:integer,
Name:CLOB,
parentID:integer)

Movie(ID:integer,

Year:int,

Actor(ID:integer,
Name:CLOB,
FirstName:string,
LastName:string,

Movie(ID:integer,
Title:string,
Year:int,
parentlD:integer)

parentID:integer)
Movie(ID:integer,
Year:int,
parentlD:integer)
Title(ID:integer,
Title:string,
parentiD:integer)

(a) (b) (©)

parentlD:integer)
Title(ID:integer,
Title:string,
parentiD:integer)

Figure 8: Exploitation of CLOBs — relational schemes

As it is expectable the resulting relational schema cor-
responds to the result of classical Hybrid algorithm (de-
picted in Figure 8 (a)) except for two cases. Firstly, the
element Name is treated as an element having a text con-
tent and stored into a single CLOB column. And sec-
ondly, the element Tit le is stored into a separate table,
although the classical Hybrid algorithm would inline it to
table Movie too.

Example 2 — Redundant Mapping Strategies Let us
again consider the XSD example in Figure 7, but this time
assuming that the intersection of SCHEMA and TOCLOB
annotations is redundant. The resulting relational schema
is depicted in Figure 8 (c). In this case the element Name
is stored twice, using both the strategies, i.e. into two
columns corresponding to classical Hybrid algorithm and,
at the same time, into one CLOB column.

Note that a similar type of storage strategy can be de-
fined also using the system XCacheDB (Balmin & Pa-
pakonstantinou 2005) which enables both redundant and
overriding mapping to a CLOB column. The main differ-
ence is that the system supports only one particular type
of shredding into a set of tables (which can be modified
by inlining and outlining).

Example 3 — Influencing Mapping Strategies Last but
not least, consider an example of influencing intersec-
tion of mapping strategies. In example depicted in Fig-
ure 9 we use the same fragment of IMDb XSD, but
with different annotations. This time the element Actor
should be stored using schema-oblivious Edge mapping
(GENERIC="edge"), whereas queries over its subele-
ment Filmography are enhanced using the Interval en-
coding (INTERVAL="true").

<xs:element name="Actor"
usermap:GENERIC="edge">
<xs:complexType>
<xs:sequence>

<xs:element name="Filmography"
usermap:INTERVAL="true">
<xs:complexType>
<xs:sequence>
<xs:element name="Movie"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="Title"
type="xs:string"/>
<xs:element name="Year"
type="xs:int"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="Name">
<xs:complexType>
<xs:sequence>
<xs:element name="FirstName"
type="xs:string"/>
<xs:element name="LastName"
type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

Figure 9: Influencing mapping strategies — XML schema

Figure 10 depicts both the classical Edge mapping (a)
and the result of the strategy specified by the annotations
(b). In the former case all the edges of the graph are
stored into a single table Edge. In the latter case edges
of subelement Filmography are stored into a separate
table EdgeFilmography having additional columns
(intervalStart and intervalEnd) for storing val-
ues of Interval encoding. Note that the influencing enables
to skip the column order, since the Interval encoding in-
volves total ordering.

Edge(fromID:integer,
tolD:integer,
name:string,
type:integer,
order:integer,
value:string)

EdgeActor(fromID:integer, EdgeFilmography(fromID:integer,
tolD:integer, tolD:integer,
name:string, name:string,
typeinteger, typeinteger,
order:integer, order:integer,
value:string) value:string,

intervalStart:integer,
intervalEnd:integer)

(a) (b)

Figure 10: Influencing mapping strategies — relational
schemes

The closest example can be found in case of sys-
tem ShreX (Du et al. 2004) which supports annotation
structurescheme specifying how the structure of the
whole schema is captured, i.e. using keys and foreign
keys, Interval encoding, or Dewey decimal classification.
This feature can be considered as a special type of influ-
encing mapping, though its purpose is slightly different.

Auxiliary Columns As the above described examples
of relational schemes are illustrative, they only repre-
sent the characteristics of the mapping strategies. In fact,
when the schemes are generated automatically, we can-
not use directly, e.g., the element and attribute names
for table and column names of the schema. In addition,
each of the data tables contains also auxiliary informa-
tion. The most important ones are a unique ID of the
respective XML document (docID) and a unique ID of
each record (recordID). The former one enables to dis-
tinguish where the data originate from, but it is in the fol-
lowing examples omitted for simplicity. The latter one is
exploited in two cases for similar reason. Since each of the
storage strategies can have structurally different tables we
use this uniform ID to enable their joining, as well as for



uniform resulting value of the SQL query. We illustrate its
usage in the following text.

5 Query Evaluation

The basic idea of XML query evaluation in (O)RDBMS-
based storage strategies is relatively simple. An XML
query posed over the data stored in the database is trans-
lated to a set of SQL queries (which is usually a singleton)
and the resulting set of tuples is transformed to an XML
document. We speak about reconstruction of XML frag-
ments.

The main idea of our proposed system is to enable a
user to create a hybrid XML-to-relational storage strategy,
i.e. a relational schema which consists of multiple sub-
schemes having different structure. Assuming that each
of the subschemes can (and usually does) require a differ-
ent XML-to-SQL query translation algorithm, we focus
on the problem of interface between the storage strategies,
i.e. the problem of evaluation of parts of a single XML
query using various storage strategies. Second issue is
related to redundancy that can occur in case of intersec-
tion of annotations, in particular redundant and influenc-
ing ones, where a single schema fragment is stored using
two or more strategies. Therefore a natural assumption
is that the system can estimate the cost of query evalua-
tion using all possible strategies and choose the optimal
one. For this purpose we again exploit our sample set of
annotations (see Table 1) and using simple examples we
illustrate the related issues.

5.1 Interface between Schema Annotations

Let us consider the three types of annotation intersections
separately and discuss their difference from the point of
view of query evaluation. In case of overriding intersec-
tion of strategies A and B, the interface must allow joining
(one or more) tables of strategy A with (one or more) ta-
bles of strategy B. In case of redundant intersection of
strategies A and B the situation is similar but, in addition,
the interface must enable to use any of the strategies. The
influencing annotation intersection requires a brief discus-
sion: Under a closer investigation we can see that there
are two types of annotations, i.e. mapping strategies, that
can influence another one. Each of them is represented
by one of the annotations of the sample set. The INOUT
annotation enables to modify the structure of the resulting
storage strategy, i.e. the amount of tables and/or columns.
Therefore it is processed before the schema is mapped to
relations and having the information about the structure it
does not need to be taken into account later. We call these
annotations early binding. (Note that the TOBLOB anno-
tation can be viewed as a kind of early binding annotation
as well.) On the other hand, the INTERVAL annotation
enhances a given storage strategy with additional infor-
mation which is exploited as late as a query is evaluated.
We call these annotations late binding.

5.1.1 Structural Tables

Since the resulting storage strategy is not fixed and can
be influenced by many factors, we need to store the infor-
mation about the structure of each mapped XML schema.
Similarly to papers (Du et al. 2004, Balmin & Papakon-
stantinou 2005) we store the information into supplemen-
tal tables. This simple idea enables to parse the schema
annotations only once and not every time a document is
stored into relations or a query is posed, as well as it en-
ables to make the processing to be independent on the way
the mapping is specified.

The tables contain all the information necessary for
both document shredding and query evaluation. For each

element and attribute we know its storage strategy and re-
lated details. In case of redundant and late binding in-
fluencing intersection we create an instance of respective
structural information for each of the strategies.

5.2  Query Translation

Similarly to the process of document shredding, with the
information from structural tables the query evaluation is
quite straightforward. Using the following examples we
illustrate the related key ideas. Assuming that wild-card
queries are usually converted into union of several simple
path queries with predicates, one for each satisfying wild-
card substitution (Krishnamurthy et al. 2003), we consider
only examples of simple-path queries.

Example 1 — Early Binding Annotations Let us con-
sider the example of query

/Actor/Filmography/Movie [Year=2007]/Title

and relational schema depicted in Figure 8 (b). Firstly,
the table where element Actor is stored, is added to
the FROM clause. Seeing that element Filmography is
mapped to the same table, this step has no effect. Then,
since the element Movie is mapped to its own table, the
table Movie is added to the WHERE clause and joined us-
ing IDs. The processing of predicate Year=2007 first
requires analysis of the query on the left-hand side. Since
element Year is mapped to column of the Movie table, it
does not cause new joins, but only adding the condition to
the WHERE clause. The Tit le element is again detected
to be stored in a separate table resulting in another join.
Finally, the SELECT clause is provided with the reference
to its record ID, resulting in the following query:

SELECT t.recordID

FROM Actor a, Movie m, Title t

WHERE m.parentID = a.ID AND
m.Year = 2000 AND
t.parentID = m.ID

(Note that using the knowledge of semantics of the
XML schema, i.e. on the basis of analysis of structural
tables, this query could be further optimized, in particular,
table Act or can be omitted.)

From the point of view of evaluation of a single query
using several storage strategies, the described example of
query evaluation copes with an early binding influencing
annotation INOUT applied on annotation SCHEMA. Thus
the translation approach is similar to classical Hybrid al-
gorithm, except for slightly different structure which is
captured using the structural tables. A similar effect would
occur in case of overriding annotation TOCLOB.

Example 2 - Structurally Different Tables Now,
let us consider the same query but a situation,
where element Actor is associated with annotation
SCHEMA="hybrid" and element Movie with anno-
tation GENERIC="edge" as depicted in Figure 11,
whereas the intersection is overriding.

Hence, we need to join structurally different ta-
bles whose IDs have quite different meaning. As for
the first part of the query /Actor/Filmography
the translation remains the same as in the previ-
ous example. As for the second part of the query
/Movie [Year=2007]/Title, we need to join the
Edge table three times, i.e. for Movie and Title el-
ements and for the predicate Year=2007 resulting in a

query:

SELECT t.recordID

FROM Edge m, Edge y, Edge t

WHERE m.toID = y.fromId AND
y.value = 2000 AND
m.toID = t.fromId



<xs:element name="Actor"
usermap:SCHEMA="hybrid">
<xs:complexType>
<xs:sequence>

<xs:element name="Filmography">
<xs:complexType>
<xs:sequence>
<xs:element name="Movie"
maxOccurs="unbounded"
usermap:GENERIC="edge">
<xs:complexType>
<xs:sequence>
<xs:element name="Title"
type="xs:string"/>
<xs:element name="Year"
type="xs:int"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="Name">
<xs:complexType>
<xs:sequence>
<xs:element name="FirstName"
type="xs:string"/>
<xs:element name="LastName"
type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

Figure 11: Join of structurally different tables — XML
schema

Finally, for the purpose of joining the two tables, i.e.
Actor and Edge, we need to specify the interface be-
tween them. In our particular case we exploit the auxil-
iary recordID column of both the tables and informa-
tion from structural table

xmlInterTable (anotID,parentID)

which contains pairs of parent-child relationships be-
tween recordID of an annotated element (anot ID) and
recordID of its parent element (parent ID). Then the
resulting query translation is as follows:

SELECT t.recordID

FROM Actor a, xmlInterTable i,
Edge m, Edge y, Edge t

WHERE a.recordID = i.parentID AND
m.recordID = i.anotID AND
m.toID = y.fromId AND
y.value = 2000 AND
m.toID = t.fromId

The example depicts that a join with
xmlInterTable is added every time the query
“passes borders” of two mapping strategies. The obvious
exception is the case of early binding influencing annota-
tions. Naturally, more complex mapping strategies could
require another information about their mutual interface,
but for our particular sample set this information is
sufficient.

5.3 Exploitation of Redundancy

The above described algorithm of query evaluation as-
sumes that there is always one possible way it can be
performed. Naturally each SQL query can have multiple
query plans, each having its cost depending on the order
tables are joined, selectivity of WHERE conditions, usage
of ORDER BY clauses, etc. But in this section we deal
with the set of distinct mapping strategies that “cover” the
query.

Consider again the same sample query and the anno-
tated schema in Figure 11, where element Actor is asso-
ciated with annotation SCHEMA="hybrid" and element
Movie with annotation GENERIC="edge", whereas
the intersection is now redundant. Then we have two
possibilities how to evaluate the query — either using
purely the Hybrid mapping or using both the Hybrid and
Edge mapping and their interface. In the former case the
query would require joining of two tables — Actor and
Movie (the classical Hybrid algorithm inlines the element
Title). The query translation of the later case was dis-
cussed above and involves joining of five tables — table
Actor of the Hybrid mapping, three Edge tables from
the Edge mapping, and table xm1InterTable carrying
the interface information between the two strategies. If

we use a simple cost metric which considers purely the
amount of join operations necessary for query evaluation,
the former translation strategy is naturally better choice.
In general, there can exist a plenty of possibilities how
to evaluate a query (). For this purpose we first analyze the
structural tables and search for all the possible sequences
of strategies using which @) can be evaluated and we build

and auxiliary evaluation graph G¢*®. Consider the sam-
ple situation in Figure 12.

Q, Q, Q, Q,

lododod o dododod ] Q
RS A1
A

Figure 12: Example of evaluation graph G*v%

The figure schematically depicts that query @ is di-
vided into fourth parts @1, Q2, @3, and @4, determined
by four annotations, i.e. mapping strategies it “traverses”.
Part @1 can be evaluated only using strategy A;. Part Qo
can be evaluated either using strategy Ao or A3 meaning
that the intersection of the two annotations is redundant
(denoted by the union sign), but they override annotation
Aj. As for the part (3, the respective strategy is again
only A4 which overrides the previous two strategies Ao
and Asz. And finally, part Q4 can be evaluated using both
A, or influencing intersection of A4 and A5 (denoted by
the plus sign).

On the right-hand side of the figure is depicted corre-
sponding evaluation graph G¢** whose edges correspond
to storage strategies and nodes to interfaces among them.
The graph also contains two auxiliary nodes 0 and 1 which
represent the beginning and end of the query and respec-
tive auxiliary edges.

The construction of G*"% is relatively simple:

1. The auxiliary node O is created.

2. Starting with the set of storage strategies A =
{44, A, ..., Ay} for the root element of query @, re-
spective k outgoing edges of node 0 are created.

3. Each edge and corresponding storage strategy A; is
processed recursively: Traversing the query () and
structural tables we search for each interface of A;
and Aj, s.t. A; # Aj.

(a) In case of redundant intersection of A; and A;,
for both A; and A; new outgoing edges are cre-
ated.

(b) In case of late binding influencing intersection
of A; and A;, for both 4; and A; + A; new
outgoing edges are created.

(c) In case of overriding intersection of A; and A;,
a new outgoing edge for A; is created.

4. The auxiliary node 1 and respective edges connecting
all leaves of the graph with node 1 are created.

For the purpose of searching for the best evalua-
tion sequence of storage strategies, each edge e €
G is assigned its length which expresses the cost
coSteyai(Qi, Aj) of evaluating of a query part (); using
a strategy A; and cost costinter (Aprev, A;) of the inter-
face between strategy A, used for evaluation of ;1
and current strategy Aj.

Definition 5 Length of edge e = (v, vy) of evaluation
graph GV is defined as follows:
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Now, having a graph G and corresponding lengths
of its edges, the problem of finding the optimal evalua-
tion sequence of strategies transforms to the shortest path
problem, i.e. searching the shortest path from node 0 to
1, which can be solved, e.g., using the classical Dijkstra’s
algorithm.

5.3.1 Reconstruction of XML Fragments

Similarly to query evaluation also in case of reconstruc-
tion of resulting XML fragments there can occur multiple
ways of retrieval of the relevant data. Consider the situa-
tion depicted in Figure 9, where element Actor is asso-
ciated with annotation GENERIC="edge" and element
Filmography with late binding influencing annotation
INTERVAL="true", and query

/Actor/Filmography/Movie [Year=2007]

whose SQL translation returns a set R = {ry,72,...,7x}
containing values of recordID column of records from
table EdgeFilmography which fulfill the query. The
required XML result is a set of elements Movie, each
containing subelements Title and Year with corre-
sponding values. With regard to the specified annotations
we have two possibilities how to retrieve corresponding
information — the Edge mapping or the Interval encoding.

In the former case we process each recordID r; €
R; i = 1,2,...,k separately: Firstly, we create a new
Movie node of DOM tree Tpops of the XML result.
Then we select the set of all its subelements (and at-
tributes) from the EdgeFilmography table. Subele-
ments having a text content are added to the result, i.e.
for each element a corresponding node in Tpoas is cre-
ated. Subelements having element content are processed
recursively. In general, for the purpose of the reconstruc-
tion we need to perform O(k - n) select queries from
the EdgeFilmography table, where n is the maximum
number of non-leaf nodes of XML fragments rooted at el-
ement Movie.

In the latter case, i.e. when exploiting the Interval en-
coding, the retrieval of the relevant information is much
easier. The Interval encoding enables to retrieve infor-
mation of the whole XML fragment at once and totally
ordered. Having the set R = {ry,ra,...,7;} we need a
single query which contains a single join of two tables
EdgeFilmography:

SELECT «
FROM EdgeFilmography m, EdgeFilmography e
WHERE m.recordID IN (rl, r2, ..., rk) AND

m.intervalStart <= e.intervalStart AND
e.IntervalEnd <= m.intervalEnd
ORDER BY e.intervalStart

Thus, also in case of document reconstruction we need
to choose the most efficient way of retrieval of the data.
For this purpose we can use the same approach as in case
of query evaluation. The only difference is, that the costs
of the strategies can differ. As for our sample set of anno-
tations the most striking example is the TOCLOB storage
strategy, where in case of query evaluation it has a high
cost assuming that it requires preprocessing of the CLOB
content, whereas in case of reconstruction its cost is low.

6 Architecture of System UserMap

As depicted in Figure 13 the architecture of experimental
system UserMap consists of several modules which can
be divided according to phases of processing they belong

to. The particular modularity is given not only by logical
partitioning of the system, but it is also influenced by the
needs of experiments and corresponding ability to omit
various modules (Mlynkova 2007a).

Mapping
repository

Figure 13: Architecture of the system

Phase 1. Preparation Being given an annotated XSD
schema S the system first checks its validity using the
Xerces Java parser (Project 2005) and builds its DOM
tree T's (Document Object Model (DOM) 2005). Then,
for easier processing, the DOM tree is transformed into
a DOM graph Gg (Mlynkova & Pokorny 2004), i.e. a
graph representation of XSD schema similar to classical
DTD graph (Shanmugasundaram et al. 1999) extended for
XML Schema constructs. For the same purpose the graph
builder extracts the set of annotated fragments F7,;.;4.

Phase II. Searching for Annotation Candidates At
this phase of the processing the BAS module performs
the BAS algorithm and then the GAS module performs
the GAS algorithm being given the schema S and the
set of user-specified annotations F,,;;. The former mod-
ule identifies the set of annotation candidates F'g 45, the
latter one the set of annotation candidates F45. The
system enables to skip any of the approaches, to com-
pare their results, and thus to compare the resulting stor-
age strategies. The resulting set of annotation candidates
Fogapt = Fpas U Fgas. Since the similarity evalua-
tor is a separate module evaluating similarity of two given
schema fragments f and g, it can be easily replaced with
any other method.

Phase III. Correction of Candidate Set At this phase
the candidate set of annotations F,44y: Needs to be cor-
rected. As described in Section 4 there are two types of
correction — automatic and user-specified — resulting in set
of corrected annotations £, ;. In the former case the an-

notation analyzer automatically searches and removes the
forbidden annotations, in the latter case a user interaction
is required. In the experimental implementation of the sys-
tem the user interaction is omitted and a default possibility
is always applied. But as mentioned in the Conclusion, the
very next enhancement of the system will focus on user
interaction, user-friendliness, and appropriate GUI. Then
also the incorrect situations can be identified and solved
using the user interaction as well.



Phase IV. XML-to-Relational Mapping At this phase
the annotation processor parses the set of corrected an-
notations and maps the corresponding schema fragments
into the data repository using the respective approaches.
As described in Section 5.1, at the same time the system
stores the information about schema mapping into supple-
mental structural tables in the mapping repository.

Phase V. Document Shredding and Query Evaluation
At this phase the system is ready for the intended applica-
tion. It involves two operations:

e shredding a document D valid against XML schema
S into corresponding tables and

e cvaluation of query ) posed over the schema S
which returns document D¢ containing correspond-
ing results.

The document shredder reads the XML document us-
ing a SAX parser and on the basis of the information
from mapping repository generates an SQL script for stor-
ing appropriate tuples into the data repository. The guery
evaluator firstly identifies the most efficient evaluation se-
quence (as described in Section 5.3) and then, also using
information from mapping repository, translates the XML
query into an SQL query. Similarly, the resulting tuples
are then transformed to corresponding XML fragments us-
ing the most efficient reconstruction sequence.

7 Conclusion

As can be seen, there are several interesting issues related
to the relatively simple idea of hybrid user-driven map-
ping strategy. We have outlined the key components of the
whole system and using simple examples illustrated the
related problems. As it is obvious, most of the approaches
(such as, e.g., efficient query translation, cost estimation
of the queries, etc.) can be significantly optimized, since
a detailed research has already been done in these areas.

The very next step of our future work is an elaborate
implementation of the proposed system with the empha-
sis on all the “side” aspects of the proposal including the
omitted user-friendly interface which is definitely and im-
portant requirement for a system based on user interaction.
During the research experimental and prototype imple-
mentations of the most important modules of the system
were created for the purpose of evaluation or verification
of important algorithms. But at this stage we intend to im-
plement the system as a complete and robust application.
And this plan is also closely related to the mentioned open
issue of optimization of the query evaluator. Similarly to
paper (Freire et al. 2002) we intend to exploit a cost evalu-
ator which is able to dynamically adapt the statistics to the
newly coming data and, at the same time, to conform to
the assumption of multiple storage strategies used within
a single schema.
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