
Doktorandské dny ’07
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souhlasu vydavatele.
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ČVUT
Trojanova 13
120 00 Prague 2

Czech Republic

Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod Vodárenskou věžı́ 2

182 07 Prague 8

radned@seznam.cz stuller@cs.cas.cz

Field of Study:
Mathematical Engineering

This work was supported by the project 1ET100300419 of the Program Information Society (of the Thematic Program
II of the National Research Program of the Czech Republic) “Intelligent Models, Algorithms, Methods and Tools for the

Semantic Web Realization”, and by the Institutional Research Plan AV0Z10300504 “Computer Science for the
Information Society: Models, Algorithms, Applications”.

Abstract

The paper resumes recent advances in the
field of logic of preference and presents their
application in the field of database queries.
Namely, non-monotonic reasoning mechanisms
including various kinds of preferences are re-
viewed, and a way of suiting them to practical
database applications is shown: reasoning inclu-
ding sixteen strict and non-strict kinds of pre-
ferences, inclusive of ceteris paribus preferen-
ces, is feasible. However, to make the mecha-
nisms useful for practical applications, the as-
sumption of preference specification consistency
has to be relinquished. This is achieved in two
steps: firstly, all the kinds of preferences are de-
fined so that some uncertainty is inherent, and
secondly, not a notion of a total pre-order but a
partial pre-order is used in the semantics, which
enables to indicate some kind of conflict among
preferences. Most importantly, the semantics of
a set of preferences is related to that of a dis-
junctive logic program.

1. Introduction

All to often no reasonable answer is returned by an SQL-
based search engine though one has tried hard writing
query to match one’s personal preferences closely. The
case of repeatedly receiving empty query result is ex-
tremely disappointing to the user. On the other hand,
leaving out some conditions in the query often leads to
another unpleasant extreme: an overloading with lots of

mostly irrelevant information.

This observation stems from the fact that traditional
database query languages treat all the requirements on
the data as mandatory, hard ones. However, it is natural
to express queries in terms of both hard as well as soft
requirements, i.e., preferences, in many applications. In
the “real world”, preferences are understood in the sense
of wishes: in case they are not satisfied, database users
are usually prepared to accept worse alternatives. Thus
preferences require a paradigm shift from exact matches
towards a best possible matchmaking.

The paper presents a work in progress aiming at si-
multaneous usage of various kinds of preferences in
database queries. The semantics of preferences is de-
fined according to recent advances in the field of prefe-
rence logic. Consequently, the preferences under consi-
deration, in general, are set preferences. The objective is
to provide database users with a language that is decla-
rative, can be used to define such database queries that
not necessarily all answers but rather the best, the most
preferred ones are returned, includes various kinds of
preferences, and has an intuitive, well defined semantics
allowing for conflicting preferences.

In section 2, the basic notions of logic of preference
and non-monotonic reasoning are briefly summarized.
In section 3, basic concepts and key features of the
proposed approach are introduced: preference operator
is defined and its basic properties presented, inclusive
of algebraic properties important for algebraic optimi-
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zation of database queries. Section 4 gives a short over-
view of related work and the 5th section concludes the
paper.

2. Preliminaries

The logic of preference has been studied since the sixties
as a branch of philosophical logic: Logicians and phi-
losophers have been attempting to define the one well-
formed logic that people should follow when expressing
preferences.

2.1. Logic of preference

It is Von Wright’s essay [1] that tries to give the first axi-
omatization of a logic of preference. The general idea is
that the expression “a is preferred to b” should be un-
derstood as the preference of a state (a world) where a
occurs over a state where b occurs. Von Wright expres-
sed a theory based on five axioms. The problem is that
empirical observation of human behavior provides coun-
terexamples of this axiomatization.

Later, Von Wright [2] introduced a more general frame
to define preferences, updating also the notion of ceteris
paribus preferences. In this approach, he considers a set
S of n logically independent states of affairs and the set
W = 2S of 2n combinations of the elements of S. An
s-world is called any element of W that holds when s
holds. In the same way is defined a Ci-world, where Ci

is a combination of elements of S. Now, von Wright gi-
ves two definitions (strong and weak) of “s is preferred
to t under the circumstances Ci”:

1. (strong): s is preferred to t under the circumstan-
ces Ci iff every Ci-world that is also an s-world
and not a t-world is preferred to every Ci-world
that is also a t-world and not an s-world.

2. (weak): s is preferred to t under the circumstan-
ces Ci iff some Ci-world that is also an s-world is
preferred to some Ci-world that is also a t-world,
and no Ci-world which is a t-world is preferred to
any Ci-world which is an s-world.

Finally, if s is preferred to t under all circumstances Ci,
according to either definition, then s is said to be pre-
ferred to t ceteris paribus.

It can be concluded that the philosophical discussion
about preferences failed the objective to give a unify-
ing frame of generalized preference relations that could

hold for any kind of states, based on well-defined axio-
matization.

More recently, Von Wright’s ideas and the discussion
about “logical representation of preferences” attracted
attention again. For instance Doyle and Wellman [3]
give a modern treatment of preferences ceteris paribus.
On the other hand, Boutilier [4] pioneers a new way of
looking at preference logic by augmenting a basic modal
language. His work is the base of the recent work of van
Benthem, Otterloo and Roy [5], who reduce preference
logic to a basic (multi)modal language augmented with
tho so-called existential modality. Their semantics does
not include ceteris paribus property of preferences.1

2.2. Logic of preferences

A drawback of the present state of the art in the logic
of preference is that proposed logics typically formalize
only preference of one kind. Consequently, when for-
malizing preferences, one has to choose which kind of
preference statements are used for all preferences under
consideration.

To study the interaction among kinds of preferences,
a non-monotonic preference logic for various kinds of
preferences, logic of preferences – in contrast to the
usual reference to the logic of preference, has been re-
cently developed by Kaci and Torre [7, 8]. They have
developed algorithms for a non-monotonic preference
logic for sixteen kinds of preferences: four basic types,
each of them strict or non-strict, with or without ceteris
paribus proviso.

To describe ceteris paribus preference, a general con-
struction proposed by Doyle and Wellman [3] is
employed. Their language for preference built over a set
of propositions is defined inductively from propositional
variables. They mean by proposition a set of individual
objects, elements of a set W . These individual objects
can be understood as worlds, i.e., truth assignments for
propositional variables. In other words, a propositional
formula is identified with worlds – fulfilling truth assig-
nments, and the powerset 2W is taken to be the set of all
propositional formulas.

Their ceteris paribus preferences are based on a notion
of contextual equivalence:

Definition 1 (Contextual equivalence)[3, Def.4] Let
W be a set of worlds and ξ(W ) be the set of equiva-
lence relations on W . A contextual equivalence on W

is a function η : 22W → ξ(W ) assigning to each set of
propositional formulas {ϕ,ψ, . . .} equivalence relation

1For more detailed survey of the origin of preference logic in the work of von Wright refer to [6].
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η(ϕ,ψ, . . .).

If w η(ϕ,ψ, . . .) w′, we usually write

w ≡ w′ mod η(ϕ,ψ, . . .) .

Definition 2 (Preference model) A preference model
M = 〈W,º, η〉 is a triplet in which W is a set of
worlds, º is a total pre-order, i.e., a relation which is
complete, reflexive, and transitive, over W , and η is a
contextual equivalence function on W .

Definition 3 (Comparative greatness)[3, Def.5] We
say that “ϕ is weekly greater than ψ,” written ϕ ¥ ψ,
is satisfied in the model M, written M |= ϕ ¥ ψ, iff
w1 º w2 whenever

1. w1 |= ϕ ∧ ¬ψ ,

2. w2 |= ¬ϕ ∧ ψ , and

3. w1 ≡ w2 mod η(ϕ ∧ ¬ψ,¬ϕ ∧ ψ) .

This definition of ceteris paribus preferences seems very
close to the intended semantics behind von Wright’s
principles. Preferences of ϕ over ψ are defined as pre-
ferences of ϕ ∧ ¬ψ over ¬ϕ ∧ ψ, which is standard and
known as von Wright’s expansion principle [1]. Also,
note that if the equivalence relation η(ϕ ∧ ¬ψ,¬ϕ ∧ ψ)
is the universal relation, i.e., an equivalence relation with
only one equivalence class, then the ceteris paribus pre-
ference reduces to strong condition (ϕ is preferred to ψ
when each ϕ ∧ ¬ψ is preferred to all ¬ϕ ∧ ψ).

The following proposition [8] shows that Def.3 reduces
a preference with ceteris paribus proviso to a set of pre-
ferences for each equivalence class of the equivalence
relation.

Proposition 1 [8, Prop.2] Assume a finite set of propo-
sitional variables, and let ε(η, ϕ, ψ) be the set of pro-
positional formulas which are true in all worlds of an
equivalence class of η(ϕ,ψ), but false in all others:
{χ|∃w∀w′ : w ≡ w′ mod η(ϕ,ψ) ⇐⇒ w′ |= χ}.
We have that “ϕ is weakly greater than ψ” is satisfied
in the model M = 〈W,º, η〉 iff for all propositions
c ∈ ε(η, ϕ ∧ ¬ψ,¬ϕ ∧ ψ), we have that w1 º w2 whe-
never

1. w1 |= ϕ ∧ ¬ψ ∧ c ,

2. w2 |= ¬ϕ ∧ ψ ∧ c .

The logical language introduced in by Kaci and Torre [8]
extends propositional logic with sixteen kinds of prefe-
rences:

Definition 4 (Language) [8, Def.3] Given a finite set
of propositional variables p, q, . . ., the set L0 of pro-
positional formulas and the set L of preference formulas
is defined as follows:

L0 3 ϕ, ψ: p|(ϕ ∧ ψ)|¬ϕ

L 3 Φ, Ψ: ϕ x>y ψ|ϕ x≥y ψ|ϕ x>y
c ψ|ϕ x≥y

c ψ|
¬Φ|(Φ ∧Ψ) for x, y ∈ {m,M}

Definition 5 (Monotonic semantics)[8, Def.4] Let M
be a preference model. When x = M we write x(ϕ,M)
for

max(ϕ,M) =
{w ∈ W |w |= ϕ∧(∀w′ ∈ W : w′ |= ϕ ⇒ w º w′)} ,

and analogously when x = m we write x(ϕ,M) for

min(ϕ,M) =
{w ∈ W |w |= ϕ∧(∀w′ ∈ W : w′ |= ϕ ⇒ w′ º w)} .

M |= ϕ x>y ψ iff ∀w ∈ x(ϕ ∧ ¬ψ,M),
∀w′ ∈ y(¬ϕ ∧ ψ,M) : w Â w′

M |= ϕ x≥y ψ iff ∀w ∈ x(ϕ ∧ ¬ψ,M),
∀w′ ∈ y(¬ϕ ∧ ψ,M) : w º w′

M |= ϕ x>y
c ψ iff ∀c ∈ ε(η, ϕ ∧ ¬ψ,¬ϕ ∧ ψ),

∀w ∈ x(ϕ ∧ ¬ψ ∧ c,M),
∀w′ ∈ y(¬ϕ ∧ ψ ∧ c,M) : w Â w′

M |= ϕ x≥y
c ψ iff ∀c ∈ ε(η, ϕ ∧ ¬ψ,¬ϕ ∧ ψ),

∀w ∈ x(ϕ ∧ ¬ψ ∧ c,M),
∀w′ ∈ y(¬ϕ ∧ ψ ∧ c,M) : w º w′

Moreover, logical notions are defined as usual, in par-
ticular:

S |= Φ ⇐⇒ ∀M : M |= S ⇒M |= Φ .

Note that ϕ m≥M
c ψ is the Doyle and Wellmans’s com-

parative greatness (Def.3).

In this paper, we are interested in a special kind of theo-
ries, namely preference specifications:

Definition 6 (Preference specification) [8, Def.5] Let
P¤ be a set of preferences of the form {ϕi ¤ ψi : i =
1, . . . , n}. A preference specification P is a tuple:

〈P¤|¤ ∈ { x>y, x≥y, x>y
c , x≥y

c |x, y ∈ {m,M}}〉 ,

and M is its model iff it models all P¤:

M |= P¤ ⇐⇒ ∀(ϕi ¤ ψi) ∈ P¤ : M |= ϕi ¤ ψi .
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Corollary 1 Observe that by Prop.1, we can replace ce-
teris paribus preferences, written x>y

c or x≥y
c , by sets

of ordinary preferences without a ceteris paribus pro-
viso. Consequently, we can restrict ourselves to the eight
types of preferences without ceteris paribus clauses.

2.3. Non-monotonic logic of preferences

Non-monotonic reasoning has been characterized by
Shoham [9] as a mechanism that selects a subset of the
models of a set of formulas, which we call distinguished
models. Thus non-monotonic consequences of a logical
theory are defined as all formulas which are true in the
distinguished models of the theory.

An attractive property occurs when there is only one dis-
tinguished model, as then all non-monotonic consequen-
ces can be found by calculating the unique distinguished
model and characterizing all formulas satisfied by this
model. It has been proved in the literature that a unique
distinguished model can be defined for the following
sets of preferences: P m>M , P m>m , and P M>M .

Moreover, Kaci and Torre [8] have defined a distingu-
ished model and proved ist uniqueness for

〈P¤|¤ ∈ { x>y, x≥y, x>y
c , x≥y

c |x ∈ {m, M}, y = M}〉

and also for

〈P¤|¤ ∈ { x>y, x≥y, x>y
c , x≥y

c |x = m, y ∈ {m,M}}〉

They have also provided algorithms to calculate these
two unique models and presented a way to combine
these models to find a distinguished model of all the ty-
pes of preferences given together. Their algorithms also
capture all the algorithms for handling all the kinds of
preferences separately.

It should be pointed out, that the consistency of prefe-
rence specification, i.e., no conflict among preferences,
has been assumed by now. This assumption, however,
is hard to fulfil in practical applications. In order not to
restrict the use of the logic of preference, Boella and
Torre [10] have proposed a minimal logic of preference
in which any preference specification is consistent. They
have achieved the consistency by means of:

• formalizing a preference ϕ over ψ as the absence
of a ψ world that is preferred over a ϕ worlds;

• amending the preference model definition by
using partial pre-order instead of total pre-order
on worlds, which enables to indicate some kind of
conflict among worlds (by their incomparability).

Their non-monotonic reasoning is based on distingu-
ished models called most connected models.

Definition 7 Most connected model [10, Def.4] A mo-
del M = 〈W,º, η〉 is at least as connected as another
modelM′ = 〈W,º′, η〉, written asMvM′, ifº′⊆º,
i.e.,

∀w1, w2 ∈ W : w1 º′ w2 ⇒ w1 º w2 .

A modelM is most connected if there is no other model
M′ s.t.M′ < M, i.e., s.t.M′ vMwithoutMvM′.

In comparison with Kaci and Torre’s language [8], their
language is by far less expressive, having only one kind
of preference.

3. Preferences in database queries

To improve the readability, x º y ∧ ¬(y º x), º
(x, y) ∧ ¬ º (y, x), and º (x, y)∧ º (y, x) is substitu-
ted by x Â y, Â (x, y), and = (x, y), resp., henceforth.

3.1. Basic concepts and key features

To reach the target, we need to accommodate an ex-
pressive language with various kinds of preferences in
the RDM framework. We propose to base its model-
theoretic semantics on those of preference logic langu-
ages.

In the following list of basic concepts, the key features
are boldfaced.

• User preferences are expressed in a preference lo-
gic language.

• Semantics of a set of (possibly conflicting) pre-
ferences is related to that of a disjunctive logic
program (DLP).

• Non-monotonic reasoning mechanisms about
preferences has to be employed to reason about
preferences that are defined in such a way that
consistency is ensured under all circumstances.

• A preference operator returning only the best
tuples in the sense of user preferences is used
to embed preferences into relational query langu-
ages.

We identify propositional variables with tuples, i.e.,
facts over relations. A subset of a relation instance, i.e., a
set of facts, creates a world, an element of a set W , and
propositions are logically implied by worlds in which
they hold true.
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3.2. User preferences

Our starting point is the language (Def.4) introduced by
Kaci and Tore [8] who extend propositional language
with sixteen kinds of preferences. The aim is to accom-
modate this expressive language in the RDM framework
so that any set of (possibly conflicting) preferences has
a well defined semantics.

To define the semantics without the consistency as-
sumption, the definition (Def.2) of the preference mo-
del has to be extended. For this reason, Boella and Torre
[10] have replaced the total pre-order with partial pre-
order, i.e., a binary relation which is reflexive and tran-
sitive, on worlds in the preference model definition. In-
deed, it shows that their definition provides a sufficient
space of models.

Definition 8 (Preference model) A preference model
M = 〈W,º〉 over a relation schema R is a couple in
which W is a set of worlds, relation instances of R, and
º is a partial pre-order over W , the preference relation.

Observe that as preferences with ceteris paribus provi-
sos can be reduced in accordance with Cor.1 to sets of
preferences without such provisos, we have neglected
the contextual equivalence in the definition of the prefe-
rence model.

Definition 9 (Models of preferences) Let M be a pre-
ference model and w, w′ elements of W s.t. w |= ¬ϕ∧ψ
and w′ |= ϕ ∧ ¬ψ. Then:

M |= ϕ M>M ψ iff ∃w′ s.t.2 ∀w : if ϕ∧¬ψ 6|=W false,
we have ¬(w º w′).

M |= ϕ M≥M ψ iff ∃w′ s.t. ∀w : if ϕ∧¬ψ 6|=W false,
we have ¬(w Â w′).

M |= ϕ m>M ψ iff ∀w∀w′, we have ¬(w º w′).

M |= ϕ m≥M ψ iff ∀w∀w′, we have ¬(w Â w′).

M |= ϕ M>m ψ iff ∃w∃w′: if ¬ϕ ∧ ψ 6|=W false and
ϕ ∧ ¬ψ 6|=W false, we have ¬(w º w′).

M |= ϕ M≥m ψ iff ∃w∃w′: if ¬ϕ ∧ ψ 6|=W false and
ϕ ∧ ¬ψ 6|=W false, we have ¬(w Â w′).

M |= ϕ m>m ψ iff ∃w∀w′: if ¬ϕ ∧ ψ 6|=W false, we
have ¬(w º w′).

M |= ϕ m≥m ψ iff ∃w∀w′: if ¬ϕ ∧ ψ 6|=W false, we
have ¬(w Â w′).

3.3. Preference specification semantics

Definition 10 (Preference specification) Let R be a re-
lation schema. Given the set L0(R) from the definition
(Def.4) of the language in which propositional variables
are identified with facts over the relation R, P¤(R) is
a set of preferences over the relation schema R of the
form {ϕi ¤ ψi : i = 1, . . . , n} for ϕi, ψi ∈ L0(R). A
preference specification P over the relation schema R is
a tuple 〈P¤(R)|¤ ∈ { x>y, x≥y |x, y ∈ {m,M}}〉,
and M(P) is its model, i.e., a preference specification
model, iff it models all P¤(R):

M(P) |= P¤(R) ⇐⇒
∀(ϕi ¤ ψi) ∈ P¤(R) : M(P) |= ϕi ¤ ψi .

To calculate a preference specification model, we asso-
ciate the preference specification P with a DLP, then
employ optimal model semantics of the DLP and finally
compute the model by mens of iteration of the immedi-
ate consequence operator for a positive logic program.

3.3.1 Disjunctive logic program: First, we as-
sociate the preference specification P with a DLP in
three steps:

First step: Create a partition EW = (E1, . . . , En) of W
so that w,w′ ∈ Ei iff any of the following conditions is
fulfilled for every preference ϕ ¤ ψ:

1. w |= ϕ ∧ ¬ψ and w′ |= ϕ ∧ ¬ψ ,

2. w |= ¬ϕ ∧ ψ and w′ |= ¬ϕ ∧ ψ ,

3. w |= (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ) and
w′ |= (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ) .

Second step: Substitute each preference type by a logi-
cal formula3:

ϕ M>M ψ: if ϕ ∧ ¬ψ 6|=W false, we have:
∃Ei s.t. ∀Ej : 6< (Ej , Ei).

ϕ M≥M ψ: if ϕ ∧ ¬ψ 6|=W false, we have:
∃Ei s.t. ∀Ej :� (Ej , Ei).

ϕ m>M ψ: ∀Ej∀Ei :6< (Ej , Ei).

ϕ m≥M ψ: ∀Ej∀Ei :� (Ej , Ei).

ϕ M>m ψ: if ϕ ∧ ¬ψ 6|=W false, we have:
∃Ej∃Ei :6< (Ej , Ei).

2ϕ ∧ ¬ψ 6|=W false denotes that there is a model in W for ϕ ∧ ¬ψ.
3Elements of Ei and Ej fulfill ϕ ∧ ¬ψ and ¬ϕ ∧ ψ, resp. in the following list
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ϕ M≥m ψ: if ϕ ∧ ¬ψ 6|=W false, we have:
∃Ej∃Ei :� (Ej , Ei).

ϕ m>m ψ: ∃Ej∀Ei : 6< (Ej , Ei).

ϕ m≥m ψ: ∃Ej∀Ei :� (Ej , Ei).

The above formulae can be expressed as disjunctions.

Third step: Furthermore, formulae expressing proper-
ties of the above predicates and their relations have to
be added:

6< (A, B)∨ < (A,B) ← 6< (B,A).
6< (B, A) ∨ [< (A,B)∧ < (B, A)] ← � (B,A).

< (A,C) ← < (A,B)∧ < (B, C).
‖ (A,B) ← 6< (A,B)∧ 6< (B, A).
< (A,B) ← ¬ 6< (A, B).

false ← 6< (A,B)∧ < (A,B).
< (A,A) ← .

3.3.2 Optimal model semantics: To define the
meaning of the DLP, we employ optimal model seman-
tics [11].

Definition 11 (Atomic weight assignment) [11, Def.2]
An atomic weight assignment, ℘, for a program P , is a
map from the Herbrand Base BP of P to R+

0 , where R+
0

denotes the set of nonnegative real numbers (including
zero).

Definition 12 (Aggregation strategy) [11, Def.3] An
aggregation strategy A is a map from4 MR+

0 to R.

Definition 13 (Herbrand Objective function)[11,
Def.4] The Herbrand Objective Function, HOF(℘,A)
is a map from 2BP to R+

0 defined as follows:

HOF(℘,A)(M) = A({℘(A)|A ∈ M}) .

Definition 14 (Optimal model)[11, Def.5] Let P be a
logic program, ℘ an atomic weight assignment, and A
an aggregation strategy. Suppose that F is a family of
models of P . We say that M is an optimal F-model of
P with regard to (℘,A) if:

1. M ∈ F ;

2. @M ′ : M ′ ∈ F ∧ HOF(℘,A)(M ′) <
HOF(℘,A)(M).

We use the notation Opt(P,F , ℘,A) to denote the set of
all optimal F-models of P with regard to (℘,A).

Applying a variant of the connectivity principle (c.f.
Def.7), distinguished models, defining the meaning of
the program P , can be selected from stable models
ST(P ) of P so that the intensional relation ‖ of incom-
parable elements is minimal in the sense of set inclusion.
Accordingly, we get the intended optimal model seman-
tics of our program when we extend the notions of ag-
gregation strategy and Herbrand objective function so
that the relation of set inclusion can be captured.

It is important to point out that

Opt(P, ST(P ), ℘0,A0) ,

in general, contains more than one optimal model.

For every intensional relation <k that is subsumed in an
optimal model MP ∈ Opt(P, ST(P ), ℘0,A0), we de-
fine the preference relation as follows:

∀w, w′ ∈ W with w ∈ Ei, w
′ ∈ Ej :

w ºk w′ ⇐⇒ Ei <k Ej

and get a preference specification model Mk(P) =
〈W,ºk〉.

3.3.3 Computing the model: Ordering the
partition of W according to the intensional relation
<k that is subsumed in an optimal model MP ∈
Opt(P, ST(P ), ℘0,A0), the most preferred worlds ulti-
mately are located in maximal elements of the partition.
To find the maximal elements, the ordered partition is
associated with a positive datalog program consisting of
one rule:

M(A) ← M(B)∧ <k (A,B).

and facts: <k (Ei, Ej) ∈ MP .

Observe that MP is a the least, trivial model of the
above program. Nevertheless, least nontrivial models of
the above program yield the interpretations of the pre-
dicate M identifying the maximal elements and thus
also the most preferred worlds according to the model
Mk(P) = 〈W,ºk〉.

4Given a set X , MX denotes the set of all multisets whose elements are in X .
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3.4. Preference operator

To embed preferences into relational query languages, a
preference operator ωP returning only the best tuples in
the sense of user preferences P is defined.

Definition 15 (Preference operator) If R is a relation
schema,P a preference specification over R, and M (P)
the set of its models; then the preference operator ωP is
defined for all instances I(R) of R as follows:

ωP(I(R)) = {w ∈ W |
w ⊆ I(R) ∧ ∃Mk(P) ∈ M (P) s.t. ∀w′ ∈ W :

w′ ⊆ I(R)∧ ºk (w′, w) ⇒ ºk (w, w′)} .

3.4.1 Basic properties:

Proposition 2 Given a relation schema R, a preference
specification P over R, for all instances I(R) of R the
following properties hold:

ωP(I(R)) ⊆ 2I(R) ,

ωP (ωP(I(R))) = ωP(I(R)) ,

ωPempty(I(R)) = 2I(R) ,

where Pempty is the empty preference specification, i.e.,
containing no preference.

Theorem 1 (Non-emptiness) Given a relation schema
R, a preference specification P over R, then for every
finite, nonempty instance I(R) of R, ωP(I(R)) is non-
empty.

3.4.2 Multidimensional composition: The
most common ways of defining a preference on the Car-
tesian product of two relations are Pareto and lexicogra-
phic composition.

Definition 16 (Pareto composition) Given two re-
lation schemas R1 and R2, preference specifications
P1 over R1 and P2 over R2, and its sets of models
M (P1) and M (P2), respectively, the Pareto composi-
tion P (P1,P2) of P1 and P2 is a preference specifi-
cation P0 over the Cartesian product R1 × R2, whose
preference relation ºm is defined as:

∀w1, w
′
1 ∈ W1, ∀w2, w

′
2 ∈ W2,

∃Mk(P1) ∈ M (P1),∃Ml(P2) ∈ M (P2) :
ºm (w1×w2, w

′
1×w′2) ≡ºk (w1, w

′
1) ∧ ºl (w2, w

′
2) ,

where Mk(P1) = 〈W1,ºk〉 and Ml(P2) = 〈W2,ºl〉.

Definition 17 (Lexicographic composition) Given
two relation schemas R1 and R2, preference specificati-
ons P1 over R1 and P2 over R2, and its sets of models
M (P1) and M (P2), respectively, the lexicographic
composition L(P1,P2) of P1 and P2 is a preference
specification P0 over the Cartesian product R1 × R2,
whose preference relation ºm is defined as:

∀w1, w
′
1 ∈ W1, ∀w2, w

′
2 ∈ W2,

∃Mk(P1) ∈ M (P1),∃Ml(P2) ∈ M (P2) :
ºm (w1 × w2, w

′
1 × w′2) ≡

Âk (w1, w
′
1) ∨ (=k (w1, w

′
1)∧ ºl (w2, w

′
2)) ,

where Mk(P1) = 〈W1,ºk〉 and Ml(P2) = 〈W2,ºl〉.

3.4.3 Algebraic properties: The set of alge-
braic laws that govern the commutativity and distributi-
vity of winnow with respect to relational algebra operati-
ons constitutes a formal foundation for rewriting prefe-
rence queries using the standard strategies like pushing
selection down.

The following theorem identifies a sufficient condition
under which the preference operator and relational alge-
bra selection commute.

Theorem 2 (Commuting with selection) Given a re-
lation schema R, a preference specification P over R,
the set of its preference models M (P), and a selection
condition ϕ over R, if the formula

∀Mk(P) ∈ M (P), ∀w, w′ ∈ W :
Âk (w′, w) ∧ w = σϕ(w) ⇒ w′ = σϕ(w′)

is valid, then for all instances I(R):

σϕ (ωP(I(R))) = ωP (σϕ(I(R))) .

The following theorem identifies a sufficient condition
under which the preference operator and relational alge-
bra projection commute.

Definition 18 (Restriction of a preference relation)
Given a relation schema R, a set of attributes X of
R, and a preference relation º over R, the restriction
θX(º) of º to X is a preference relation ºX over
πX(R) defined using the following formula:

ºX (wX , w′X) ≡ ∀w, w′ ∈ W :
πX(w) = wX ∧ πX(w′) = w′X ⇒ º (w, w′) .

Definition 19 (Restriction of a preference model) Gi-
ven a relation schema R, a set of attributes X of R, and
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a preference model (Def.8) M = 〈W,º〉 over R, the
restriction θX(M) of M to X is a preference model
MX = 〈WX ,ºX〉 where WX = {πX(w) | w ∈ W}
and ºX is defined as above.

Definition 20 (Restriction of a preference operator)
Given a relation schema R, a set of attributes X of R,
the restriction θX(R) of R to X , a preference specifi-
cation P , and the set of its restricted models MX(P);
then the restriction θX(ωP) of a preference operator ωP
to X is a preference operator ωX

P defined as follows:

ωX
P (I(θX(R))) = {wX ∈ WX |
∃MXk(P) ∈ MX(P) s.t. ∀w′X ∈ WX :

ºXk (w′X , wX) ⇒ ºXk (wX , w′X)} .

Theorem 3 (Commuting with projection) Given a re-
lation schema R, a set of attributes X of R, the rest-
riction θX(R) of R to X , a preference specification P
over R, and the set of its preference models M (P), if
the following formulae

∀Mk(P) ∈ M (P), ∀w1, w2, w3 ∈ W :
πX(w1) = πX(w2) ∧ πX(w1) 6= πX(w3)

∧ ºk (w1, w3) ⇒ ºk (w2, w3) ,

∀Mk(P) ∈ M (P), ∀w1, w3, w4 ∈ W :
πX(w3) = πX(w4) ∧ πX(w1) 6= πX(w3)

∧ ºk (w1, w3) ⇒ ºk (w1, w4)

are valid, then for any relation instance I(R) of R:

{πX(w) | w ∈ ωP(I(R))} = ωX
P (πX(I(R))) ,

where ωX
P = θ(ωP) is the restriction of ω(P) to X .

For preference operator to distribute over the Cartesian
product of two relations, the preference specification,
which is the parametr of the preference operator, needs
to be decomposed into the preference specifications that
will distribute into the argument relations.

Theorem 4 (Distributing over Cart. product) Given
two relation schemas R1 and R2, and preference spe-
cifications P1 over R1 and P2 over R2, for any two
relation instances I(R1) and I(R2) of R1 and R2, re-
spectively, the following property holds:

ωP0(I(R1)× I(R2)) =
{w1×w2 | w1 ∈ ωP1(I(R1))∧w2 ∈ ωP2(I(R2))} ,

where P0 = P (P1,P2) is a Pareto composition of P1

and P2.

Theorem 4 makes it possible to derive the transfor-
mation rule that pushes preference operator with a one-
dimensional preference specification down the appropri-
ate argument of the Cartesian product:

Corollary 2 Given two relation schemas R1 and R2, a
preference specifications P1 over R1, and an empty pre-
ference specification P2 over R2, for any two relation
instances I(R1) and I(R2) of R1 and R2, respectively,
the following property holds:

ωP0(I(R1)× I(R2)) =
{w1 × w2 | w1 ∈ ωP1(I(R1)) ∧ w2 ⊆ I(R2)} ,

where P0 = P (P1,P2) is a Pareto composition of P1

and P2.

For lexicographic composition, we obtain the same pro-
perty as for Pareto composition:

Theorem 5 (Distributing over Cart. product) Given
two relation schemas R1 and R2, and preference spe-
cifications P1 over R1 and P2 over R2, for any two
relation instances I(R1) and I(R2) of R1 and R2, re-
spectively, the following property holds:

ωP0(I(R1)× I(R2)) =
{w1×w2 | w1 ∈ ωP1(I(R1))∧w2 ∈ ωP2(I(R2))} ,

where P0 = L(P1,P2) is a lexicographic composition
of P1 and P2.

The following theorem shows how the preference ope-
rator distributes over the union of two relations:

Theorem 6 (Distributing over union) Given two com-
patible relation schemas5 R and S, and a preference
specification P over R (and S), for any two relation
instances I(R) and I(S) of R and S, respectively, the
following property holds:

ωP(I(R) ∪ I(S)) = ωP(ωP(I(R)) ∪ ωP(I(S))) .

Only in the trivial case, it is possible to distribute the
preference operator over difference:

Theorem 7 (Distributing over difference) Given two
compatible relation schemas R and S, and a preference
specification P over R (and S), for any two relation
instances I(R) and I(S) of R and S, respectively, the
following property holds:

ωP(I(R)− I(S)) = ωP(I(R))− ωP(I(S))

iff the preference specification P is empty.
5We call two relation schemas compatible if they have the same number of attributes and the corresponding attributes have identical domains.
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The next theorem shows that some kind of nontrivial dis-
tributivity of preference operator over difference exists:

Theorem 8 (Distributing over difference) Given two
compatible relation schemas R and S, and a preference
specification P over R (and S), for any two relation
instances I(R) and I(S) of R and S, respectively, the
following property holds:

ωP(I(R)− I(S)) = ωP

(
n⋃

k=1

ω
(k)
P (I(R))− I(S)

)
,

where n ∈ N is a minimal number s.t.

ωP

(
n⋃

k=1

ω
(k)
P (I(R))− I(S)

)
=

ωP

((
n⋃

k=1

ω
(k)
P (I(R))− I(S)

)⋃
ω

(n+1)
P (I(R))

)

and ω
(k)
P is the k−th iteration of the preference operator

in I(R) defined as:

ω
(1)
P (I(R)) = ωP(I(R)) ,

ω
(n+1)
P (I(R)) = ωP

(
I(R)−

n⋃

k=1

ω
(k)
P (I(R))

)
.

4. Related work

The study of preferences in the context of database que-
ries has been originated by Lacroix and Lavency [12].
Following this work, preference datalog was introdu-
ced in [13] where it was shown that the concept of pre-
ference provides a modular nad declarative means for
formulating optimization and relaxation queries in de-
ductive databases.

Nevertheless, only at the turn of the millennium this
area attracted broader interest again. Kießling et al.
[14, 15, 16, 17, 18] and Chomicki et al. [19, 20, 21, 22]
have pursued independently a similar, qualitative appro-
ach within which preferences between tuples are speci-
fied directly, using binary preference relations. The em-
bedding into relational query languages they have used
is identical to the presented approach: They have defined
an operator returning only the best preference matches.
However, they haven’t considered preferences between
sets of elements. A special case of this embedding re-
presents skyline operator introduced by Börzsönyi et al.
[23].

A slightly different approach was proposed in [24],
where the relational data model was extended to incor-

porate partial orderings into data domains. A similar ap-
proach to preference modeling in the context of web re-
positories was presented in [25]. Also in [26], actual va-
lues of an arbitrary attribute were allowed to be parti-
ally ordered according to user preferences. Accordingly,
relational algebra operations, aggregation functions and
arithmetic were redefined. However, some of their pro-
perties were lost, and the the query optimization issues
were not discussed. A comprehensive work on partial
order in databases, presenting the partially ordered sets
as the basic construct for modeling data, is [27].

Other contributions aim at exploiting linear order inhe-
rent in many kinds of data, e.g., time series: in the con-
text of statistical applications systems SEQUIN [28],
SRQL [29], Aquery [30, 31].

By contrast to the above qualitative approach, in the
quantitative approach [32, 33, 34] preferences are spe-
cified indirectly using scoring functions that associate a
numeric score with every tuple.

5. Conclusions

Pursuing the goal of embedding preference queries in
the relational data model, it has been shown that user
preferences can be captured in a logical language
containing sixteen kinds of preferences, and the se-
mantics of the language can be defined with respect to
the recent advances in logical representation of prefe-
rences allowing for conflicting preferences.

Embedding preferences into relational query languages
has been implemented through a preference operator
returning the most preferred sets of tuples. This ope-
rator has a formal semantics defined by means of opti-
mal models of a DLP. To reason about preferences that
might be inconsistent, non-monotonic reasoning about
preferences has been used.

Sufficient conditions for commuting the preference ope-
rator with relational algebra selection or projection and
for distributing over Cartesian product, set union, and set
difference has been identified. Thus key rules for rewri-
ting the preference queries using the standard algebraic
optimization strategies have been established.

Future work directions include developing algorithms
for evaluating the preference operator and identification
of other algebraic properties, in order to lay the foun-
dation for the optimization of preference queries. Also,
complexity issues have to be addressed in detail.
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University Karlovy
Sokolovská 83, 186 75 Praha 8
jako svou – not yet – . publikaci

Obálku navrhl František Hakl
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