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Abstract:This paper describes ontological description of computational agents, their properties and abilities. The
goal of the work is to allow for autonomous behavior and semi-automatic composition of agents within a multi-
agent system. The system has to be create foundation for the interchangeability of computational components, and
emergence of new models. This paper focuses on ways of representingagents and systems in standard formalisms,
such as description logics, OWL, and Jade.
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1 Introduction

There is a lot of research in how to use formal log-
ics to model ontologies. The goal of this research is
to find logics that are both expressive enough to de-
scribe ontological concepts, and weak enough to al-
low efficient formal reasoning about ontologies. The
most natural approach to formalize ontologies is the
use of First Order Predicate Logics (FOL). This ap-
proach is used by well known ontology description
languages like Ontolingua [5] and KIF [8]. The dis-
advantage of FOL-based languages is the expressive
power of FOL. FOL is undecidable [3], and there are
no efficient reasoning procedures. Nowadays, the de
facto standard for ontology description language for
formal reasoning is the family of description logics.
Description logics are equivalent to subsets of first
order logic restricted to predicates of arity one and
two [2]. Autonomous agents are small self-contained
programs that can solve simple problems in a well-
defined domain [13]. In order to solve complex prob-
lems, agents have to collaborate, forming Multi-Agent
Systems (MAS). A key issue in MAS research is how
to generate MAS configurations that solve a given
problem [4]. In most Systems, an intelligent (human)
user is required to set up the system configuration.
Developing algorithms for automatic configuration of
Multi-Agent Systems is a major challenge for AI re-
search. In this paper, we introduce a logical reason-
ing component for MAS. With this component, sys-
tem configurations can be created automatically and
semi-automatically. The logical description of MAS
allows for interaction with ontology based distributed
knowledge systems like the Semantic Web [9].

Description logics is used as the underlying
framework for the Semantic Web, a project of the
Internet standardization body W3C. The Semantic
Web is an extension of the current web in which in-
formation is given well-defined meaning, better en-
abling computers to deal with that information in a
formal way. [1]. The Knowledge Grid project [18],
[17] builds on top of the Semantic Web to create an
intelligent environment allowing agents (both soft-
ware and human) to share and manage knowledge.
The objectives of the Knowledge Web are to support
of team-work, problem-solving and decision making.
Description logics is also the main topic of interest
in other projects dealing with the standardization of
inter-agent communications.

2 Computational Agents

An agentis an entity that has some form of perception
of its environment, can act, and can communicate with
other agents. It has specific skills and tries to achieve
goals. AMulti-Agent System (MAS)is an assemble of
interacting agents in a common environment [6].

In order to use automatic reasoning on a MAS,
the MAS must be described in formal logics. We de-
fine a formal description for the static characteristics
of the agents, and their communication channels. We
do not model dynamic aspects of the system yet. We
assume the Jade [10] type of agents communicating
by FIPA [7] compliant messages. A conversation be-
tween two agents usually consists of a number of mes-
sages. In order to abstract from the actual messages,
we subsume all messages of the similar type of con-
versation under amessage type.



Concepts
mas(C) C is a Multi-Agent System
class(C) C is the name of an agent class
gate(C) C is a gate
m type(C) C is a message type

Roles
type(X,Y) Class X is of type Y
hasgate(X,Y) Class X has gate Y
gatetype(X,Y) Gate X accepts messages of type Y
interface(X,Y) Class X understands mess. of type Y
instance(X,Y) Agent X is an instance of class Y
hasagent(X,Y) Agent Y is part of MAS X

Table 1: Concepts and roles used to describe MAS.

A message typeidentifies a category of messages
that can be send to an agent in order to fulfill a specific
task. We refer to message types by unique identifiers.
The set of message types understood by an agent is
called itsinterface. For outgoing messages, each link
of an agent is associated with a message type. Via this
link, only messages of the given type are sent. We call
a link with its associated message type agate.

Now it is easy to define if two agents can be con-
nected: AgentA can be connected to agentB via gate
G if the message type ofG is in the list of interfaces
of agentB. Note that one output gate sends messages
of one type only, whereas one agent can receive differ-
ent types of messages. This is a very natural concept:
When an agent sends a message to some other agent
via a gate, it assigns a specific role to the other agent,
e.g. being a supplier of training data. On the receiving
side, the receiving agent usually should understand a
number of different types of messages, because it may
have different roles for different agents. Aconnection
is described by a triple consisting of a sending agent,
the sending agent’s gate, and a receiving agent.

Next we defineagentsandagent classes. Agents
are created by generating instances of classes. An
agent class is defined by an interface, a set of mes-
sage types, a set of gates, and a set of types. An agent
is an instance of an agent class. It is defined by its
name and its class.

Multi-Agent Systems are assemblies of agents.
For now, only static aspects of agents are modeled.
Therefore, a Multi-Agent System can be described by
three elements: The set of agents in the MAS, the con-
nections between these agents, and the characteristics
of the MAS (constraints).Multi-Agent Systems (MAS)
consist of a set of agents, a set of connections between
the agents, and the characteristics of the MAS.

3 Description logics and Lisp

Description logics know concepts (unary predicates)
and roles (binary predicates). In order to describe
agents and Multi-Agent Systems in description log-
ics, the above definitions are mapped onto description
logic concepts and roles as shown in table 1.

Probably the most natural implementation of
the described framework of agents and their
communication-related properties is by means of a de-
scription logics formalism. We have chosen the Lisp-
like syntax of the RACER ontological reasoning en-
gine [11], because the transcription from the above
definitions is quite straightforward. The knowledge
base description contains TBox and ABox declara-
tions. In our case, the TBox consists of the (static)
description of classes and properties, while the ABox
represents the dynamic information about the cur-
rent state of the running system. TBox declarations
are known in advance, while ABox is populated by
means of communication with the directory services
(so-called yellow pages) agents.

The example of concrete concepts and roles im-
plemented in the RACER Lisp syntax is provided in
Figure 2. For the sake of simplicity, only partial in-
formation is included. The complete description is
included in [12], and the overall graphical scheme is
presented in Figure 1.

(signature :atomic-concepts (classInBang
iAgentStdIface
agentLifeManagement
igToYellowPages
yellowPageRequest
Father
igData
DataSource
DataSourceConsumer
igCommonCompControl
igIterativeCompControl
Computation
IterativeComputation
NonIterativeComputation
igFunction
Function
igStoreModel
igQueryModel
queryModel
Model
Approximator
Classifier
TaskManager
aDecisionTree
NeuralNetwork
RBFNetwork
MultiLayerPerceptron
aYellowPages

...
)

:roles (interface
gate
messagetype
has
hide

instanceof
)
)

Figure 2: Overview of concepts and roles in the
RACER Lisp-like formalism.



The detailed case of several concrete agent classes
in this syntax is shown in figure 3. One can see a
part of hierarchy of agent classes consisting of aNeu-
ral networkderived from aModel(via Approximator).
There are also siblings ofApproximator(Classifier)
and two types of different ancestors ofNeural Net-
work: Multilayer PerceptronandRBF Network. Most
of these classes not only inherit their properties, but
add further gates and interfaces.

...
;;Models
(implies Model (and Function
DataSourceConsumer
(some interface igStoreModel)
(some interface igQueryModel)
(all interface (or igStoreModel igQueryModel))))

(implies Approximator Model)

(implies Classifier Model)
;;Neural Networks
(implies NeuralNetwork Approximator)

;;RBF Network
(implies RBFNetwork (and NeuralNetwork
IterativeComputation
classInBang
SimpleTaskManager
Father
(some gate igSolveRepresentatives)
(some hide igCommonCompControl)
(all hide igCommonCompControl)
(some gate igSolveLinEqSystem)
(all gate (or igSolveRepresentatives igSolveLinEqSystem))
(some interface igRunNetworkDemo)
(all interface igRunNetworkDemo)))

;;Multilayer Perceptron
(implies MultiLayerPerceptron (and NeuralNetwork
IterativeComputation
classInBang
Father))

Figure 3: Several agent classes in native Lisp format
of the RACER reasoning system.

4 OWL representation

TheWeb Ontology Language (OWL)from the World
Wide Web Consortium [16] is the most recent mem-
ber of the standard ontology languages family. OWL
makes it possible for concepts to be defined as well
as described. Complex concepts can therefore be eas-
ily built from simpler ones. Furthermore, the logical
model allows the use of a reasoner which can check
whether or not all of the statements and definitions in
the ontology are consistent. The reasoner can help to
maintain the hierarchy correctly which is useful when
dealing with cases where classes can have more than
one parent [14]. Syntactically, the OWL has a form of
XML.

There are three types of OWL distinguished by
their expressive power. The least expressive is the
OWL-Lite suitable for expressing quite simple rela-
tions only. The OWL-DL is much more powerful
since it is based on the Description Logics. The third

one, OWL-Full, is the most powerful in terms of ex-
pressiveness, but it is not suitable for machine reason-
ing because the ontologies can be neither complete
nor decidable. Naturally, the OWL-DL is the most
suitable candidate for our approach.

The following agent classModel derived from
Function, enhancing it with particular interfaces, is
described like this:

MODEL ⊆ FUNCTION∩ DATASOURCECONSUMER∩
(INTERFACE some IGSTOREMODEL) ∩

(INTERFACE some IGQUERYMODEL) ∩

(INTERFACE only(IGSTOREMODEL∪ IGQUERYMODEL))

The OWL implementation of this class is
in Figure 4. The subclass is defined by the
rdfs:subClassOf keyword, constraints are in
the owl:Restriction clause. Another key-
words for relations areowl:intersectionOf,
owl:unionOf, owl:someValuesFrom, and
owl:allValuesFrom. Figure 5 represents the
OWL implementation of theRBF Networkclass de-
scribed also in the previous section.

<owl:Class rdf:about="http://MODEL">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="http://FUNCTION"/>
<owl:Class rdf:about="http://DATASOURCECONSUMER"/>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:about="http://IGSTOREMODEL"/>

</owl:someValuesFrom>
<owl:onProperty rdf:resource="http://INTERFACE"/>
</owl:Restriction>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:about="http://IGQUERYMODEL"/>

</owl:someValuesFrom>
<owl:onProperty rdf:resource="http://INTERFACE"/>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="http://INTERFACE"/>
<owl:allValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="http://IGSTOREMODEL"/>
<owl:Class rdf:about="http://IGQUERYMODEL"/>
</owl:unionOf>

</owl:Class>
</owl:allValuesFrom>

</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:about="http://APPROXIMATOR">
<rdfs:subClassOf rdf:resource="http://MODEL"/>

</owl:Class>
<owl:Class rdf:about="http://NEURALNETWORK">

<rdfs:subClassOf rdf:resource="http://APPROXIMATOR"/>
</owl:Class>

Figure 4: Three agent classes in the OWL-DL.

5 Integration with Jade/FIPA

So far, we are able to represent the agents, their prop-
erties and communication constraints in the OWL-DL
and reason about them in a formal way with the help



<owl:Class rdf:about="http://RBFNETWORKAI">
<rdfs:subClassOf>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="http://NEURALNETWORK"/>
<owl:Class rdf:about="http://ITERATIVECOMPUTATION"/>
<owl:Class rdf:about="http://CLASSINBANG"/>
<owl:Class rdf:about="http://SIMPLETASKMANAGER"/>
<owl:Class rdf:about="http://FATHER"/>
<owl:Restriction>
<owl:someValuesFrom>
<owl:Class rdf:about="http://IGSOLVEREPRESENTATIVES"/>
</owl:someValuesFrom>
<owl:onProperty rdf:resource="http://GATE"/>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="http://HIDE"/>
<owl:someValuesFrom>
<owl:Class rdf:about="http://IGCOMMONCOMPCONTROL"/>
</owl:someValuesFrom>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="http://HIDE"/>
<owl:allValuesFrom>
<owl:Class rdf:about="http://IGCOMMONCOMPCONTROL"/>
</owl:allValuesFrom>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="http://GATE"/>
<owl:someValuesFrom>

<owl:Class rdf:about="http://IGSOLVELINEQSYSTEM"/>
</owl:someValuesFrom>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="http://GATE"/>
<owl:allValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="http://IGSOLVEREPRESENTATIVES"/>
<owl:Class rdf:about="http://IGSOLVELINEQSYSTEM"/>
</owl:unionOf>

</owl:Class>
</owl:allValuesFrom>

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="http://INTERFACE"/>
<owl:someValuesFrom>
<owl:Class rdf:about="http://IGRUNNETWORKDEMO"/>

</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="http://INTERFACE"/>
<owl:allValuesFrom rdf:resource="http://IGRUNNETWORKDEMO"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

Figure 5: RBF Network agent class in the OWL-DL.

on any compatible logical reasoner, such as RACER.
This allows us to propose and verify scenarios of com-
munication and ways of connecting individual agents
into multi agent systems. However, in order to use
this ontology within the agent communication mes-
sages, we have to modify it to comply with the FIPA-
ACL definitions and platform-specific requirements.
In our case, to make full use of automated application
ontology and semantics handling in the JADE agent
environment [10], one should modify the OWL-DL
ontology developed above. In order to perform the
proper semantic checks on a given content expression
the platform has necessary to classify all possible ele-
ments that can appear within a valid sentence message
according to their generic semantic characteristics.
FIPA-ACL specification requires the content of each
to have a proper semantics according to the performa-
tive of the ACLMessage. In particular, every ontology

should be represented by a Java class derived from the
JADE classjade.content.onto.Ontology.

There are additional classesConcept,
Predicate, AID and AgentAction that serve
as basic classes to inherit from in case of deriving
ontological elements. The Figures 6 and 7 present the
hierarchy of classes includingModel, Approximator,
Classifier, andNeural Network.

<?xml version="1.0"?>
<rdf:RDF
xmlns:p1="http://#"
xmlns="http://Ontology1159685804.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xml:base="http://Ontology1159685804.owl">
<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://"/>

</owl:Ontology>
<p1:JADE-CLASS rdf:ID="approximator">
<rdfs:subClassOf>
<p1:JADE-CLASS rdf:ID="model">
<rdfs:subClassOf>
<p1:JADE-CLASS rdf:ID="function">
<rdfs:subClassOf rdf:resource="http://#AID"/>

</p1:JADE-CLASS>
</rdfs:subClassOf>
<rdfs:subClassOf>
<p1:JADE-CLASS rdf:ID="iquerymodel">
<rdfs:subClassOf>
<p1:JADE-CLASS rdf:ID="interface">
<rdfs:subClassOf rdf:resource="http://#Concept"/>

</p1:JADE-CLASS>
</rdfs:subClassOf>

</p1:JADE-CLASS>
</rdfs:subClassOf>
<rdfs:subClassOf>
<p1:JADE-CLASS rdf:ID="istoremodel">
<rdfs:subClassOf rdf:resource="#interface"/>

</p1:JADE-CLASS>
</rdfs:subClassOf>

</p1:JADE-CLASS>
</rdfs:subClassOf>

</p1:JADE-CLASS>
<p1:JADE-CLASS rdf:ID="classifier">
<rdfs:subClassOf rdf:resource="#model"/>

</p1:JADE-CLASS>
<p1:JADE-CLASS rdf:ID="neuralnetwork">
<rdfs:subClassOf rdf:resource="#approximator"/>

</p1:JADE-CLASS>
<p1:JADE-CLASS rdf:ID="gate">
<rdfs:subClassOf rdf:resource="http://#Concept"/>

</p1:JADE-CLASS>
</rdf:RDF>

Figure 7: JADE/FIPA compliant definition of hierar-
chy of several agent classes containing concrete inter-
faces.

Since the process from OWL-DL description to
JADE/FIPA formalism is quite straightforward, it can
be provided automatically by means of various tools.
In our approach we have used the Protege [15] soft-
ware with several plugins enabling automatic genera-
tion of Java code from the OWL description.

6 Conclusion

We have shown how formal logics can be used to
describe computational agents. We presented a log-
ical formalism for the description of agents and MAS.
In this, we have started from ideal Description Log-



Figure 1: Scheme of the agent classes hierarchy.

Figure 6: Graph of a JADE/FIPA compliant definition of hierarchy of several agent classes containing concrete
interfaces.



ics and proceeded toward practical implementations
by means of RACER Lisp format, OWL-DL, and
JADE/FIPA-ACL compatible syntax. The system we
implemented allows the practical application of these
technologies. We have demonstrated how this ap-
proach works in practice within the hybrid computa-
tional environment.

So far, we only describe static aspects of MAS.
Further research will be put in the development of for-
mal descriptions of dynamic aspects of MAS. In par-
ticular, this means to work with ontological descrip-
tion of tasks and to gather knowledge about computa-
tional agents performance. Currently, there is a BDI-
based mechanism that supports decisions of a compu-
tational agent based on its previous experience. This
will blend smoothly with our approach, which in turn
allows to provide more suitable MAS solutions. In
particular, if there are more agents satisfying the con-
strains, we will be able to sort them according to their
past performance in the required context. Thus, better
partners for an agent can be supplied. Further in the
future we plan to employ proactive mechanisms for
an agent (again BDI-based), which will be allowed to
improve its knowledge in its free time, such as trying
to solve benchmark tasks and recording the results.

The hybrid character of the system, with both a
logical component and soft computing agents, also
makes it interesting to combine these two approaches
in one reasoning component. In order to automati-
cally come up with feasible hybrid solutions for spe-
cific problems, we plan to combine two orthogonal
approaches: a soft computing evolutionary algorithm
with a formal ontology-based model.
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