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Supervised Learning

Learning

given set of data samples

find underlying trend,
description of data

Supervised Learning

data – input-output patterns

create model representing IO mapping

classification, regression, prediction, etc.
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Regularization Networks

Regularization Networks

method for supervised learning

a family of feed-forward neural networks with one hidden
layer

derived from regularization theory

very good theoretical background

Our Focus

we are interested in their real applicability

setup of explicit parameters – choice of kernel function
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Learning from Examples – Problem Statement

Given: set of data samples {(~xi , yi) ∈ Rd × R}N
i=1

Our goal: recover the unknown function or find the best
estimate of it
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Regularization Theory

Empirical Risk Minimization:

find f that minimizes H[f ] =
∑N

i=1(f (~xi ) − yi)
2

generally ill-posed

choose one solution according to prior knowledge
(smoothness, etc.)

Regularization Approach

add a stabiliser H[f ] =
∑N

i=1(f (~xi ) − yi)
2 + γΦ[f ]
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Derivation of Regularization Network

for a wide class of stabilizers the solution of

min
f∈H

H[f ]; where H[f ] =

N∑

i=1

(f (~xi) − yi)
2 + γΦ[f ]

exists and is unique

many proofs
Girossi, Poggio, Jones (1995) – using stabilizers based on
Fourier transform
Smale, Poggio (2003) – using RKHS
others
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Derivation using RKHS

Data set: {(~xi , yi) ∈ Rd × R}N
i=1

choose a symmetric, positive-definite kernel K = K (~x1, ~x2)

let HK be the RKHS defined by K

define the stabiliser by the norm || · ||K in HK

H[f ] =
N∑

i=1

(yi − f (~xi ))
2 + γ||f ||2K

minimise H[f ] over HK −→ solution:

f (~x) =
N∑

i=1

wiK~xi
(~x) (γI + K )~w = ~y
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Regularization Network

Network Architecture

f (x) =

N∑

i=1

wiK (~x , ~xi)

function K called basis or kernel function

Basic Algorithm

1. set the centers of kernel functions to the data points

2. compute the output weights by solving linear system

(γI + K )~w = ~y
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Model Selection

Parameters of the Basic Algorithm

kernel type

kernel parameter(s) (i.e. width for Gaussian)

regularization parameter γ

How we estimate these parameters?

kernel type by user

kernel parameter and regularization parameter by grid
search and cross-validation

speed-up techniques: grid refining
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Choice of Regularization Parameter and Kernel
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Composite kernels

Product and Sum Kernels

choice of kernels depands on data, attributes types

sometime data are not homogenous

composite kernels – product and sum kernels may better
reflect the character of data (joint work with T. Šámalová)

based on Aronszajn theoretical results

PRODUCT
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Sum versus Gaussian Kernels
The error on the training set
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Sum versus Gaussian Kernels
The error on the testing set
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Generalized Regularization Networks

Generalized RN

less hidden units (kernel functions) than training data
points

centers of kernels distributed using various heuristics (i.e.
simple clustering)

hidden kernel units may have additional parameters

RBF networks

one class of generalized RN

derived using radial stabilizers

wide range of learning algorithms
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RN versus RBF networks

Regularization Networks

architecture

good theoretical
background, optimal
solution

learning

solving linear systems by
numerical algorithms

network complexity

number of parameters
depends on the training set
size

parameters (γ, width)

RBF networks

approximate solution
(lower number of hidden
units)

algorithms for optimisation,
heuristics

does not depend on the
train. set size, but units
have more parameters

parameter h
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Comparison of RN and RBF on Proben1 repository
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Prediction of flow rate

prediction of the flow rate on the Ploučnice in North
Bohemia, from origin (southwest part of the Ještěd hill) to
the town Mimoň

time series containing
daily flow and rainfall
values

prediction of the current
flow rate based on
information from the
previous one or two days

1000 training samples,
367 testing samples
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Prediction of flow rate

Prediction by RBF network
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Prediction of flow rate

Prediction by Product Kernels
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Summary and Future Work

Summary

learning with RN networks

composite kernels

generalized regularization networks

flow rate prediction

Work in Progress and Future Work

composite types of kernels

kernel functions for other data types (categorical data, etc.)
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Thank you! Questions?
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