
Learning with Regularization Networks in Bang ∗

Petra Kudová

Institute of Computer Science

Academy of Sciences of the Czech Republic

Pod Vodárenskou věž́ı 2, 182 07 Praha 8, Czech Republic

petra@cs.cas.cz

Abstract

In this paper we study learning with Reg-
ularization Networks (RN). RN are feed-
forward neural networks with one hidden
layer. Since they have a very good theo-
retical background, we study their practi-
cal aspects and applicability. On experi-
ments we demonstrate the role of the reg-
ularization parameter, compare RN with
different kernels and parameter settings
on benchmark data sets. Then we apply
RN to a problem of a flow rate predic-
tion, real data from Czech river Sázava
are used. All experiments were made us-
ing the system Bang.

1 Introduction

The problem of learning from examples

(also called supervised learning) is a sub-
ject of great interest. The need for a good

∗This work was carried out under the HPC-
EUROPA project (RII3-CT-2003-506079), with
the support of the European Community - Re-
search Infrastructure Action under the FP6
”Structuring the European Research Area” Pro-
gramme. The author is also partially supported
by the Program “Information Society” under
project 1ET100300419, by the Institutional Re-
search Plan AV0Z10300504 “Computer Science
for the Information Society: Models, Algorithms,
Appplications”.

supervised learning technique stems from
a wide range of application areas, cover-
ing various approximation, classification,
and prediction tasks.

In this work we study one learning ap-
proach, Regularization Network, a feed-
forward neural network with one hidden
layer, derived from the regularization the-
ory. While it is well studied from the
mathematical point of view ([1, 2]), we
are more interested in practical points of
its application.

For our experiments we used the sys-
tem Bang [4]. The system Bang was de-
signed for experiments with AI methods
and easy creation of hybrid models. It
implements several learning algorithms,
such as neural networks, decision trees,
GA. We use it as an environment suitable
for experimental study of learning algo-
rithms. For such experimental study, ex-
tensive evaluations on various tasks and
with various setup are essential. Since
the individual evaluations are possible to
be run in parallel, the access to HPC-
resources was very beneficial in this re-
spect.

In the next section we will briefly de-
scribe the RN learning technique. In sec-
tion 3 we introduce framework that we are
using to estimate extra parameters of the
RN learning algorithm. Section 4 demon-

1

Figure 1: The problem of learning from
examples

strates the behaviour of RN on some ex-
periments.

2 Regularization Net-

works

Our problem can be formulated as follows.
We are given a set of examples (pairs)
{(~xi, yi) ∈ Rd × R}N

i=1 that was obtained
by random sampling of some real func-
tion f , generally in the presence of noise
(see 1). To this set we refer as a train-

ing set. Our goal is to recover the func-
tion f from data, or to find the best es-
timate of it. It is not necessary that the
function exactly interpolates all the given
data points, but we need a function with
a good generalization, that is a function
that gives relevant outputs also for the
data not included in the training set.

This problem is generally ill-posed,
there are many functions interpolating
the given data points, but not all of them
exhibit also the generalization ability.

Therefore we have to consider some a
priori knowledge about the function. It
is usually assumed that the function is
smooth, in the sense that two similar in-
puts corresponds to two similar outputs

and the function does not oscillate too
much. This is the main idea of the reg-
ularization theory, where the solution is
found by minimising the functional (1)
containing both the data term and the
smoothness information.

H [f] =
1

N

N∑

i=1

(f(~xi) − yi)
2 + γΦ[f], (1)

where Φ is called a stabiliser and γ > 0
is the regularization parameter control-
ling the trade-off between the closeness to
data and the smoothness of the solution.

Poggio and Smale in [1] studied the
Regularization Networks derived using
a Reproducing Kernel Hilbert Space
(RKHS) as the hypothesis space. Let
HK be an RKHS defined by a symmetric,
positive-definite kernel function K~x(~x′) =
K(~x, ~x′). Then if we define the stabiliser
by means of norm || · ||K in HK and min-
imise the functional

min
f∈HK

H [f], (2)

where

H [f] =

N∑

i=1

(yi − f(~xi))
2 + γ||f ||2K (3)

over the hypothesis space HK , the solu-
tion of minimisation (3) is unique and has
the form

f(~x) =
N∑

i=1

wiK~xi
(~x) (4)

(γI + K)~c = ~y, (5)

where I is the identity matrix, K is
the matrix Ki,j = K(~xi, ~xj), and ~y =
(y1, . . . , yN).

The solution (4) can be represented by
a feed-forward neural network with one
hidden layer and a linear ouput layer
(see (2)). We refer to a network of this
form as Regularization Network.

2

Figure 2: Regularization Network Scheme

3 Model Selection

As we will show in the next section, the
choice of the explicit parameters (γ and
the type of kernel) is crucial for the suc-
cessful application of the RN learning al-
gorithm. There exists no easy way for
estimation of these parameters, usually
some kind of an exhaustive search for pa-
rameters with the lowest cross-validation
error is used.

First we need a measure of a real per-
formance of the network, that enables us
to say that one particular choice of pa-
rameters is better than another. We use
k-fold cross-validation to estimate the real
performance of the network and its gen-
eralization ability.

Suppose we are given a training set of
data TS = {~xi, yi}N

i=1 ⊆ ℜn × ℜ. We
split this data set randomly into k folds
TS1, . . . , TSk such as

⋃k
i=1 TSi = TS and

TSi

⋂
i6=j TSj 6= 0. Then fi is the network

obtained by the algorithm run on the data
set

⋃
j 6=i TSj. The cross-validation error

is given by

Ecross =
1

k

k∑

i=1

1

|TSi|

∑

(~x,y)∈TSi

(fi(~x)−y)2.

(6)
In our experiments we usually use

Gaussian kernels, so the choice of a kernel

Figure 4: a) Move grid b) Create finer
grid

type is reduced to the choice of Gaussian
width. We use the Adaptive grid search

(Algorithm 3) for estimation of the reg-
ularization parameter and the width of
Gaussian kernels, starting with a coarse
grid and then creating a finer grid around
the point with the lowest cross-validation
error.

4 Experiments

This section presents some results of our
experiments, including both benchmark
and real life problems. Implementation
in the system Bang [4] is used. All exper-
iments were run on Lomond [5].

In all experiments we use different data
sets for training and testing (called train-

ing set and testing set). Kernel parame-
ters and the regularization parameter are
chosen by the method described in 3 us-

3

Input: Data set {~xi, yi}N
i=1 ⊆ ℜn ×ℜ

Output: Parameters γ and a width b.

1. Create a set of couples {[γ, b]i, i = 1, . . . , K}, uniformly distributed in
< γmin, γmax > × < bmin, bmax >.

2. For each [γ, b]i for i = 1, . . . , K and for each couple evaluate the cross-
validation error (6) Ei

cross.

3. Select the i with the lowest Ei
cross.

4. If the couple [γ, b]i is at the border of the grid, move the grid. (see
Fig. 4a)

5. If the couple [γ, b]i is inside the grid, create finer grid around this couple.
(see Fig. 4b)

6. Go to 2 and iterate until cross-validation error stops decreasing.

Figure 3: Adaptive grid search

ing the training set. Then RN learning is
run on the training set and the error of
the resulting network is evaluated on the
testing set as:

E = 100
1

N

N∑

i=1

||~yi − f(~xi)||2,

where N is the number of data samples, ~yi

is the desired output for the input vector
~xi, f(·) is the network output and || · ||2

denotes the Euclidean norm.
First we demonstrate the behaviour of

RN learning on benchmark data sets,
then we show its application on the pre-
diction of river flow rate.

Benchmark data sets

The data collection Proben1 [6] was se-
lected to compare different types of ker-
nels. Table 1 lists the most common ker-
nel functions. The Tab. 2 compares the
errors achieved with these kernels on some
data tasks from Proben1.

We have chosen the well known picture
of Lenna to study the approximation and

smoothing capabilities of Regularization
Networks. Our training set contains 2500
samples representing the image of 50×50
pixels. The obtained RN was then used
to generate 100 × 100 image.

In Fig. 7 are images obtained with RNs
using Gaussian kernels of different widths
and different regularization parameters.
It is easy to see that the choice of these
parameters is crucial for the performance
of RN algorithm. It also demonstrate the
role of the regularization parameter, the
higher the regularization parameter the
smoother the result. For too high regu-
larization parameters we get solutions too
far from training data, i.e. the black im-
ages.

Fig. 6 shows the training images with
different level of noise and the solutions
found by RN.

Prediction of river flow rate

We study the possible application of neu-
ral networks on the prediction of river flow
rate [3] in cooperation with Faculty of En-
vironmental Studies, University of J. E.

4

Gaussian K(x, y) = e−||x−y||2

Inverse Multi-quadratic K(x, y) = (||x − y|| + c2)−1/2

Multi-quadratic K(x, y) = (||x − y|| + c2)1/2

Thin Plate Spline K(x, y) = ||x − y||2n+1

Sigmoid K(x, y) = tanh(xy − θ)

Table 1: Kernel functions

kernel cancer1 cancer2 cancer3 glass1 glass2 glass3
Gaussian d = 0.5 3.4 4.6 6.5 7.4 7.8 7.3

Gaussian d = 1.0 1.6 3.0 2.8 8.2 8.6 8.2
Gaussian d = 2.0 1.8 3.1 2.9 8.6 8.9 8.9

Inverse Multi-quadratic c = 1.0 1.5 2.8 2.5 8.0 8.3 7.8
Inverse Multi-quadratic c = 2.0 1.6 2.9 2.8 8.6 9.0 9.0
Inverse Multi-quadratic c = 3.0 1.8 3.0 2.8 8.8 9.0 9.4

Multi-quadratic c = 1.0 30.6 53.7 28.2 13.9 13.8 14.4
Multi-quadratic c = 2.0 7.2 10.5 5.1 17.8 12.7 14.9
Multi-quadratic c = 3.0 7.9 9.0 6.0 12.6 26.6 13.3

Sigmoid θ = 0.0 4.0 4.7 4.5 11.1 10.9 12.1
Sigmoid θ = 2.0 2.7 3.9 5.1 11.5 11.3 12.4
Sigmoid θ = 3.0 1.9 3.6 2.9 9.5 8.9 9.0

Thin Plate Spline n = 1 1.5 2.9 2.6 13.9 8.8 11.5
Thin Plate Spline n = 2 29.8 15.6 12.1 2247.5 18.9 121.0

Table 2: Error on the testing set on some tasks from Proben1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700 800

Sazava RN

RN prediction
real flow rate

Figure 5: Prediction of flow rate on river Sázava by RN.

5

Training set Image represented by RN

Figure 6: Approximation of Lenna image using RN. Original image of 50 × 50 pixels
and 100 × 100 pixels image created using learned RN.

6

0.5 1.0 1.5 2.0
0.0

10−5

10−4

10−3

10−2

Figure 7: Images learned by RN on Lenna image (50×50 pixels) using Gaussian
kernels with widths from 0.5 to 2.0 and regularization parameters from 0.0 to 0.01.

7

Etrain Etest

1 back, 1 forecast 0.006 0.010
1 back, 2 forecast 0.024 0.027
2 back, 1 forecast 0.004 0.003
2 back, 2 forecast 0.017 0.030

Table 3: Errors achieved by RN on the
prediction of flow rate on river Sázava.

Purkyně in Úst́ı nad Labem.

Data from the Czech river Sázava were
used in this experiment. Data set was ob-
tained in period from 1. 8. to 11. 9.
2002. It is sampled every hour and con-
tains flood values from 14. 8. 2002, from
7:00 to 9:00 (169m3s−1).

Each data sample contains the present
river flow rate, total rainfall and total
rainfall for the moment of prediction (rain
fall forecast is used in real application).
The Tab. 3 lists error obtained by RN for
different types of forecast. We predict one
or two future samples based on one or two
samples from history. The prediction is
better if the network is given more infor-
mation (2 samples) and if it has to predict
only one sample (easier task).

An example of prediction of flow rate
by RN is shown in Fig. 5.

5 Acknowledgement

All experiments presented in this paper
were made during my visit at EPPC in
November 2005. It would not be possi-
ble without an assistance of the EPCC
team. Namely I would like to thank my
host Prof. Ben Paechter and my contact
Adam Carter for their scientific and tech-
nical support.

References

[1] T. Poggio, S. Smale (2003) The
Mathematics of Learning: Dealing
with Data, Notices of the AMS, 50/5,
pp. 536–544.

[2] F. Girosi, M. Jones, T. Poggio
(1995) Regularization Theory and
Neural Networks Architectures, Neu-
ral Computation, 2/7, pp. 219–269.

[3] M. Neruda, R. Neruda, P. Kudová,
K. Fiedlerová (2004) Rainfall-runoff
modelling with Artificial Neural Net-
works and GIS tools. In D. Tropeano,
M. Arattano, F. Maraga, C. Pelis-
sero (eds.): Progress in surface and
subsurface water studies at the plot
and small basin scale. Italian Na-
tional Research Council, Turin, 2004,
pp. 101104.

[4] R. Neruda, P. Krušina, P. Kudová, P.
Rydvan, G. Beuster (2004) Bang 3:
A Computational Multi-Agent Sys-
tem. In Intelligent Agent Technology.
Piscataway, 2004, pp. 563-564.

[5] Lomond machine.
http://www.epcc.ed.ac.uk/

computing/services/sun/

documents/hpc-intro/html/

index.html

[6] L. Prechelt (1994) PROBEN1 – A
Set of Benchmarks and Benchmark-
ing Rules for Neural Network Train-
ing Algorithms, Universitaet Karl-
sruhe, 21/94.

8

