
Institute of Computer Science
Academy of Sciences of the Czech Republic

Concept nodes architecture within
the Bang3 system

Roman Neruda, Roman Vaculı́n
Institute of Computer Science, ASCR,
P.O. Box 5, 18207 Prague, Czech Republic

Technical report No. 947

October 2005

Pod Vodárenskou věžı́ 2, 182 07 Prague 8, phone: +420 266 051 111, fax:
+420 286 585 789, e-mail:ics@cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

Concept nodes architecture within
the Bang3 system

Roman Neruda1, Roman Vaculı́n
Institute of Computer Science, ASCR,
P.O. Box 5, 18207 Prague, Czech Republic

Technical report No. 947

October 2005

Abstract:

In this paper we present an architecture for decision making of software agents
that allows the agent to behave autonomously. Our target area is computational
agents — encapsulating various neural networks, genetic algorithms, and similar
methods — that are expected to solve problems of different nature within an envi-
ronment of a hybrid computational multi-agent system. The architecture is based
on the vertically-layered and belief-desire-intention architectures. Several experi-
ments with computational agents were conducted to demonstrate the benefits of the
architecture.

Keywords:
Autonomous agents, Computational Intelligence, Decision Making, BDI
architecture, Vertically-layered architecture

1This research has been supported by the National Research Program Information Society project
no. 1ET100300419.



1 Introduction

Software agents can be seen as small self-contained programs that can solve simple problems
in a well defined domain [6]. In order to solve complex problems agents have to cooperate
and exhibit some level of autonomy. Autonomy, adaptivity, cooperation ability, and several
other properties distinguish agents from “conventional” programs.

In this paper we present an architecture that allows simple design of adaptive, or intelli-
gent, agents. The architecture enables the agent to solve problems of different nature within
an environment of a computational multi-agent system, and thus increase its autonomy, adap-
tivity and the performance of the whole system. The architecture is implemented within a
distributed multi-agent system Bang3 that provides a platform for an easy creation of hybrid
artificial intelligence models by means of autonomous agents (see [4]).

2 Computational agents

An agent is a computer system that is situated in some environment, and that is capable of
autonomous action in this environment in order to meet its design objectives [8, Ch. 1].
Autonomy is used to express that agents are able to act (to perform actions) without the
intervention of humans or other system.

An intelligent agent is one that is capable of flexible autonomous action in order to meet
its design objectives, where flexibility means three things: pro-activeness (goal-directed be-
havior), reactivity (response to changes), and social ability (interaction with other agents).
Building purely goal-directed or purely reactive agents — one that continually responds to
its environment — is not difficult in some environments. The problem is to build a system
that achieves an effective balance between the goal-directed and reactive behavior, which
strongly depends on the characteristics of the environment.

A computational agent is a highly encapsulated object realizing a particular computa-
tional method [5], such as a neural network, a genetic algorithm, or a fuzzy logic controller.
The main objective of our architecture is to allow a simple design of adaptive autonomous
agents within an environment of a computational multi-agent system. In order to act au-
tonomously, an agent should be able to cope with three different kind of problems: coopera-
tion of agents, a computation processing support, and an optimization of the partner choice.
The architecture we present is general in the sense that it can be easily extended to cope with
different problems than those mentioned, nevertheless, we present its capabilities in these
three areas.

Cooperation of agents: An intelligent agent should be able to answer the questions about
its willingness to participate with particular agent or on a particular task. The following
subproblems follow: (1) deciding whether two agents are able to cooperate, (2) evaluating
the agents (according to reliability, speed, availability, etc.), (3) reasoning about its own state
of affairs (state of an agent, load, etc.), (4) reasoning about tasks (identification of a task,
distinguishing task types, etc.).

Computations processing: The agent should be able to recognize what it can solve and
whether it is good at it, to decide whether it should persist in the started task, and whether
it should wait for the result of task assigned to another agent. This implies the following

1



controlinformation

controlinformation

filters
message

a

co
nt

ro
l

in
fo

rm
at

io
n

. . .

b

c

Concept
node

preferences

messages

preferences
Monitor

Decision support

Evaluators

Monitors

Behavior generation

perceptual input

action output

P
references

Figure 3.1: Architecture — network of concepts (a); Concept node (b); Monitor (c)

new subproblems: (1) learning (remembering) tasks the agent has computed in the past (we
use the principles of case-based learning and reasoning — see [2], [1] — to remember task
cases), (2) monitoring and evaluation of task parameters (duration, progress, count, etc.),
(3) evaluating tasks according to different criteria (duration, error, etc.).

Optimization of the partner choice: An intelligent agent should be able to distinguish
good partners from unsuitable ones. The resulting subproblems follow: (1) recognizing a
suitable (admissible) partner for a particular task, (2) increasing the quality of an evaluation
with growing experience.

So, the architecture must support reasoning, descriptions of agents and tasks (we use
ontologies in descriptions logics - see, e.g., [3]), monitoring and evaluation of various pa-
rameters, and learning.

3 Network of concepts

The architecture is organized into layers. Its logic is similar to the vertically-layered archi-
tecture with one-pass control (see [8, p. 36]). The lowest layer takes perceptual inputs from
the environment, while the topmost layer is responsible for the execution of actions.

The architecture consists of four layers (see Figure 3.1): the monitors layer, the evalua-
tors modeling layer, the layer for decision support, and the behavior generation layer. All
layers are influenced by global preferences.

Global preferences allow us to model different flavors of an agent’s behavior, namely,
we can set an agent’s pro-activity regime, its cooperation regime and its approach to recon-
sideration. The monitors layer interfaces directly with the environment. It works in a purely
reactive way. It consists of rules of the form condition −→ action. Evaluators modeling

2



Monitors

Tasks monitors

Rejected
Requests #

Idle
Time

Computation
Time

Tasks
Count

Tasks
Duration

Computation
Completed %

Load

Computation
State Tiredness

Stress

Figure 4.1: Modeling state of an agent

layer is used to model more aggregate concepts on top of already defined concepts (either
monitors or other evaluators). Decision support layer enables an agent to solve concrete
problems. Behavior generation layer generates appropriate actions that the agent should
perform, and thus controls the agent’s behavior. The mechanisms for action generation and
selection are provided by the BDI model (see [8, pages 55–61]).

The basic element of our architecture is a concept node. We can imagine a concept node
as a class in some common object-oriented programming language, which defines explicitly
its dependences on other concept nodes. The concept node is dependent on some other
concept node if it needs some services provided by this other concept node in order to provide
its own services. Each part of the architecture is defined as a concept node.

The network of concept nodes is a directed acyclic graph of concept nodes — see Figure
3.1 (a). Edges express dependences between concept nodes. This graph respects described
layers. Figure 3.1 (b) shows a detailed view of a common concept node and Figure 3.1 (c)
depicts a detailed view of a monitor. Each monitor can define several filters which represent
rules as described above.

Explicitly defined dependences allow each agent to use only those those concept nodes
that it really needs.

4 Modeling in the network of concepts

Evaluators are used to describe an agent’s state, and to estimate services’ quality of partner
agents. They usually perform aggregations of several simpler concept nodes, typically the
monitors. Typically, evaluators have the form of a non-linear real function that may differ in
individual evaluators.

3



Monitors

Task monitors

Accepted
Cooperation #

Reply
Time

Ping
Time

Tasks
Duration

Tasks
Error

Interrupted
Tasks #

Accuracy Speed AvailabilityReliability

Services
QualitySatisfaction

Figure 4.2: Measuring quality of services of partners

In order to describe an agent’s state, we have defined four evaluators — Load, Tiredness,
Stress, and Computation state (see Figure 4.1). For example, the Load evaluator depends
on the count of currently running tasks and on their demandingness (complexity, etc.). We
approximate the complexity of tasks by the average duration of past tasks. The load grows
proportionally with the count of tasks and the average duration of tasks. The other evaluators
can be described in a similar way.

The Tiredness evaluator reflects demandingness of agent’s recent activities. Tiredness is
computed as a sum of two components — instant tiredness that depends proportionally on
the current load of an agent and the current computation time, and past tiredness that depends
proportionally on the recent count of tasks and their average duration. When an agent is in
idle state, tiredness is getting lower.

The Stress evaluator models nervousness and stress of an agent. It is a more experimental
and fuzzy evaluator than the previous ones. The value of the Stress depends on the tiredness
and on the count of rejected requests. If an agent is tired, it gets stress more easily. If it wants
to cooperate with another agent and it is rejected, and if this happens often, then the stress
coefficient grows.

The Computation state evaluator expresses the state of an agent. An agent can be either in
the idle state or in the busy state. Besides this, some additional information may be provided.
An agent is waiting if it is waiting for the result of some task that was assigned to another
agent.

If an agent is in the busy state, the load coefficient, the count of running tasks and the
progress percentage of the last started task are provided. If it is in the idle state, the idle
period is provided. Finally, if an agent is in the waiting state, the count of assigned tasks is
returned as a part of the state description.

Figure 4.2 shows four basic evaluators modeling different aspect of services quality —
Accuracy, Reliability, Availability and Speed. Upon these evaluators, we build the aggregate

4



evaluator, Services quality, that stands for the total quality of services of a given agent. The
Satisfaction evaluator represents an agent’s satisfaction with another agent.

The Accuracy concept node calculates the accuracy of some agent. It depends inversely
on the value of Tasks error monitor. The Reliability of an agent depends inversely on the
percentage of interrupted tasks and on the percentage of rejected cooperation requests from
this agent. The Speed of an agent depends inversely on its average reply time and on the
average duration of tasks computed by this agent. The tasks duration has bigger (higher)
effect on the resulting value. The Availability of an agent depends inversely on the ping time
(instantaneous availability) and on the average reply time (long-term availability) of this
agent. The Services quality is computed as a weighted sum of accuracy, reliability, speed
and availability.

For almost all evaluators, we can specify (besides an agent for which we want to com-
pute it) a secondary criterion that selects more precisely what exactly we want to compute.
For instance, we can specify that we want to know the accuracy of an agent for a given
task type (or task identifier, or instance identifier). The decision support concept nodes are
used to represent particular decision problems and provide suggestions of how to solve these
problems.

Preferences Task monitors

Cooperation decision nodes

Cooperation
Regime

Proactivity
Regime

Tasks
repository

Computation
State

Cooperation
Willingness

Agents
Ontology

Tools

Tiredness StressSatisfaction

Task
Solving
Decision

Figure 4.3: Support for cooperation

Figure 4.3 depicts concept nodes that solve decision problems common in the area of
agents cooperation. The Agents ontology tools concept node encapsulates reasoning ser-
vices about agents’ capabilities. The Cooperation willingness (CW) concept node suggests
whether to cooperate with a particular agent or not. The Task solving decision concept node
suggests whether to solve a particular task for a particular agent. For details about other areas
of decision support see [7].

In the behavior generation layer, we use the BDI model (see [8]) to generate and choose
the appropriate actions. The purpose of computational agents is to solve assigned tasks in an
effective way. We distinguish two different situations:

5



PreferencesTask monitors

Computations decision nodes

Reconsidering
Approach

Tasks
repository

Assigned
Computation

Time

Computation
Time

Computation
Completed %

Can
Compute

Task

Recent
Computations

Wait For
Result

Computation
Persist

Stress Tiredness

Figure 4.4: Computations processing support

Optimization decision nodes

Services
Quality

Accuracy Speed Availability Reliability

Evaluator
of the agents’
ranking in ...

Best
Accuracy

Best
Speed

Best
Availability

Best
Reliability

Best
Services

Figure 4.5: Optimization of partner choice

6



PreferencesTask monitors

Cooperation Computations Optimization

Proactivity
Regime

Tasks
repository

Computation
State

Task Solving
Decision

Recent
Computations

Wait For
Result

Computation
Persist

Best
Services

BDI model

BDI Computation
Options

BDI Simple
Task Manager

Options

BDI
Task Manager

Options

Figure 4.6: BDI architecture within the network of concepts

1. If an agent does not use services of other agents in order to solve its task, it can perform
the following basic actions: (a) Accept / postpone / reject a new task, (b) Finish / interrupt a
started task, (c) Evaluate task (if there are some tasks in the tasks repository with incomplete
information), d) Find and solve new tasks.
2. If an agent uses services of other computational agents in order to solve its own task,
it acts as a simple task manager (an agent that assigns tasks to other agents), and it can
further perform the following actions: (a) Search for suitable partners, (b) Test and evaluate
possible partners, (c) Distribute / redistribute task to partners.

We base our implementation of the BDI model on the algorithm described in [8, pages
55–61]. According to it, we have to specify the implementation of a belief revision function
(brf ), an options generation function (options), a filter function, and an execute function.
The monitors layer and the evaluators modeling layer represent the agent’s knowledge about
its environment, and thus stand for its beliefs. Beliefs are updated automatically by filters of
monitors, which can be seen as the brf function.

Figure 4.6 shows concept nodes implementing the BDI architecture. The BDI model
encapsulates the basic logic of the algorithm. We have further defined several concept nodes
that are responsible for option generation. Each such a concept node implements its own
options function and its own filter function which is responsible for filtering desires and
intentions. The action function is implemented in the BDI model as defined by the pseudo-
code in the algorithm 1 on the following page. B denotes the set of beliefs, I the set of
intentions, D the set of desires, Dx the set of desires generated by the x-th option generation
node, ONodes a vector of all agent’s option generation nodes.

7



Algorithm 1 Action function of the BDI agent.
1: weightmax = 0
2: for i = 1 to ONodes.length do
3: 〈Di, weighti〉 = ONodes[i].options(B, I)
4: if weighti > weightmax then
5: weightmax = weighti
6: D = Di

7: nodemax = ONodes[i]
8: end if
9: end for

10: return nodemax.f ilter(B, D, I)

5 Experiments

We have adapted two existing computational agents embedding the multi-layer perceptron
(MLP) and the radial basis function (RBF) neural network. These agents represent two
different computational methods for the solution of similar categories of tasks.

In different experiments we have combined these agents with other agents to demon-
strate specific features of the architecture. We use the services of the DataSource agent, the
YellowPages agent and the Boss agent. We have also developed several simple one-purpose
agents that are used only for the experiment purposes.

The current state of implementation of the Bang3 system does not allow to utilize all the
features of the architecture immediately. Specifically, it is not possible to demonstrate the
support for cooperation of more agents in the complex task solution scenarios since some
auxiliary agents are not implemented yet (e.g., the task manager agent). Overheads of the
architecture are summarized in Table 5.1. The creation of the agent takes 2-3 times longer
since all the structures must be initialized. The communication overhead is around 30%
when dealing with message delivering. However, in real-life scenario of task solving, the
overhead is only about 10%.

Without the arch. With the arch.

Agent creation time 3604 µs 9890 µs

Message delivery time 2056 µs 2672 µs

Total computation time 8994681 µs 9820032 µs

Table 5.1: Comparison of the agent with and without the autonomous support architecture

Table 5.2 summarizes the measured results of optimization of the partner choice. We
simulated a usual scenario when an agent needs to assign some tasks to one of admissible
partners. This agent uses a collection of different tasks and assigns them to the computational
agents successively. The total duration of the computation and the average error of computed
tasks were measured. A significant improvement of the efficiency can be seen.

For the optimization of best service the total duration is reduced to 67246 milliseconds.
Experiments with optimization by reusing results are summarized in Table 5.3. We have

8



Error Duration

Random choice 11.70 208710ms

Best speed 1.35 123259ms

Best Accuracy 1.08 274482ms

Best services 1.17 102247ms

Table 5.2: Optimization of the partner choice. Comparison of choices made by different
criteria.

Repeated tasks Standard Optimized

0 % 135777097 121712748

20% 94151838 90964553

40% 50704363 91406591

60% 47682940 90804052

Table 5.3: Optimization by reusing the results of previously-computed tasks (duration in
milliseconds).

constructed several collections of tasks with different ratios of repeated tasks (quite a usual
situation when, e.g., evaluating the population in genetic algorithms). We compared the total
computation-times of the whole collection with and without the optimization enabled. We
can see that the optimization is advantageous when the ratio of repeated tasks is higher than
20%. When more than 40% are repeated the results are significant.

The aim of the following experiment is to present the overall behavior of agents that take
advantage of different capabilities of the developed architecture. In our model scenario, we
use two computational agents (the MLP agent Percy and the RBF agent Rafael) and two very
simple task manager agents (Manager1, Manager2) that successively assign tasks to the com-
putational agents. In this scenario, computational agents use the behavior generation layer
for regulation of their behavior. The task manager agents use the support for optimization
of partner choice and the support for computations. In the real situations it can happen that
some computation can take too much time to get finished. We have constructed a collection
of tasks with some tasks taking much time. We conducted several experiments with different
setting of parameters of particular agents. All agents benefit of the Wait for result and the
Commutation persist concept nodes.

6 Conclusions

In this paper, we have described a general architecture that allows a simple design of adaptive
software agents. It supports both agents’ decision making and the generation of autonomous
behavior. The architecture incorporates learning capabilities and support for reasoning based
on ontologies which allows reasoning about agents’ capabilities and activities and optimiza-
tion of the performance.

The experiments have demonstrated that (1) it allows faster and more precise execution

9



of tasks; (2) it supports a better cooperation of agents; (3) the performance drawbacks are
not high.

The realized architecture provides several challenges for future work. The exchange and
sharing of task cases can be a useful extension of the current implementation. We plan to
perform more exhaustive experiments with groups / ensembles of cooperative computational
agents. Finally, we plan to experiment with algorithms (e.g., by genetic algorithms) for
automatic learning (generation) of global and local preferences of the architecture suitable
for a particular situation (task).

Extension of the expressive power of our description language could be explored. This
could be achieved by finding less restrictive limitations while maintaining the acceptable
polynomial time complexity.

10



Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-based reasoning : Foundational issues, method-
ological variations, and system approaches. AICom — Artificial Intelligence Communi-
cations, 7(1):39–59, 1994.

[2] David W. Aha and Dietrich Wettschereck. Case-based learning: Beyond classification
of feature vectors. 1997.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook. Cambridge University Press,
2003.

[4] Bang3 web page. http://www.cs.cas.cz/bang3/.

[5] Roman Neruda, Pavel Krušina, and Zuzana Petrova. Towards soft computing agents.
Neural Network World, 10(5):859–868, 2000.

[6] H. S. Nwana. Software agents: An overview. Knowledge Engineering Review,
11(2):205–204, 1995.

[7] Roman Vaculin. Artificial intelligence models in adaptive agents. Master’s thesis, Fac-
ulty of Mathematics and Physics, Charles University, Prague, 2003.

[8] Gerhard Weiss, editor. Multiagents Systems. The MIT Press, 1999.

11


