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Abstract

Continuous t-norm based fuzzy predicate logic is surveyed as a gen-
eralization of classical predicate logic; then a kind of fuzzy description
logic based on our fuzzy predicate logic is briefly described as a powerful
but still decidable formal system of description logic dealing with vague
(imprecise) concepts.

Description logic is a florishing domain of research (see [2]) and has been for
long developed in such a way that it is naturally embeddable into the classical
(two)valued, Boolean) predicate logic. Early papers on a possible fuzzy descrip-
tion logic, notably [14, 11, 12] work with a rather minimalistic system of fuzzy
logic. In my paper [7] I develop a system (ALC-like) of fuzzy description logic
based on the formal system of fuzzy logic from my monograph [6]. The pre-
sented paper is a companion of [6], not containing any proofs but concentrating
to a presentation of fuzzy predicate logic as a natural and rich generalization of
classical predicate logic (Section 1), a presentation of fuzzy description logic as
a natural and powerful generalization of “classical” description logic (Section 2)
and some examples and some discussion (Section 3).

1 From classical logic to fuzzy logic

We start with quickly surveying the basic notions of classical predicate logic
(which is undoubtedly the queen of all logics). The reader is assumed to know
them and hoped to accept a slightly non-traditional presentation prepared for
generalization to fuzzy logic.

A language is given by predicates P,Q, . . . , each with its arity (number of
arguments – unary, binary, . . . , n-ary) and object constants a, b, c, . . . Logical
symbols are object variables x, y, . . . , connectives (conjunction ∧, disjunction ∨,
implication →, equivalence ≡, negation ¬), quantifiers (universal ∀, existential
∃) and (possibly) truth constants > (truth), ⊥ (falsity). Formulas are built
from these in the obvious way (atomic having the form P (t1, . . . , tn) where
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ti’s are variables or constants; > and ⊥ are formulas; other formulas are built
using connectives and quantifiers). For example, (∀x)(P (x, c) ∨ (∃y)Q(x, y)) is
a formula; it is closed, contains no free variables (all variables are quantified).

There are two truth values: 1 – true, 0 – false. An interpretation of such a
language is a structure M = (M, (rP )P predicate, (vc)c constant) where M is a non-
empty set (the domain), for each predicate P of arity n, rP is the characteristic
function of an n-ary relation on M named by P , i.e., rP : Mn → {0, 1}. For
each constant c, vc is an element of M.

Given M, for each formula ϕ(x1, . . . , xn) with free (non-quantified) variables
x1, . . . , xn and for each n-tuple u1, . . . , un ∈ M, ‖ϕ(u1, . . . , un)‖M is the truth
value of ϕ(x1, . . . , xn) in M for the elements u1, . . . , un; it is 1 (u1, . . . , un satisfy
ϕ in M) or 0 (they do not satisfy. This is defined inductively, e.g. for an
atomic formula P (x, y) and u, v ∈ M, (u, v) satisfy P (x, y) if rP (u, v) = 1, thus
‖P (u, v)‖M = rP (u, v). For connectives one uses the well-known truth tables,
e.g. (ϕ stands for ϕ(u1, . . . ) etc.)

‖ϕ ∧ ψ‖M = 1 iff ‖ϕ‖M = ‖ψ‖M = 1, thus ‖ϕ ∧ ψ‖M = min(‖ϕ‖M, ‖ψ‖M);
‖ϕ → ψ‖M = 1 iff ‖ψ‖M = 1 or ‖ϕ‖M = 0, i.e., iff ‖ϕ‖M ≤ ‖ψ‖M;
‖¬ϕ‖M = 1 iff ‖ϕ‖M = 0; ‖>‖M = 1, ‖⊥‖M = 0 for all M.
‖(∀x)ϕ(x, . . . )‖M = 1 iff for all v ∈ M, ‖ϕ(v, . . . )‖M = 1,
‖(∃x)ϕ(x, . . . )‖M = 1 iff some v ∈ M ‖ϕ(v, . . . )‖M = 1, thus
‖(∀x)ϕ(x, . . . )‖M = min{‖ϕ(v, . . . )‖M | v ∈ M},
‖(∃x)ϕ(x, . . . )‖M = max{‖ϕ(v, . . . )‖M | v ∈ M).

Clearly, if ϕ is closed (has no free variables) then ‖ϕ‖M is just the truth
value of ϕ in M; if ‖ϕ‖M = 1 we say that ϕ is true in M and denote by M |= ϕ.

A formula ϕ is a tautology if it is true in all interpretations. Just mention the
existence of axioms and deduction rules giving the notion of a formula provable
in the predicate calculus. The completeness theorem says that a formula is
provable in the predicate calculus iff it is a tautology.

To close this telegraphic summary of the classical predicate calculus let us
mention that one can choose some connectives to be basic (or starting) and
define the others from them. For example, one can take ∧ and ¬ for starting
and define ϕ∨ψ to be ¬(¬ϕ∧¬ψ), define ϕ → ψ to be ¬ϕ∨ψ and define ϕ ≡ ψ
to be (ϕ → ψ) ∧ (ψ → ϕ). Or take → and ¬ to be starting and define ϕ ∧ ψ to
be ¬(ϕ → ¬ψ), define ϕ∨ ψ to be ¬ϕ → ψ etc. This is OK since the semantics
of the defining and defined formula is the same.

∗

Fuzzy logic is the logic of vague (imprecise) notions; formulas of fuzzy logic
may be not just true of false but may be partially true, true in a degree. Math-
ematical fuzzy logic (or logic in a narrow sense) is a formal system like classical
logic but having more than two truth values that are ordered (possibly partially
ordered), a logic with a comparative notion of truth. (Think of the truth degree
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of a sentence like “John is young” etc.) As such, fuzzy logic is a kind of multiple-
valued logic (many-valued logic) with some specific properties and aims. The
standard domain of truth degrees is the real unit interval [0, 1]. The definition
of a language is the same as in classical logic; a (standard) interpretation of
a language is a structure M = (M, (rP )P predicate, (vc)c constant) where M and
vc are as above but for each P, rP is a fuzzy relation on M, i.e. a mapping
rP : Mn → [0, 1] assigning to each n-tuple (v1, . . . , vn) of elements of M the
degree rP (v1, . . . , vn) in which the tuple is in the relation. A trivial example:
M = {1, 2, 3}, one binary predicate L (read L(x, y) “x likes y”) and rP is given
by the following table:

L 1 2 3
1 1 0.2 0
2 0.7 0.8 0.8
3 0 0.1 0.5

Starting connectives are conjunction, implication (binary) and the truth con-
stants > (truth), ⊥ (falsity). Since we shall have two different conjunctions we
start with the conjunction denoted by &; implication will be → . Since early
days of fuzzy logic, for the truth function of & one takes a continuous t-norm,
which is a binary operation on [0, 1] continuous as a real-valued function and
satisfying the following for each x, y, z ∈ [0, 1] :

associativity x ∗ (y ∗ z) = (x ∗ y) ∗ z,
commutativity x ∗ y = y ∗ z
monotony x ≤ y implies x ∗ z ≤ y ∗ z
zero and unit 0 ∗ x = 0, 1 ∗ x = 1.

Three most important continuous t-norms are

ÃLukasiewicz x ∗ y = max(0, x + y − 1)
Gödel x ∗ y = min(x, y)
product x ∗ y = x · y (real product)

Each continuous t-norm is “composed” from a linearly ordered at most count-
able system of copies of these three t-norms (ÃLukasiewicz, Gödel, product) – in
a precise well defined sense (Mostert-Shields theorem). For a detailed formula-
tion see e.g. [6]; here we only mention that the system may and may not have
a least (first) element.

Thanks to continuity each continuous t-norm has its residuum x ⇒ y =
max{z|x∗z ≤ y} (left continuity suffices). The operation⇒ is the truth function
of implication given by the t-norm. This implication has very good properties,
in particular, for each continuous t-norm ∗, x ⇒ y = 1 iff x ≤ y. For x > y
different t-norms give different residua, notably: for x > y,
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ÃLukasiewicz x ⇒ y = 1− x + y
Gödel x ⇒ y = y
product x ⇒ y = y/x.

Given this, we may define the truth degree of each formula ϕ(x1, . . . , xn)
given by elements u,. . . . , un ∈ M denoted ‖ϕ(u1, . . . , un)‖∗M (since it depends
on the choice of our t-norm) in analogy to the classical logic as follows:

For an atomic formula P (x1, . . . , xn), ‖P (u1, . . . , un)‖∗M = rP (u1, . . . , un),
and similarly if the atomic formula contains some constants, e.g. for P (x, c, y)
and u1, u2 ∈ M, ‖P (u1, c, u2)‖∗M = rP (u1, vc, u2) (where vc is the interpretation
of c in M).

‖>‖∗M = 1, ‖⊥‖∗M = 0, ‖ϕ& ψ‖∗M = ‖ϕ‖∗M∗‖ψ‖∗M, ‖ϕ → ψ‖∗M = ‖ϕ‖∗M ⇒ ‖ψ‖∗M.

(In our example above, ‖L(2, 2)‖∗M = 0.8, ‖L(2, 1)‖∗M = 0.7, thus for ∗ being
ÃL (ÃLukasiewicz) ‖L(2, 2) → L(2, 1)‖ÃLM = 1 − 0.8 + 0.7 = 0.9; for Gödel you get
‖L(2, 2) → L(2, 1)‖∗M = 0.7 etc.)

Some defined connectives:

¬ϕ is ϕ → ⊥,
ϕ ∧ ψ is ϕ&(ϕ → ψ),

ϕ ∨ ψ is ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
ϕ ≡ ψ is (ϕ → ψ)& (ψ → ϕ).

Here ¬ is negation, ∧ is min-conjunction, ∨ is max-disjunction, ≡ is equiva-
lence. For any choice of ∗, the truth function of ∧ is minimum (i.e. ‖ϕ∧ψ‖∗M =
min(‖ϕ‖∗M, ‖ψ‖∗M), the truth function of ∨ is maximum; negation depends on
∗, in particular:

‖¬ϕ‖ÃLM = 1− ‖ϕ‖ÃLM
but for ∗ being G of Π (product) we get Gödel negation: if ‖ϕ‖G

M = 0 then
‖¬ϕ‖G

M = 1, but ‖ϕ‖G
M > 0 implies ‖¬ϕ‖G

M = 0. (negation of 0 is 1, negation of
a positive value is 0). Clearly, ‖ϕ ≡ ψ‖∗M = 1 iff ‖ϕ‖∗M = ‖ψ‖∗M.

For quantifiers the definition is as follows:

‖(∀x)ϕ(x, . . . )‖∗M = inf{‖ϕ(v, . . . )‖∗M | v ∈ M},

‖(∃x)ϕ(x, . . . )‖∗M = sup{‖ϕ(v, . . . )‖∗M | v ∈ M},
thus the truth degree of a universally quantified formula is the infimum of truth
degrees of its instances and similarly for existential quantification and supre-
mum. If M is finite, we may replace “infimum” by “minimum” and “supre-
mum” by “maximum”; for infinite M this may not be the case. For example let
M be the set of positive natural numbers 1, 2, 3, . . . and let rSm(n) = 1

n (read
Sm “small”); then (for any ∗) ‖(∀x)Sm(x)‖∗M = infn

1
n = 0, but ‖Sm(n)‖∗M is
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positive for each n. (This is related to the so-called Sorites paradox, solved in
fuzzy logic.) A formula ϕ is a ∗-tautology if ‖ϕ‖∗M = 1 for each M; ϕ is a stan-
dard tautology if it is a ∗-tautology for each continuous t-norm ∗. Analogously to
classical logic, some standard tautologies are taken for axioms of the basic fuzzy
predicate logic BL∀; deduction rules are as in classical logic (modus ponens and
generalization.) This gives the notion of provability in BL∀. It is complete with
respect to a more general semantics over so-called BL-algebras which are some
algebras of truth functions, algebras given by continuous t-norms being partic-
ular BL-algebras. (BL-algebras are particular residuated lattices, we shall not
go into any details here, see [6].) Note that the set of all standard predicate
tautologies is not (effectively) axiomatizable.

The following are some few examples of standard tautologies:

(ϕ → (ψ → χ)) ≡ (ψ → (ϕ → ψ))
(ϕ → (ψ → χ)) ≡ ((ϕ& ψ) → χ)

(ϕ → ψ) → (¬ψ → ¬ϕ)
(ϕ → ψ) → ((ϕ& χ) → (ψ &χ))

(∀x)(ϕ → ψ) → ((∀x)ϕ → (∀x)ψ)
(∀x)(ϕ → ψ) → ((∃x)ϕ → (∃x)ψ)

(∃x)ϕ → ¬(∀x)¬ϕ

Now let us present examples of formulas that are not standard tautologies,
i.e. for some continuous t-norm ∗ they are not ∗-tautologies. (All of them are
tautologies of classical logic.) In brackets, ÃL, G, Π means that the formula is a
∗-tautology for ∗ being ÃLukasiewicz, Gödel or product t-norm.

¬¬ϕ ≡ ϕ (ÃL)
(ϕ& ϕ) ≡ ϕ (G)
¬(ϕ ∧ ¬ϕ) (G, Π)

ϕ ∨ ¬ϕ (none)
(∃x)ϕ ≡ ¬(∀x)¬ϕ (ÃL)
(∀x)ϕ ≡ ¬(∃x)¬ϕ (ÃL)

(The reader may verify easily that these formulas are tautologies of the
logics indicated remembering the definition of ÃLukasiewicz negation and of Gödel
negation as well as the fact that in Gödel logic the conjunctions & and ∧ have
the same semantics.)

Similarly as in classical logic, using fuzzy logic one gets some feeling (or
practice) in recognizing well-known tautologies and well-known non-tautologies
(but, I repeat, there is no algorithm to decide on any given formula if it is a
standard tautology; similarly for (non-)tautologies of a fixed continuous t-norm).

We shall also use the following terminology: an interpretation M is a ∗-model
of a closed formula ϕ if ‖ϕ‖∗M = 1. M is a ∗-model of a set T of closed formulas
if ‖ϕ‖∗M = 1 for each ψ ∈ T. Finally, T ∗-entails ϕ if each ∗-model of T is an
T -model of ϕ.

To close this section let us mention a “minimalistic” fuzzy logic KD used
early papers in fuzzy logic (and much later in early papers on fuzzy descrip-
tion logic). It uses only connectives ∧,∨ (min-conjunction, max-disjunction),
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ÃLukasiewicz negation ‖¬ϕ‖KD
M = 1 − ‖ϕ‖KD

M and so-called Kleene-Dienes im-
plication ‖ϕ → ψ‖KD

M = max(1 − ‖ϕ‖KD
M , ‖ψ‖KD

M ), inspired by mechanical use
of the classical tautology (ϕ → ψ) ≡ (¬ϕ ∨ ψ). Observe that connectives of
KD are definable from connectives given by the ÃLukasiewicz t-norm; but the
KD-implication does not have good properties. For example, observe that in
our example above (with the predicate “likes”), for any continuous t-norm ∗,
the formula (∀x, y)(L(x, y) → L(x, x)) has the truth value 1 (since for any
u, v, rL(u, v) ≤ rL(u, u), i.e. every x likes himself at least as much as he likes
anybody else), i.e. ‖(∀x, y)(L(x, y) → L(x, x)‖∗M = 1, but ‖(∀x, y)(L(x, y) →
L(x, x))‖KD

M = 1
2 since in particular ‖L(3, 3) → L(3, 3)‖KD

M = ( 1
2 ⇒KD

1
2 ) = 1

2 .
This seems to be rather counter-intuitive.

2 From description logic to fuzzy description
logic

We shall restrict ourselves to the description logic ALC and its fuzzy counter-
part. Recall that in ALC concepts are built from finitely many unary predicates
(atomic concepts), and finitely many binary predicate (roles) using connectives
∧,∨,¬ and quantifier constructs: if C,D are concepts then C ∧D, C ∨D, ¬C
are concepts, if C is a concept and R is role then (∀R.C), (∃R.C) are concepts.
From the point of view of classical predicate logic, concepts correspond to par-
ticular formulas with one free variable: if A is an atomic concept, take A(x); if
C(x) and D(x) are defined then C(x) ∧ D(x), C(x) ∨ D(x), ¬C(x) have clear
meaning. The quantifier constructs are understood as follows.

(∀R.C)(x) means (∀y)(R(x, y) → C(y)),
(∃R.C)(x) means (∃y)(R(x, y) ∧ C(y)).

Also for each concept C and a constant a, C(a) has clear meaning. Saying that
a concept is valid we mean that (∀x)C(x) is a predicate tautology; saying that
it is satisfiable we mean that C(a) has a model (an interpretation M such that
M |= C(a)). Saying that C is subsumed by D (in symbols, C v D) we mean
that (∀x)(C(x) → D(x)) is a tautology. Since in classical logic implication is
definable from ∧ and ¬, for any concepts C, D we have the concept C → D
equivalent to the concept ¬C ∨D and we see that C v D (C is subsumed by
D) iff the concept C → D is valid (i.e. the formula (∀x)(C(x) → D(x)) is a
tautology). It is known that the question if a given concept is valid is decidable
and the same for the question if a given concept is satisfiable (see e.g. [10])
consequently, also subsumption C v D is decidable.

Note also the finite model property: C is valid iff (∀x)C(x) is true in all
finite interpretation (having finite domain); and C is satisfiable iff C(a) is true
in a finite interpretation.

For simplicity we restrict ourselves just to those problems, not discussing
termonological axioms and axioms-facts. Our aim is to show on this simplest
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fragment how it can be combined with fuzzy logic and what are the problems
with this.

Thus take the same language of finitely many atomic concepts and finitely
many roles. Concepts are built from atomic concepts using ⊥,&,→ (i.e. ⊥ is a
concept; each atomic concept is a concept; if C, D are concepts then C & D, C →
D are concepts) and using the quantifier constructs (∀R.C), (∃R.C). Translation
to predicate formulas is clear, only take (∃R.C)(x) to be (∃y)(R(x, y)& C(y))
(use the &-conjunction). Also here observe that defined connectives can be used
to construct concepts, thus if C,D are concepts then so are C ∧D, C ∨D, ¬C,
C ≡ D.

Now choose a continuous t-norm ∗; you may ask whether a concept C is
∗-valid (i.e. ‖(∀x)C(x)‖∗M = 1 for each M), whether it is ∗-satisfiable (there is
some M with ‖C(a)‖∗M = 1 i.e. C(a) has a ∗-model), whether C is ∗-subsumed
by D and similar. We present here (without proofs) the main results of the
paper [7] and illustrate them by some examples.

First we shall introduce some important notions. Recall that the truth
degree of an universally quantified formula is defined as the infimum of the
set of truth values of its instances and that this set need not have a minimal
element. Similarly for existentially quantified formulas supremum and maxi-
mum. Let us define: let ϕ(x, y1, . . . , yn) be a formula M an interpretation and
u1, . . . , un ∈ M. An object v ∈ M is a ∗-witness in M for (∀x)ϕ(x, y1, . . . , yn)
and u1, . . . , un if ‖(∀x)ϕ(x, u1, . . . , un)‖∗M = ‖ϕ(v, u1, . . . , un)‖∗M; similarly for
(∃x)ϕ(x, y1, . . . , yn), i.e. ‖(∃x)ϕ(x, u1, . . . , un)‖∗M = ‖ϕ(v, u1, . . . , un)‖∗M. An
interpretation M is ∗-witnessed if each formula beginning by a quantifier has a
∗-witness in M for any evaluation of its free variables by elements of M.

Surely, there are non-witnessed interpretations (we saw some above); each
finite interpretation (with a finite domain) is witnessed.

For the ÃLukasiewicz t-norm ÃL the following holds true: A formula ϕ is ÃL-
true in some interpretation iff it is ÃL-true in some witnessed interpretation;
and ϕ is ÃL-true in all interpretations iff it is ÃL-true in all witnessed interpre-
tations (see [7]); but for other t-norms it is not the case. Observe the formula
¬(∀x)P (x)&¬(∃x)¬P (x), which has a G-model (and a Π-model) but no wit-
nessed G-model (Π-model): To get a G-model, take the interpretation of Sm
above: rSm(n) > 0 for all n ∈ M but infn rSm(n) = 0. Thus ‖(∀x)Sm(x)‖G

M = 0,
‖(∃x)¬Sm(x)‖G

M = 0, hence ‖¬(∀x)Sm(x)&¬(∃x)¬Sm(x)‖G
M = 1. In Sect. 3

we show that the formula has no witnessed model.
This leads us to the investigation of witnessed models of concepts. (For the

aims of description logic non-witnessed models appear to be pathological.) We
get the following:

Theorem 1 Let C be a concept, ∗ a continuous t-norm.

(1) C(a) has a witnessed ∗-model iff it has a finite ∗-model

(2) (∀x)C(x) is true in all witnessed ∗-interpretations iff it is ∗-true in all
finite ∗-interpretations.
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Observe that e.g. for C being A ≡ ¬A the formula C(a) has a finite ÃL-
model (in which ‖A(a)‖ÃLM = 1

2 ) but C(a) has no G-model (Π-model); if C
is A ≡ (A & A) then (∀x)C(x) is true in all G-interpretations but not in all
ÃL-interpretations, neither in all Π-interpretations.

For a full proof of the theorem see [7]; here we only sketch the main idea.
Given a formula C(a) (where C is a concept and a is a constant) we construct
a finite number of new unary predicates and new object constants, from which
we construct effectively (using an algorithm) a finite theory T whose axioms
are closed quantifier-free formulas (propositional combinations of atoms) and
a closed quantifier-free formula prop(C(a)) such that for each continuous t-
norm ∗ and each ∗-model M of T, ‖prop(C(a))‖∗M = ‖C(a)‖∗M. In particular,
due to the very simple (propositional) form of prop(C(a)), any ∗-model M of
T determines a finite ∗-model M0 of T consisting just of (interpretations of)
constants occuring in T and ‖prop(C(a))‖∗M0

= ‖propC(a)‖∗M. Moreover, each
witnessed ∗-interpretation of the language of C(a) expands to a model of T. Now
C(a) has a ∗-model iff T ∪ {prop(C(a))} has a finite ∗-model from constants as
above; this reduces the problem to ∗-satisfiability of a finite set of propositional
formulas. (∀x)C(x) is a ∗-tautology iff T (propositionally) ∗-entails prop(C(a))
(i.e. prop(C(a)) is true in each ∗-model of T. This gives the result.

We shall not present the algorithm for constructing T here, see [7]. But
below we illustrate it by giving some simple illustrative examples.

Our construction reduces the problems of witnessed ∗-satisfiability of C (i.e.
C(a) having a witnessed ∗-model) and witnessed ∗-validity of C ((∀x)C(x) be-
ing a witnessed ∗-tautology) to problems of propositional ∗-satisfiability and
propositional ∗-entailment from a finite set of assumptions. These problems are
decidable (see [7] for references), which gives us the following:

Theorem 2 (1) The problem of witnessed ∗-satisfiability (equivalently, of
finite ∗-satisfiability) of a concept is decidable.

(2) The same for the problem of witnessed (finite) ∗-validity of a concept.

For ∗-satisfiability we can say more. By the structural characterization of
continuous t-norms (Mostert-Shields theorem, see [6]), continuous t-norms can
be divided into two disjoint groups:

– beginning by ÃLukasiewicz, i.e. for some 0 < a ≤ 1, the restriction of ∗ to
[0, a]2 is isomorphic to ÃLukasiewicz t-norm, and

– having Gödel negation (‖¬ϕ‖∗M = 1 for ‖ϕ‖∗M = 0 and ‖¬ϕ‖∗M = 0 if
‖ϕ‖∗M > 0).

Theorem 3 (1) For any ∗ beginning by ÃLukasiewicz and each concept C, C
is ∗-satisfiable iff C is ÃL-satisfiable (ÃL denoting ÃLukasiewicz t-norm).

(2) For any other ∗ (i.e. ∗ having Gödel negation) and each concept C, C is
∗-satisfiable iff C is satisfiable in Boolean logic. (Again see [7].)
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3 Examples and comments

We first illustrate the transformation of C(a) to a formula prop(C(a)) and the
corresponding theory T by giving two examples. They are rather particular
since they do not contain nested quantifier constructs. What we show here is
just one step sufficient here but needing iteration in the general case.

Example 1 Take the concept C defined as ∀R.(A ≡ ¬A) → ¬∃R.A. Is it
witnessedly ∗-valid? Equivalently: is ∀R(A ≡ ¬A) ∗-subsumed by ¬∃R.A? We
consider the formula C(a). In each witnessed ∗-interpretation, the two quantifier
concepts have witnesses, i.e. for some c, d, the following formulas are ∗-true.

∀R.(A ≡ ¬A)(a) ≡ [R(ac) → (A(c) ≡ ¬A(c))],
∃R.A(a) ≡ (R(a, d)& A(d))

Since c witnesses the formula (∀x)(R(a, x) → (A(x) ≡ ¬A(x)), d must satisfy
(write Rac for R(a, c) etc.)

(1) [Rac → (Ac ≡ ¬Ac)] → [Rad → (Ad ≡ ¬Ad)]

and similarly, since d witnesses (∃x)(R(a, x)& A(x)), c must satisfy

(2) (Rac & Ac) → (Rad & Ad).

The formula C(a) becomes equivalent to

(3) [Rac → (Ac ≡ ¬Ac)] → ¬(Rad & Ad).

C(a) is witnessedly ∗-valid iff (1) and (2) ∗-entail (3). (Indeed, if they do then
take any M and introduce witnesses c and d, getting a model of (1) and (2);
(3) follows and replacing witnesses by the corresponding quantified formulas
you get ∗-truth of C(a). Conversely, if you can evaluate all atoms involved by
truth values in such a way that (1) and (2) are ∗-true but (3) not, you get a
∗-interpretation (having just three elements named a, c, d) in which C(a) has
value less then 1.

Thus first take ÃLukasiewicz. Put ‖Rac‖ = ‖Rad‖ = 1, ‖Ac‖ = ‖Ad‖ = 1
2 .

Then (1), (2) are ÃL-true, but (3) gets value [1 → (1
2 ≡ 1

2 )] → ¬(1& 1
2 ) = 1 →

1
2 = 1

2 < 1.
But for Gödel any formula ϕ ≡ ¬ϕ is always false (has the value 0), thus

(1) gives (Rac → ⊥) → (Rad → ⊥), hence ¬Rac → ¬Rad and (3) becomes
equivalent to ¬Rac → ¬(Rad & Ad). Since ¬Rad → ¬(Rad &Ad) is a tautology
(for each ∗), (1) implies ¬Rac → ¬(Rad & Ad) which is (3). C(a) is a (witnessed)
G-tautology. (Note that C(a) is even a tautology of Gödel logic with general
models.)
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Example 2 Let C be ¬∀R.A &¬∃R.¬A. Let us show that C(a) is not witness-
edly ∗-satisfiable, whatever ∗ you take. (But recall that C(a) is G-satisfiable and
Π-satisfiable in a non-witnessed model, see above.) Assume witnesses c, d for
∀R.C and ∃R.¬C respectively. If M is a witnessed model for C(a), it satisfies

(1) ¬(Rac → Ac),

(2) ¬(Rad &¬Ad),

and by witnessing,

(3) (Rac → Ac) → (Rad → Ad),

(4) (Rac & Ac) → (Rad &¬Ad).

From (1) we get ¬Ac (since ¬(Rac → Ac) → ¬Ac is a tautology for each ∗);
from (4) we get by equivalent transformations

¬Ac → [Rac → (Rad &¬Ad)],

hence we get Rac → (Rad &¬Ad) and by (2) we get ¬Rac, hence Rac → Ac,
which is a contradiction with (1). C(a) has no witnessed model.

∗

Now let us return to the title of the paper: What does mathematical fuzzy
logic offer to description logic? I hope the reader will agree that it offers:

• rich languages, allowing many choices (approaches), but still decidable
(whereas of course for each continuous t-norm, the full predicate logic
given by ∗ is undecidable)

• precise syntax and semantics (plus deductive systems, not described here,
see [6])

• interesting research problems (see below).

In this context let us mention Straccia’s paper [13] where the author devel-
ops a description logic based on some continuous t-norms and makes several
restricting assumptions among them he assumes the inter-definability of quan-
tifiers: (∀x)ϕ(x) ≡ ¬(∃x)¬ϕ(x) and dually. His assumptions are satisfied by
ÃLukasiewicz t-norm and one can show that each continuous t-norm satisfying
them is (isomorphic to) ÃLukasiewicz. (If ∗ is not isomorphic to ÃL then either
for some a < 1 its restriction to [0, a]2 is isomorphic to ÃL or it has Gödel nega-
tion, then take any 0 < u < 1. Take an interpretation with M = {a} and
rP (a) = u. Then ‖(∀x)P (x)‖∗M = 1

2 , ‖¬P (a)‖∗M = 0, thus ‖(∃x)¬P (x)‖∗M = 0,
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‖¬(∃x)¬P (x)‖∗M = 1 = 1
2 .) ÃLukasiewicz fuzzy logic is very important but one

should know whether one restricts himself to it or one admits more possibilities.
This is only a remark illustrating that knowledge of mathematical fuzzy logic
may be helpful for developing fuzzy description logic.
What is (still) missing? (Problems.)

• Allowing truth constants into the language. This works well expecially
for ÃLukasiewicz logic but can be done in the general. This needs further
study.

• Allowing generalized quantifiers as “many”, e.g. (ManyR.C)(a) could
say “many objects R-related to a have C”. This differs from the fuzzy
(∀x)(R(a, x) → C(x)). Cf. [6].

• Problems of computational complexity for our fuzzy description logic, in
analogy to “classical” description logic

• Problems of implementation.

This shows that, as said above, our approach to fuzzy description logic is a
reasonable and interesting research topic. Any comments are welcome.
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