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ABSTRACT
Most of information retrieval systems depend on Boolean
queries. The performance of an information retrieval sys-
tem is usually measured in terms of two different criteria,
precision and recall. This way, the optimization of any
of its components is a clear example of a multiobjective
problem. However, although evolutionary algorithms have
been widely applied in the information retrieval area, in
all of these applications both criteria have been combined
in a single scalar fitness function by means of a weighting
scheme. In this paper, we deal with using of Genetic algo-
rithms in Information retrieval specially in optimizing of a
Boolean query.
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1 Introduction

Ever since the advent of the public network Internet, the
quantity of available information is rapidly rising. One of
the most important uses of this public network is to find
suitable information for such user query request. In such
a huge and unstable information collection, todays greatest
problem is to find relevant information to the user query.

Information filtering is concerned with finding infor-
mation from unstable collections of documents such as the
Internet. In the information filtering domain, the user query
does not consist of a list of words or terms to search for
but rather of combinations of words extracted from vari-
ous examples. The most important problem to solve is to
optimize the significance of the user query and obtaining
accurate collection statistics for calculating the term arity.

After using evolutionary techniques for single-
objective optimization during more than two decades, the
incorporation of more than one objective in the fitness func-
tion has finally become a popular area of research.

An information retrieval system is basically consti-
tuted of three main components: documentary database,
query subsystem and matching or evaluation mechanism
[1, 13].

2 Evaluation of Information Retrieval Sys-
tem

Evaluation of the information retrieval system, measured
by effectiveness, two statistics are used precision and re-
call, where these measures are evaluated over a set of doc-
uments called a collection of documents. All documents
in this collection of documents are divided into four sub-
sets: Relevant set; set of documents that are relevant to the
user query, Retrieved set; set of documents that are returned
to the user query, and Relevant-Retrieved set; set of docu-
ments that are retrieved and relevant to the user query, and
finally the rest set of documents; set of documents that are
not relevant and not retrieved. Where precision the percent-
age of the retrieved documents that are relevant to the user
query and recall the percentage of the relevant documents
that are retrieved for the requested query.

Recall =
RelevantRetrieved

Relevant

Precision =
RelevantRetrieved

Retrieved

In our work we introduce to use Genetic Program-
ming for implementing the Information Retrieval system
with Boolean queries, trying to evolve Boolean queries by
genetic algorithm.

3 Genetic Algorithms

Most of the search engines in the internet depend on the
user query and operate an information retrieval system to
get the response of the user query request. Where the user
query consist of set of terms and set of logical operators;
especially and, or, of , and not operator see [6]. For this
our motivation in our work is to do the evolution of the
Boolean queries using genetic programming in the infor-
mation retrieval [2, 3, 16].

Genetic Algorithm is an algorithm that used to find
approximate solutions to problems that was difficult to
solve it through set of methods or techniques inheritance or
crossover, mutation, natural selection, and fitness function
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that are principles of evolutionary biology in computer sci-
ence. For more detail about Genetic Algorithms see [5, 15].

4 Genome query encoding

This section will present the implementation of informa-
tion retrieval using genetic algorithms (for SQL we can see
[17, 11, 8, 4, 12]). The GA is generally used to solve opti-
mization problems [7, 9]. GA starts on an initial population
with fixed size of chromosomes ”P-chromosomes”. Each
individual are coded according to chromosome length,
where genes are allocated in each position in a chromosome
with different data types, and each gene values called allele.
In information retrieval, query for relevant documents are
representing for each individual or chromosome, and each
document described by set of terms. The description di for
document Di, where i = 1 . . . l, the set of terms for Di are
Tj , where j = 1 . . . n, thus di = (w1i

, w2i
, . . . , wni

). The
value for each term will be 1 if this term exists in the docu-
ment or 0 if not (Note: about another weights for terms was
mention in paper [14]), this indicate that the indexing func-
tion that is maps a given index term t and a given document
d is

F : D × T → [0, 1].

Defining a query will be combination from set of
terms and set of Boolean operators and, or, xor, not and
of . The query set Q defined as set of queries for docu-
ments, define the query processing mechanism by which
documents can be evaluated in terms of their relevance to a
given query [10].

In this work, we develop genetic program for imple-
menting GA with variable length of chromosomes and mix-
ture symbolic of information, like real values and Boolean
queries values.

Each chromosome from the initial population repre-
sented a tree structure for one query; an index was defined
for each node in the tree. Genetic operators were oper-
ated over individuals. Queries will be encoded as trees,
where each chromosome contains set of genes, and each
gene mention to be a node in a tree and the value for each
node known as allele. An example that show query encod-
ing for chromosome in the population shown in Figure 1.

Figure 1. Chromosome encoding form a query

5 Implement Genetic Operators to Evolutes
Boolean Queries

Genetic operators used in our work to evolve Boolean
queries. Presenting for these operators Fitness, Selection,
Crossover, and Mutation follows:

Fitness function operator

For each individual the value of precision and re-
call will be computed and known as fitness values
see RecallF itnessE1 and PrecisionFitnessE2 respec-
tively, this depends on the number of relevance documents
rd in the collection of documents to the user query, num-
ber of retrieved document fd, and α and β are arbitrary
weights. Here PrecisionFitnessE2 function is composed
from two parts first reflects recall quality and second pre-
cision quality. Influence of each part is given by α and β
coefficients in precision fitness function [10].

ReallF itnessE1 =
∑

d[rd × fd]∑
d[rd]

PrecisionFitnessE2 =
α

∑
d[rd × fd]∑

d[rd]
+

β
∑

d[rd × fd]∑
d[fd]

Selection operator

Very simple implementation of this operator was sufficient.
Two individuals with best fitness values are chosen from a
population, but if there are more than two individuals with
the same highest fitness values, then two of them will be
chosen randomly. The two selected chromosomes will be
called parent1 and parent2 and they will be used to produce
two new offsprings.

Crossover operator

Offsprings must have some inheritance from the tow par-
ents; single point crossover will do that by exchange sub-
tree from parent1 with subtree from parent2. Positions for
exchanging subtree1 and subtree2 will be select randomly.
In our work we define the selection of the position for sub-
tree to be:

1. The root node of the tree.

2. Each Boolean operator node.

3. Each leaf from the tree.

An example was shown in Figure 2.
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Figure 2. Single point crossover, Randomly select the
nodes

Mutation operators

Mutation, random perturbation in the chromosome repre-
sentation, is necessary to assure that the current generation
is connected to the entire search space, and it is necessary
to introduce new genetic material into a population that has
stabilized level [10]. In our implementation, mutation op-
erator works as the most important operator for the evolu-
tionary learning of Boolean query.

Each node from the new offsprings may be mutated;
that depends on mutation value (0.2). And we work with
different type of mutations shown below:

• Mutation on Boolean operator: randomly exchanging
one operator to another but both must be from the
same arty, such as any exchange in (and, Or, Xor,
and of) are allowed.

• Mutation on term node or leaf node: changing one
term selected randomly from the offspring by any an-
other one but the other one will be one from:

– The terms in a given collection of documents

– The terms in an initial population.

– A specified list of terms.

– The terms appeared in the user query.

• Mutation by inserting or deleting operator between
two nodes in the offsprings

Where mutation was implemented on this way: For
given offspring select one node randomly and for this node
we have two possibilities to mutate into another one or to
apply insert a unary operator before it or delete it if and
only of this node is a unary operator. Some examples were
shown in Figure 3.

Figure 3. Single point crossover, Randomly select the
nodes

6 Experiments

Presenting our work now to show how our research pro-
cessed for Boolean queries evolutionary learning was done.

6.1 Introduction to experiments

We developed a genetic program to process some experi-
ments over a set of Boolean queries and various collections
of documents, and the documents are with various num-
ber of words; all collections used in our experiments are
described in Table 1:

Collection Name Number Words Number of
Documents

10x30 30 10
200x50 200 50

5000x1000 1000 5000

Table 1: Document Collections
For all of our experiments were used the following

ten Boolean queries as an initial population for processing
our genetic algorithm:

2 of(w2, w8)
1 of(w1, w2, w8)
not(not w13 and not w8)
(w1 and(w2 andw8)) or not(w4 or w2)
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not(w1 or w2) and((w5 or w4) and(w3 and w6))
(w9 and w14)
(not w14) and w1

(w2 or w6) or(w8 and w13)
(w3 and w4) or((w12 xor w15) and w8)
(w2 or w8) or(w1 and w2)

Note: The of operator has the following general
form:
N of(w1, w2, w3, . . . , wM ); M ≥ N . and it Works as;
terms the document will be retrieved when it contains at
least N terms from the list of M terms specified in the
query. For example,

2 of(w1, w2, w3) =
((w1 andw2) or(w1 and w3) or(w2 and w3))

The Genetic programalgorithm ended when a given
number of generations was reached; or when all chromo-
somes in the population had maximum possible value of
the fitness function, where the maximum values for preci-
sion and recall are α + β and 1 respectively. We also used
three types of mutation as described above. All the exper-
iments were done few times with the same options to see
the differences in the results, because results are affected
by probability used during genetic program process. In all
the experiments the following fixed options were used:

• the arbitrary weights for α = 0.25, and β = 1.0

• crossover value = 0.8

6.2 Experiments Results over Mutation

Mutation value is probability of applying mutation opera-
tor on an offspring. In this experiment we observed how the
change of mutation value affects the result of genetic pro-
gram process. The type of mutation was described above.
Additional options for this experiment:

• user query is:- (w6 andw8) and notw10

• collection name is:- 10x30

• used fitness measure is:- precision

• Number of generations is: - 200 generations.

All terms from the initial population were used for
mutation of leaves, the results obtained as shown in table
2:

mutation
value

Number of
generations

final precision final recall

0.1 200 0.75 1.00
51 1.25 1.00

0.2 24 1.25 1.00
40 1.25 1.00

0.3 27 1.25 1.00
17 1.25 1.00

0.4 25 1.25 1.00
118 1.25 1.00

0.5 45 1.25 1.00
135 1.25 1.00

Table 2: Results when Mutation over leaves and terms
from all initial population

Nearly in all experiments, the values of the fitness
function for precision for all chromosomes in the final pop-
ulation reached to be as maximum of the precision value
1.25, and the same for recall fitness value is 1.00, where
the number of generations was variant.

All terms form the user query only used for mutation
of leaves, and the results were shown in Table 3.

mutation
value

Number of
generations

final precision final recall

0.1 20 0.75 1.00
200 0.75 1.00

0.2 200 0.75 1.00
200 0.75 1.00

0.3 200 0.75 1.00
200 0.75 1.00

0.4 200 0.75 1.00
200 0.75 1.00

0.5 113 1.25 1.00
200 0.75 1.00

Table 3: Results when Mutation over leaves and
and terms from user query only

In this case, nearly maximum number of generations
was reached to get the best solution especially when the
precision fitness function was used.

All terms form the whole collection was used for mu-
tation of leaves, and the results were shown in Table 4.
Where in some experiments the maximum number of gen-
erations was reached and in other maximum value of pre-
cision was reached.
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mutation
value

Number of
generations

final precision final recall

0.1 200 0.75 1.00
28 1.25 1.00

0.2 200 0.75 1.00
58 1.25 1.00

0.3 65 1.25 1.00
11 1.25 1.00

0.4 187 1.25 1.00
143 1.25 1.00

0.5 21 1.25 1.00
42 1.25 1.00

Table 4: Results when Mutation over leaves and
terms from whole collection

When we used recall as a fitness function, all chro-
mosomes in the final population had the same (maximum)
value of recall, but mostly the values of precision are var-
ious; and the best of them are described in tables bellow,
where Table 5 shows the results when the mutation over
leaves used terms from user query only, Table 6 shows the
results when the mutation over leaves used terms from ini-
tial population and Table 7 shows the results when the mu-
tation over leaves used terms from whole population:

mutation
value

Number of
generations

final precision final recall

0.1 5 0.583 1.00
4 0.583 1.00

0.2 5 0.583 1.00
5 0.500 1.00

0.3 5 0.500 1.00
5 0.500 1.00

0.4 5 0.583 1.00
5 0.500 1.00
0.5 5 0.583 1.00
6 0.583 1.00

Table 5: Results when Mutation over leaves and
terms from user query

mutation
value

Number of
generations

final precision final recall

0.1 5 0.583 1.00
6 0.583 1.00

0.2 5 0.500 1.00
4 0.583 1.00

0.3 5 0.500 1.00
5 0.500 1.00

0.4 5 0.583 1.00
8 0.500 1.00

0.5 7 0.583 1.00
4 0.583 1.00

Table 6: Results when Mutation over leaves and
terms from initial population

mutation
value

Number of
generations

final precision final recall

0.1 5 0.583 1.00
4 0.500 1.00

0.2 5 0.500 1.00
5 0.500 1.00

0.3 6 0.500 1.00
5 0.583 1.00

0.4 8 0.583 1.00
5 0.583 1.00

0.5 5 0.583 1.00
5 0.583 1.00

Table 7: Results when Mutation over leaves and
terms from whole collection

In some cases, especially when we used for mutation
over leaves the terms from user query only and the fitness
function was precision, there were worse results than in
other cases as shown in tables 4, 5, and 6. We increased
the maximal number of generations to be 1200 generations
and did some experiments with following options. The re-
sults for these experiments are shown in Table 8.

• maximal number of generations is 1200

• user query is ((not w10) and(w6 and w8))

• mutation over leaves use terms from user query

• fitness function is precision

mutation
value

Number of
generations

final precision final recall

0.1 1200 0.75 1.00
1200 0.75 1.00

0.2 1200 0.75 1.00
1200 0.75 1.00

0.3 1200 0.75 1.00
197 1.25 1.00

0.4 1200 0.75 1.00
462 1.25 1.00

0.5 25 1.25 1.00
1200 0.75 1.00

Table 8: Results when Mutation over
leaves and terms from user query

After increasing number of generations there was not
big difference in the results because in many cases there
was still not reached the best solution.
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6.3 Fitness Function Experiments

The goal of optimization process of a Boolean query is to
get a query with highest possible values of precision and
recall. Results shown above demonstrate, that when using
precision as the fitness function, the value of recall in final
generation s very high, even when the precision value is not
the best possible. But to get these results we needed often
high number of generations. We tested this process over
larger collections.

Experiment options:

• collection name is 200x50

• user query is ((not w10) and(w6 and w8))

• maximum number of generations is 2000 generations

• all terms from initial population used for mutation
over leaves.

When using precision as fitness function we reach the
highest number of generations without reaching the best
value of precision as shown in Table 9, and Table 10 shows
the results when we used the recall as a fitness function.

mutation
value

Number of
generations

final precision final recall

0.1 2000 0.3779 1.00
2000 0.3394 1.00

0.2 2000 0.3736 1.00
2000 1.045 0.18

0.3 2000 0.3736 1.00
2000 0.36 1.00

0.4 2000 0.3736 1.00
2000 0.3736 1.00

0.5 2000 0.3736 1.00
2000 0.4219 1.00

Table 9: Results when Precision was
used as a fitness function

mutation
value

Number of
generations

final precision final recall

0.1 16 0.3050 1.00
63 0.3050 1.00

0.2 13 0.3050 1.00
11 0.3050* 1.00

0.3 23 0.3050* 1.00
15 0.3050 1.00

0.4 11 0.3050* 1.00
16 0.3050 1.00

0.5 17 0.3050 1.00
10 0.3050* 1.00

Table 10: Results when Recall was
used as a fitness function

* - in these cases the precision value of chromosomes
in final generation was various. Number in table is lowest
precision value in population.

7 Conclusions

In this paper, an optimization of Boolean query over a col-
lection of documents is presented. We focused especially
on mutation and on comparison of two fitness measures,
precision and recall. Experiments were done over various
models of document collections with different types of mu-
tation over leaves.

After set of experiments we obtained the following
conclusions. First, when applying mutation operator on
terms in a query, it is necessary to have largest possible
set of terms at disposal for mutation. If only terms from
user query or initial population were used for mutation, the
results were worse than when terms from whole collection
were used. Only then there can come into existence new
queries, describing the same documents as user query, but
containing terms not included into user query or initial pop-
ulation.

Second, when we are looking for the best optimiza-
tion of a Boolean query, we should consider the number of
operators in the queries in final population. The query with
fewer operators is better than query with more operators
and the same values of precision and recall. This parameter
can be important during whole genetic algorithms process.

Third, probability of mutation (the mutation value) af-
fects the result of genetic algorithm process too. Higher
mutation value causes higher probability of finding good
query, especially when using precision as fitness measure.

Fourth, recall seems to be more efficient than pre-
cision. Recall as a fitness function returns quickly ex-
pressions describing all documents relevant to user query,
but there are many non-relevant documents retrieved too.
Other sides when using precision as a fitness measure the
results are (especially for larger collections) similar but
number of generations needed to get these results is much
bigger.
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