Autonomous Behavior of Computational Agents

Roman Vaculin!, Roman Neruda?
'Faculty of Mathematics and Physics, Charles University, Malostranské nam. 25, Prague
2Institute of Computer Science, ASCR, P.O. Box 5, 18207 Prague, Czech Republic
Email: vaculin@cs.cas.cz, roman@cs.cas.cz

Abstract

In this paper we present an architecture for decision
making of software agents that allows the agent to be-
have autonomously. Our target area is computational
agents — encapsulating various neural networks, genetic
algorithms, and similar methods — that are expected to
solve problems of different nature within an environment
of a hybrid computational multi-agent system. The ar-
chitecture is based on the vertically-layered and belief-
desire-intention architectures. Several experiments with
computational agents were conducted to demonstrate the
benefits of the architecture.

1 Introduction

Software agents can be seen as small self-contained
programs that can solve simple problems in a well de-
fined domain [6]. In order to solve complex problems
agents have to cooperate and exhibit some level of au-
tonomy. Autonomy, adaptivity, cooperation ability, and
several other properties distinguish agents from “con-
ventional” programs.

In this paper we present an architecture that allows
simple design of adaptive, or intelligent, agents. The
architecture enables the agent to solve problems of dif-
ferent nature within an environment of a computational
multi-agent system, and thus increase its autonomy,
adaptivity and the performance of the whole system. The
architecture is implemented within a distributed multi-
agent system Bang3 that provides a platform for an easy
creation of hybrid artificial intelligence models by means
of autonomous agents (see [4]).

2 Computational agents

An agent is a computer system that is situated in some
environment, and that is capable of autonomous action
in this environment in order to meet its design objectives
[9, Ch. 1]. Autonomy is used to express that agents are
able to act (to perform actions) without the intervention
of humans or other system.

2This research has been supported by the National Research Pro-
gram Information Society project no. 1ET100300419.

An intelligent agent is one that is capable of flex-
ible autonomous action in order to meet its design
objectives, where flexibility means three things: pro-
activeness (goal-directed behavior), reactivity (response
to changes), and social ability (interaction with other
agents). Building purely goal-directed or purely reac-
tive agents — one that continually responds to its envi-
ronment — is not difficult in some environments. The
problem is to build a system that achieves an effective
balance between the goal-directed and reactive behavior,
which strongly depends on the characteristics of the en-
vironment.

A computational agent is a highly encapsulated object
realizing a particular computational method [5], such as
a neural network, a genetic algorithm, or a fuzzy logic
controller. The main objective of our architecture is to
allow a simple design of adaptive autonomous agents
within an environment of a computational multi-agent
system. In order to act autonomously, an agent should
be able to cope with three different kind of problems [8]:
cooperation of agents, a computation processing sup-
port, and an optimization of the partner choice. The ar-
chitecture we present is general in the sense that it can
be easily extended to cope with different problems than
those mentioned, nevertheless, we present its capabilities
in these three areas.

Cooperation of agents: An intelligent agent should be
able to answer the questions about its willingness to par-
ticipate with particular agent or on a particular task. The
following subproblems follow: (1) deciding whether two
agents are able to cooperate, (2) evaluating the agents
(according to reliability, speed, availability, etc.), (3) rea-
soning about its own state of affairs (state of an agent,
load, etc.), (4) reasoning about tasks (identification of a
task, distinguishing task types, etc.).

Computations processing: The agent should be able to
recognize what it can solve and whether it is good at it,
to decide whether it should persist in the started task, and
whether it should wait for the result of task assigned to
another agent. This implies the following new subprob-
lems: (1) learning (remembering) tasks the agent has
computed in the past (we use the principles of case-based

action oulpul

Behavior generation g%z‘b\
Decision supporl?/‘géé w
\
Evaluators (y / ﬁb
Monitors ?‘ ({ '¥ '¥ '%/ -
T

perceptual input
a C

preferences|
je————

|
1 S9UBIBRId

\¢éé

preferencels
e

Fig. 1. Architecture—network of concepts (a); Concept node
(b); Monitor (c)

learning and reasoning — see [2], [1] — to remember
task cases), (2) monitoring and evaluation of task pa-
rameters (duration, progress, count, etc.), (3) evaluating
tasks according to different criteria (duration, error, etc.).

Optimization of the partner choice: An intelligent
agent should be able to distinguish good partners from
unsuitable ones. The resulting subproblems follow:
(1) recognizing a suitable (admissible) partner for a par-
ticular task, (2) increasing the quality of an evaluation
with growing experience.

So, the architecture must support reasoning, descrip-
tions of agents and tasks (we use ontologies in descrip-
tions logics - see, e.g., [3]), monitoring and evaluation
of various parameters, and learning.

3 Network of concepts

The architecture is organized into layers. Its logic is
similar to the vertically-layered architecture with one-
pass control (see [9, p. 36]). The lowest layer takes per-
ceptual inputs from the environment, while the topmost
layer is responsible for the execution of actions.

The architecture consists of four layers (see Figure 1):
the monitors layer, the evaluators modeling layer, the
layer for decision support, and the behavior generation
layer. All layers are influenced by global preferences.

Global preferences allow us to model different flavors
of an agent’s behavior, namely, we can set an agent’s
pro-activity regime, its cooperation regime and its ap-
proach to reconsideration. The monitorslayer interfaces
directly with the environment. It works in a purely reac-
tive way. It consists of rules of the form condition —
action. Evaluators modeling layer is used to model
more aggregate concepts on top of already defined con-
cepts (either monitors or other evaluators). Decision
support layer enables an agent to solve concrete prob-
lems. Behavior generation layer generates appropriate
actions that the agent should perform, and thus controls

| Monitors

|| Tasks monjfors
h
h

Idle
Time
T |

Tasks
Count

Tasks
Duration

Computation
Progress %

Computation
Time

Rejected
Requests #

Fig. 2. Modeling state of an agent

the agent’s behavior. The mechanisms for action gener-
ation and selection are provided by the BDI model (see
[9, pages 55-61]).

The basic element of our architecture is a concept
node. We can imagine a concept node as a class in
some common object-oriented programming language,
which defines explicitly its dependences on other con-
cept nodes. The concept node is dependent on some
other concept node if it needs some services provided
by this other concept node in order to provide its own
services. Each part of the architecture is defined as a
concept node.

The network of concept nodes is a directed acyclic
graph of concept nodes — see Figure 1 (a). Edges ex-
press dependences between concept nodes. This graph
respects described layers. Figure 1 (b) shows a detailed
view of a common concept node and Figure 1 (c) depicts
a detailed view of a monitor. Each monitor can define
several filters which represent rules as described above.

Explicitly defined dependences allow each agent to
use only those those concept nodes that it really needs.

4 Moddingin the network of concepts

Evaluators are used to describe an agent’s state, and
to estimate services’ quality of partner agents. They
usually perform aggregations of several simpler concept
nodes, typically the monitors. Typically, evaluators have
the form of a non-linear real function that may differ in
individual evaluators.

In order to describe an agent’s state, we have defined
four evaluators — Load, Tiredness, Stress, and Compu-
tation state (see Figure 2). For example, the Load evalu-
ator depends on the count of currently running tasks and
on their demandingness (complexity, etc.). We approxi-
mate the complexity of tasks by the average duration of
past tasks. The load grows proportionally with the count
of tasks and the average duration of tasks. The other
evaluators can be described in a similar way.

The decision support concept nodes are used to rep-
resent particular decision problems and provide sugges-
tions of how to solve these problems.

Fig. 3. Support for cooperation

Figure 3 depicts concept nodes that solve decision
problems common in the area of agents cooperation. The
Agents ontology tools concept node encapsulates reason-
ing services about agents’ capabilities. The Cooperation
willingness (CW) concept node suggests whether to co-
operate with a particular agent or not. The Task solving
decision concept node suggests whether to solve a par-
ticular task for a particular agent. For details about other
areas of decision support see [7].

In the behavior generation layer, we use the BDI
model (see [9]) to generate and choose the appropriate
actions. The purpose of computational agents is to solve
assigned tasks in an effective way. We distinguish two
different situations:

1. If an agent does not use services of other agents in

order to solve its task, it can perform the following basic
actions: (a) Accept/ postpone / reject a new task, (b) Fin-
ish / interrupt a started task, (c) Evaluate task (if there
are some tasks in the tasks repository with incomplete
information), d) Find and solve new tasks.
2. If an agent uses services of other computational agents
in order to solve its own task, it acts as a simple task man-
ager (an agent that assigns tasks to other agents), and it
can further perform the following actions: (a) Search for
suitable partners, (b) Test and evaluate possible part-
ners, (c) Distribute / redistribute task to partners.

We base our implementation of the BDI model on the
algorithm described in [9, pages 55-61]. According o it,
we have to specify the implementation of a belief revi-
sion function (brf), an options generation function (op-
tions), a filter function, and an execute function. The
monitors layer and the evaluators modeling layer repre-
sent the agent’s knowledge about its environment, and
thus stand for its beliefs. Beliefs are updated automati-
cally by filters of monitors, which can be seen as the brf
function.

Fig. 4. BDI architecture within the network of concepts

Figure 4 shows concept nodes implementing the BDI
architecture. The BDI model encapsulates the basic logic
of the algorithm. We have further defined several con-
cept nodes that are responsible for option generation.
Each such a concept node implements its own options
function and its own filter function which is responsible
for filtering desires and intentions. The action function is
implemented in the BDI model as defined by the pseudo-
code in the algorithm 1. B denotes the set of beliefs,
I the set of intentions, D the set of desires, D, the set
of desires generated by the x-th option generation node,
ONodes a vector of all agent’s option generation nodes.

Algorithm 1 Action function of the BDI agent.
1 weight gz =0
2. for i = 1to ONodes.length do
3 (D,,weight;) = ONodesli].options(B,I)

4. if weight; > weight,q, then
5: weightmqa: = weight;

6: D =D,

7: nodemq,; = ONodesli]

8 endif

9: end for

10: return nodemqz - filter(B, D, I)

5 Experiments

We have adapted two existing computational agents
embedding the multi-layer perceptron (MLP) and the ra-
dial basis function (RBF) neural network. These agents
represent two different computational methods for the
solution of similar categories of tasks.

Overheads of the architecture are summarized in Ta-
ble 1. The creation of the agent takes 2-3 times longer
since all the structures must be initialized. The com-
munication overhead is around 30% when dealing with
message delivering. However, in real-life scenario of
task solving, the overhead is only about 10%.

Without thearch. | With the arch. |
Agent creation time 3604 us 9890 us
Message delivery time 2056 pus 2672 us
Total computation time 8994681 us 9820032 us

Table 1. Comparison of the agent with and without the au-
tonomous support architecture

| Error | Duration
Random choice | 11.70 208710ms
Best speed 1.35 | 123259ms
Best Accuracy 1.08 274482ms
Best services 1.17 102247ms

Table 2. Optimization of the partner choice. Comparison of
choices made by different criteria

Table 2 summarizes the measured results of optimiza-
tion of the partner choice. We simulated a usual sce-
nario when an agent needs to assign some tasks to one
of admissible partners. This agent uses a collection of
different tasks and assigns them to the computational
agents successively. The total duration of the computa-
tion and the average error of computed tasks were mea-
sured. A significant improvement of the efficiency can
be seen.

Experiments with optimization by reusing results are
summarized in Table 3. We have constructed several col-
lections of tasks with different ratios of repeated tasks
(quite a usual situation when, e.g., evaluating the pop-
ulation in genetic algorithms). We compared the to-
tal computation-times of the whole collection with and
without the optimization enabled. We can see that the
optimization is advantageous when the ratio of repeated
tasks is higher than 20%. When more than 40% are re-
peated the results are significant.

| Repeated tasks | Standard | Optimized
0% 135777097 121712748
20% 94151838 90964553
40% 50704363 91406591
60% 47682940 90804052

Table 3. Optimization by reusing the results of previously-
computed tasks (duration in milliseconds).

6 Conclusions

In this paper, we have described a general architecture
that allows a simple design of adaptive software agents.
It supports both agents’ decision making and the gen-
eration of autonomous behavior. The architecture in-
corporates learning capabilities and support for reason-
ing based on ontologies which allows reasoning about
agents’ capabilities and activities and optimization of the
performance.

The experiments have demonstrated that (1) it allows
faster and more precise execution of tasks; (2) it sup-
ports a better cooperation of agents; (3) the performance
drawbacks are not high.

The realized architecture provides several challenges
for future work. The exchange and sharing of task cases
can be a useful extension of the current implementation.
We plan to perform more exhaustive experiments with
groups / ensembles of cooperative computational agents.
Finally, we plan to experiment with algorithms (e.g., by
genetic algorithms) for automatic learning (generation)
of global and local preferences of the architecture suit-
able for a particular situation (task).

References

[1] Agnar Aamodt and Enric Plaza. Case-based rea-
soning : Foundational issues, methodological vari-
ations, and system approaches. AlICom — Atrtificial
Intelligence Communications, 7(1):39-59, 1994.

[2] David W. Aha and Dietrich Wettschereck. Case-
based learning: Beyond classification of feature vec-
tors. 1997.

[3] Franz Baader, Diego Calvanese, Deborah McGuin-
ness, Daniele Nardi, and Peter Patel-Schneider, edi-
tors. The Description Logic Handbook. Cambridge
University Press, 2003.

[4] Bang3 web page. http://www.cs.cas.cz/bang3/.

[5] Roman Neruda, Pavel Krusina, and Zuzana Petrova.
Towards soft computing agents. Neural Network
World, 10(5):859-868, 2000.

[6] H.S. Nwana. Software agents: An overview. Knowl-
edge Engineering Review, 11(2):205-204, 1995.

[7] Roman Vaculin. Artificial intelligence models in
adaptive agents. Master’s thesis, Faculty of Math-
ematics and Physics, Charles University, Prague,
2003.

[8] Roman Vaculin and Roman Neruda. Concept nodes
architecture within the Bang3 system. Technical
report, Institute of Computer Science, Academy of
Science of the Czech Republic, 2004.

[9] Gerhard Weiss, editor. Multiagents Systems. The
MIT Press, 1999.

