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Abstract
We introduce a computational model of a so{called globular universe

which represents generalization of both classical cellular automata and
contemporary models of self{assembly. Similarly as the latter mentioned
model our model utilizes a multiset of globules which are endowed by self{
organizing ability controlled by a �nite state mechanism; these computa-
tional units are not �xed in a predetermined structure. The environment
abounds in these units which are available at places where needed for a
self{assembly of various objects. Within a globular universe we de�ne the
notion of self{reproducing evolutionary automaton. This notion refers to
an automaton being at the beginning of a lineage of self{reproducing au-
tomata which leads to self{reproducing automata with arbitrary complex
�nite state control mechanisms via a series of mutations of intermediate
automata. The ideas presented in this paper complement von Neumann's
results on self{reproducing automata in a static universe by o�ering a pre-
cise de�nition of what is meant by \evolutionary self{reproduction" and
by designing a dynamic nondeterministic universe with a self{reproducing
self{assembling evolutionary automaton.

1 Introduction

It seems that all experience of mankind points to the fact that machines can
produce only simpler machines than the original ones. The only exception have
been living beings if considered as machines: not only can an organism produce
an almost genuine copy of itself but, as Darwin has shown, in a long run, in an
evolutionary process these \machines" keep improving. It was von Neumann
who in late 1940 started a systematic quest for a logical, rather than material,
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basis of biological self{reproduction. He �rst proposed a mechanistic model. It
consisted of a \robot" operating in a sea of its own spare parts. The robot had
some elementary functions for moving around, identifying and collecting the
required parts and assembling them together and possessed a tape with instruc-
tions for building a copy of itself by making use of these elementary functions.
After constructing a replica of itself, the robot �nally copied its instruction tape
and inserted it into the replicated robot which could then start the same activ-
ities. By this design, it is generally agreed that von Neumann discovered basic
principles for the process of biological self{reproduction. Namely, there had to
be a program, instruction sequence to be used in two di�erent ways: (1) to be
interpreted as instructions for constructing an o�spring, and (2) to be copied
passively, without being interpreted. Quite understandingly, von Neumann was
not able to construct a working model of his mechanistic self{reproducing au-
tomaton which would represent a convincing proof of soundness of his design
idea. However, in 1953, following Stanislaw Ulam's vision of cellular automata,
he invented a cellular automaton implementation of his mechanistic model. His
cellular \robot" made use of a cellular automaton with 29 states per cell, con-
sisted of approximatively 200 000 cells and its description took more than 200
pages [6]. Thus the topic of self{reproduction entered the �eld of the automata
theory and since then cellular automata have been used in numerous applications
and variations. Interestingly, in the contemporary automata theory within the
computer science, only a limited attention has been paid to the self{reproducing
issue. Nevertheless, this issue has migrated into the �eld of arti�cial life where
it continues to be a subject of a vivid development. In this context, especially
two questions are of interest. First, what exactly was the problem to which von
Neumann gave his answer? And second, how good this answer was?

As far as the �rst question is concerned, von Neumann did not formulate the
problem of self{reproduction for cellular automata in such a way that it would
show that his solution is a satisfactory and complete answer to that problem.
This is because constructing an automaton, which is merely able to produce its
own copy, is interesting especially in a real world but less in the general frame-
work of cellular automata. Namely, as pointed out by several researchers (cf.
[3] for an extensive discussion of this problem), each cell of a cellular automaton
can \reproduce itself" by properly initializing a cell in its immediate neighbor-
hood. This cell can even posses universal computational properties, i.e., it can
act as a motile processor of a single{tape universal Turing automaton working
over a linear array of cells holding the input data. Thus, universality alone is
not a good enough reason for devising a self{reproducing cellular automaton
of an immense complexity as von Neumann did. Perhaps, von Neumann was
aware of this since in his Theory of Self{Reproducing Automata ([6], p. 92) he
asked: \Can the construction of automata by automata progress from simpler
types to increasingly complicated types? Also, assuming some suitable de�ni-
tion of \e�ciency", can this evolution go from less e�cient to more e�cient
automata?" Nowadays it appears that the �nal aim of von Neumann's design
was not the universality but the \self{improvement" issue of a self{reproducing
automaton which, however, was not settled at all by von Neumann. As far as
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the second question is concerned, in the past there were several trials to re�ne
the von Neumann design of a self{reproducing automaton (cf. [3]). Neverthe-
less, in the absence of a precise task de�nition it has been di�cult to compare
the alternative solutions w.r.t. the given task and to judge in what sense the
alternative solutions were better. In these e�orts an evolution has still not
been the main issue and that is why several authors, inclusively e.g. Herman
[1] and recently also McMullin [3] called for a mathematical de�nition of the
\evolutionary growth of complexity" (as it is called in [3]) of self{reproducing
automata.

In this paper we formulate a new mathematical model of self{assemblage
which is a generalization of both classical cellular automata and contemporary
models of self{assemblage. This model allows to introduce nondeterminism into
the self{assemblage process. Within this model we give a mathematical def-
inition of a self{reproducing evolutionary automaton which captures essential
aimes of von Neumann's design: the requirement of self{reproduction and the
possibility of evolutionary changes leading \from simpler types to increasingly
complicated types", as von Neumann put it. In our de�nition, the notion of
\e�ciency" of an automaton is measured by the minimal number of states of
an equivalent �nite control mechanism. Finally we describe nondeterministic
globular universe and a self{reproducing self{assembling evolutionary automa-
ton existing within this universe. This automaton is conceptually much simpler
than von Neumann's proposal and includes a \built{in" nondeterministic evo-
lutionary mechanism which leads directly to the in�nite evolutionary lineages
of automata with increasingly complex �nite state control.

The structure of the paper is as follows: in Section 2 the globular universe
is de�ned. Section 3 shows the computational equivalency of the model with
cellular automata and Turing machines. Next Section 4 de�nes the notion of a
self{reproducing evolutionary machine. Finally, Section 5 describes the design
of a nondeterministic globular universe in which a self{reproducing evolutionary
globular automaton exists. Conclusions in Section 6 mention possible avenues
for a further research.

2 Globular universe

The basic particles possessing latent self{assembly properties in which our uni-
verse abounds and from which all our ensembles will be constructed are com-
putational units called globules. As their name suggests globules have a shape
of tiny balls. Each globule can be seen as an \embodied" �nite automaton that
can �nd itself in one of the �nite number of states. These states determine the
self{assembly properties of the globules, i.e., their abilities to bind with other
globules. The globules move freely in an empty 3D space | except of the glob-
ules and their complexes there is nothing else in the space. They are subject
to a random motion, occasionally colliding and possibly binding one with each
other. The behavior of globules on this occasion is determined by their state
at that moment and is described by an interaction function. This function de-
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termines new states of the globules and their behavior after their interaction.
Prior to giving a formal de�nition which abstracts the previously given informal
view of a globular universe we will introduce few preliminaries.

Let S be a geometrical sphere of a unit radius in a 3D Euclidean space. A
contact domain, or simply a contact on the surface of S is de�ned as the interior
of any closed convex curve on its surface; the curve itself is a part of the contact
domain. Each contact domain has a uniquely determined position on the surface
w.r.t. the given coordinate system. We will consider only such contact domains
whose boundaries are computable | i.e. there is a Turing machine algorithm
that will \draw" the domain at the required position on the surface of S. An
example of a contact domain is a single point on a sphere, or a \belt" drawn
around the \equator" of a sphere, a spherical circle drawn at a sphere's pole,
etc. We will consider spheres with a �nite number of contact domains on their
surface; domains can overlap. Each domain is endowed by certain properties
which are characterized by the color of the domain, and by the a�nity of the
domain. We will see that the domains represent the mechanism underlying
the self{assembly properties of globules. We de�ne the respective notions more
formally.

De�nition 2.1 A globular con�guration space is the set C = {D1, . . . , Dk,�,�, π},
where

• D1, . . . , Dk, for k > 0, are contact domains, or contacts de�ned on the
surface of a unit geometrical sphere;

• � is the �nite alphabet of contact domain colors;

• � = {neutral , join} is the set of a�nities 1;

• π : {D1, . . . , Dk} → 2�×� is a function that for each contact domain
de�nes the admissible set of contact properties.

Any element of (� × �)k = 
 is called a con�guration (or a state, respec-
tively) of a globule from space C.

The state of a globule g can change when g interacts with another globule
h. We say that g interacts with h if and only if both globules come into a
contact, or if they are already in a contact | one with the other and one of the
two changes its state. If more than two globules interact simultaneously this
parallel multiple interaction is broken into a randomly ordered sequential series
of pairwise interactions. The con�guration changes, during an interaction, are
governed by a so{called interaction function � : 
2 → 
2. Let cg, ch ∈ 
 be the
states of g and h at the time of their interaction. Then �(cg, ch) = (c′g, c

′
h) is to

be read as \after the interaction of g with h, the state of g changes from cg to
c′g whereas the state of h changes from ch to c′h".

1We can also consider a richer set of a�nities, e.g. of form � = {neutral , attract , join, repel}
or a�nities of a variable strength, given by an integer number; then the priorities among the
a�nities must be stated similarly as in the case of a self{assembly model introduced in [4].
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At the interaction times the behavior of the globules is governed by the
domain colors and the a�nities. Consider two contact domains Di and Dj with
π(Di), π(Dj) ⊆ � × � and two globules g, h ∈ C. Let (σg, γg) ∈ π(Di) and
(σh, γh) ∈ π(Dj) be the contact properties of the respective globules at these
contacts immediately after the interaction, i.e., after the application of �. When
both colors and a�nities match, i.e., σg = σh and γh = γh = γ then the globules
will behave as follows:

• if γ = neutral , then g and h are neither attracted to nor repelled from each
other via contacts Di and Dj ; that is, both globules will not be joined via
the respective contacts;

• if γ = join, then g and h will join one with each other via a bond established
between the contacts Di and Dj .

In all other cases the globules will behave as if both had a neutral a�nity.
A bond between two globules can only be established when the globules have

not been already bonded to other globules in a position which prevents both
globules to enter a position allowing touching the contact domains needed for
a new bond. If a new bond can be established then both globules stabilize in
a relative position satisfying the needs of all existing bonds. If there are more
possibilities for such a positioning, one of them is chosen randomly.

Note that if contact domains are not point domains (i.e., if they have a pos-
itive area), then they can make a \movable" bond between any points within
their contact areas. This gives some freedom to globules which can for instance
self{assemble into an elastic structure with a variable curvature. For instance,
globules with an attracting contact domain in form of a belt around their equa-
tors can self{organize into a ball{shaped structure of a certain minimal and
maximal radius.

Summarizing formally our previous notions, we arrive at the following de�-
nition of a globular universe:

De�nition 2.2 A globular universe U = (C,�) is a multiset of globules and
their ensembles with globules from the globular con�guration space C interacting
via the interaction function �.

Note that for some arguments � need not be de�ned. That is, in fact �
determines what kind of globules may interact in U and whether and how the
properties of globules will change on this occasion. For instance, it need not
be the case that the state of a globule can be changed into any other state or
that an originally neutral globule will ever bind to some other globule via some
sequence of interactions.

Next we will aim towards a de�nition of an evolution within a globular
universe. The idea is to see the evolution as a series of \snapshots" taken
at interaction times and documenting in this way the interactions of objects
within the universe. In the sequel we will consider only globular universes with
a �nite number of �nite globular objects, with a potentially in�nite supply of
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globules. The objects can consist of globules from the entire con�guration space.
However, the con�guration space of the supplied globules may be restricted.
Such globules will be said to arrive from the environment while the objects
under consideration will be said to �nd themselves in an observable part of the
universe. Once arriving from the environment and interacting with an object
within the observable universe a globule will become a part of this universe
unless stated otherwise. The globules arriving from the environment into the
observable universe will also be seen as an input into the observable universe.

A universe con�guration re
ects the static aspects of a situation in the ob-
servable universe at an interaction time. These aspects include the description
of all objects within the universe and their spatial relations. The dynamic as-
pects, i.e., the movements of objects leading to their collisions and state changes
of globules are captured through the interactions among the objects.

A globule represents a basic object. All other globular objects will essen-
tially be self{assembled objects formed by multisets of globules. In general, a
description of an object O is given by an adjacency graph where its nodes corre-
spond to the globules and its edges to the bonds among the globules. Of course,
the mapping between the nodes and the globules and that between the edges
and the bonds must be included in this de�nition. However, in many cases
we will deal with objects having a regular structure leading to their simpler
representation. In such a case an object O will be de�ned by

• its size, i.e., No. of elements in the underlying multiset from which it is
composed;

• the subset S ⊆ 
 of admissible states of globules potentially creating that
multiset;

• its spatial organization which is described as a computable invariant (pred-
icate) that holds for all globules in O and captures their adjacency relations
with their neighbors, i.e. it captures in fact bonds among the respective
globules (see examples of globular objects in the sequel).

The spatial relations among the globular objects are described with the help
of predicates which hold for all globules within the objects. Such a predicate
could be e.g. a binary predicate TOUCHES(A,B) with the meaning \object
A touches object B". Other predicates could be e.g. OUTSIDE, INSIDE,
NEXT TO and the like. In fact, all our predicates that will be used in the
sequel will be computable in a polynomial time w.r.t. the size of the objects
involved.

Let E ⊆ U be the multiset of globules in the environment, Ot be the set
of all objects in the observable part of U at an interaction time t, and let Rt

be the set of spatial relations holding among the objects in Ot at that time.
The (observable) universe con�guration Ct = {Ot, Rt} at time t is described by
the description of all globular objects in the universe and relations among them
at time t. Let INTERACTt be the set of all interactions to be realized over
objects at time t. This set is given by the list of pairs of interacting globules
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at that time. To each globule its state and membership in E or to an object in
Ot must be stated. Thus, an interaction can occur either between two globules
from the environment or between a globule from the environment and another
one from an object, or between two globules within the same object or within
di�erent objects. The evolution starts at time t = 0 in a certain initial universe
con�guration C0. The set of interactions INTERACT0 is then applied to the
objects in O0 to get C1. In this way the evolution proceeds by applying inter-
actions to objects within con�gurations at interaction times ti, for i = 1, 2, . . .
Note that due to the fact that dynamic information about globular objects is
not captured in a con�guration and the states of globules arriving from E are
in general unknown beforehand, the interactions among the objects cannot be
computed (e.g. by using Newton laws) and thus the entire evolution cannot be
determined from knowing the initial con�guration only (as it is the case with
a classical cellular automaton). Under such a scenario an evolution is seen as
an on{line interaction between the objects and elements from E (if any) repre-
senting the input into the observable part at that time. As a result, applying
INTERACTt onto objects in Ct we get Ct+1. Also note that by transiting from
Ct to Ct+1 not only objects but also their spatial relations may change.

Next we will describe basic globular objects which we will need in the sequel.
A globule in a given state presents the simplest object. Interactions among

globules lead to emergence of more complex objects. For instance, after a colli-
sion of two globules, g and h, respectively, a pair g.h can emerge if the interaction
function is such that it results in joining g to h.

A simple globular object with a regular rigid structure is a grid. It is a two{
dimensional rectangular array with globules in identical initial states residing in
the array's cells. Each globule has 4 neighbors (in the north, south, east, and
west direction) to which it is bonded once for all times and with which it can
interact and change their state.

A useful globular object is a strand. It is a linear string of globules concate-
nated via bonds. For each non{empty strand its �rst globule is de�ned and for
each globule in a non{empty strand, except the last one, its successor is de�ned.
The important operation over strands is an operation of extending a strand by
a globule; this globule is added behind the last globule of the strand. Another
operation is a copy operation; this operation will be described in Section 4. A
strand with both ends joined together is called a ring.

So far we considered in essence a deterministic globular universe: thanks to
the deterministic de�nition of the interaction function, from a given con�gura-
tion and the set of interactions to be performed over the objects described by
that con�guration at that moment, the next con�guration is computable in a
unique way (the notable exception could be \random serialization" of multiple
collisions). It is obvious that similarly as in the case of classical cellular au-
tomata probabilism could also be introduced into the model (e.g. in order to
model \mutations"), and also non{determinism. As we will see later, the latter
option is particularly convenient because it allows considering situations, which
are in principle possible without bothering much about their probabilities. In
this case, instead of an interaction function, we will consider a nondeterministic
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interaction relation giving a �nite number of possible outcomes for each inter-
acting pair of globules. In our considerations we will then always say explicitly
which \branch" of a nondeterministic development is to be used. In analogy
with the standard nondeterminism known from the automata theory, we will
consider that branch which will lead \where we need", i.e., in the case of self{
reproducing automata to the self{reproduction of the automaton at hand, in
the case of evolving automata their evolution, etc.

Similarly, we will also consider nondeterministic universes in the following
sense: if the spatial constellation of existing objects leaves an access path free
for a globule to come from the environment, a globule in a required state will
\come 
ying" from the environment if available in E . That is, from among all
globules, which can in principle arrive, the one \we need" will arrive, indeed.
This is a similar condition as considered, e.g., in the tile assembly model where
tiles are available when and where needed. A nondeterministic universe will
be a universe with a nondeterministic interaction relation and nondeterministic
arrival of globules. Considering such universes enables concentrating on self{
assembly aspects of interactions.

Within any globular universe, by interaction of globules various complexes
of self{assembled globules can arise. We will be particularly interested in self{
replicating assemblies arising from certain initial universe con�gurations in cer-
tain universes. Prior to submerging into the related problems we will brie
y
study the power of our model.

3 Globular Universe, Cellular Automata and Self{

assemblage

First of all, we show how one{dimensional cellular automata can be simulated
within a globular universe. For such a purpose we use the grid structure de-
scribed in the previous section. The respective globules will have four bonding
contacts spread equidistantly along their equators and each globule will simulate
one cell of our cellular automaton. It is obvious that starting from the \seed"
globules containing the input to the cellular automaton, any cellular automaton
can be simulated by such a grid.

The question of the reverse simulation of a globular universe on a cellular
automaton is a little more complicated. W.l.o.g. we can consider a Turing
machine in place of a cellular automaton. For a Turing machine it is possible to
keep on its tapes the representation of observable universe con�gurations and
to realize the respective operations needed for updating these con�gurations.
To do this in the �nite control of a Turing machine at hand the complete table
describing the interaction function of the simulated cellular automaton must be
stored. The list of interactions to be performed over the objects represented
on the machine's tapes will appear at the machine's input after processing the
previous list of such operations. In this way the simulation can proceed as
needed.
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As far as simulations of models of self{assembly are concerned, the situa-
tion is as follows. There seems to be no \referential" model of self{assemblage.
Therefore we will concentrate onto the elementary model, so{called tile assem-
bly model considered, e.g., in [4]. This model consists of tiles which possess
pre{de�ned self{assembly properties. These properties are described with the
help of interaction strength assigned to the sides of rectangular sides; the sides
bind when the total interaction strength exceeds a given parameter. This pa-
rameter corresponds to the a�nity strength in our model (see the footnote in
the previous chapter) and therefore can be simulated by our model when us-
ing globules with four contact points equidistantly placed along the globule's
equator instead of the square{shaped tiles. It is clear that the globular universe
presents generalization of the tile assembly model.

4 Self{reproducing evolving automata

For the de�niteness of our subsequent discussion we will �rst de�ne the notion
of a self{reproducing automaton in a globular nondeterministic universe. In
what follows we will always consider universe U with an observable part P ⊆ U
with the environment E ⊆ U .

De�nition 4.1 A globular object M in P is self{reproducible if and only if
there exists an evolution, starting in a con�guration CM containing M as a
single object which, after carrying a �nite number of interactions among the
globules from M and E gives rise to a con�guration with at least two occurrences
of M in P.

The notion of an o�spring of a self{reproducing automaton is de�ned in an
obvious way:

De�nition 4.2 We say that a self{reproducing object M1 is an ancestor of a
self{reproducing object M2 (or that M2 is an o�spring of M2) if and only if
there is an evolution from a con�guration CM1

containing exactly M1 into a
con�guration CM2

containing M2.

Obviously, thanks to the nondeterminism an o�spring of a self{reproducing
automaton M can be either an exact copy of M or a di�erent automaton (if
di�erent pathes in the evolution have been taken). It may happen that the
di�erent o�spring is still a self{reproducing machine. If this new automaton
is in a sense better than the old automaton we have embarked on a speci�c
\positive" evolution. In order to capture in what sense the new automaton
could be better we turn our attention towards the information processing ability
of the underlying machine. In the sequel we will consider automata controlled
by a �nite state mechanism which is \made up" from globules. We will call
such class of automata globular automata. Obviously, the processing power of
a �nite state mechanism is directly related to the number of its states. In
principle, automata with more states are able to distinguish among a greater
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number of di�erent situations and thus are able to generate a richer repertoire
of actions which can lead to a more sophisticated behavior and/or to a di�erent
machine's architecture. Yet in concrete cases it may happen that an automaton
has more states than needed in order to generate a given behavior. Thus, the
number of states alone is not an adequate indicator of an automaton's power.
Therefore the complexity of a globular automaton should be de�ned by the
number of states of a minimal �nite state mechanism controlling an automaton
in an identical way. Fortunately, in the sequel we will not need to know the
minimal automaton producing a given behavior; instead, we will show that in
principle such an automaton can be constructed in the process of evolution.

De�nition 4.3 We say that a self{reproducing globular automaton M is a self{
reproducing evolving automaton (or that M has an evolutionary potential) in
U if and only if for any given �nite state automaton A among the o�springs
of M in U there is a self{reproducing evolutionary globular automaton with a
control mechanism realizing A.

Obviously, a similar de�nition of a self{reproducing evolving automaton can
be given also for the case of classical cellular automata; however, a realization
of such an automaton need not be as simple as is the realization of such an
automaton in a nondeterministic globular universe.

5 Constructing a self{assembly evolutionary self{

reproducing globular automaton

The existence of a self{reproducing globular automaton within a given universe
depends much on the properties of the globules in U . For instance, in a universe
with single{state globules, no self{reproducing automata can exist. Similarly,
in universes with only neutral globules (i.e., no self{assembly is possible) no
complex objects can be built and therefore only single{globule self{replication
objects can exist in it, with no evolutionary potential.

The case where self{assembly works and the environment supplies globules
\as we like it" is more interesting.

Theorem 5.1 There exists a nondeterministic globular universe with a self{
reproducing evolving globular automaton.

A sketch of the proof: Let U = (C,�) be a nondeterministic globular universe.
We will de�ne explicitly neither its con�guration space nor the respective inter-
action function; rather this will become clear from the course of the proof. Let
M be the globular automaton we are after. M will behave as follows: it will
react to the sequence of environmental changes which follow a certain regular
pattern described by a regular language R ⊆ 
∗ recognized by M. In such a
case, i.e., if and only if M recognizes a word w ∈ R, M will either self{reproduce
or generate a self{reproducing o�spring with a di�erent behavior, possibly with
more states in its control mechanism than M had.
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Let w = σ1σ2 . . . σk ∈ 
∗ be a word. This word will be \presented" to M
as a series of \waves", the �rst wave consisting of globules from environment
E ⊆ U in state σ1, etc. A \wave" means a situation when all globules arriving
from the environment are in state σi, for i = 1, 2, . . . , k. In this case, we can
imagine that as though has M 
oated in a sea of globules in state σ1, then σ2,
etc. and these globules interact with all globules on M 's surface. We say that
w is an input to M and that M accepts w if and only if M on input w will
generate either an equivalent o�spring or a self{reproducible o�spring with a
modi�ed �nite control mechanism (M must be able to generate either of the
two, not always an equivalent o�spring).

Let A = (Q,�, δ, q0, F ) be a nondeterministic �nite state automaton recog-
nizing R. First we show how the transition function of this automaton will be
represented in M. For simplicity of explanation, assume �rst that the cardinal-
ity of both � and Q is substantially less than the cardinality of C. Under such
assumption there is a 1 to 1 correspondence between Q and a subset of C and
between � and a subset of C and there are su�ciently many globules which can
be used for other purposes rather than for representing sets Q and �. Now we
can represent each element of these sets by a corresponding globule from C. In
the sequel we will not distinguish between the elements of these sets and their
globular representation. That is, we in fact assume that �, Q ⊂ C. Moreover,
instead of saying \a globule in state q" we will often say \a globule q".

Especially note that there is a distinguished globule in state q0 ∈ C. Then
δ : Q×�→ 2Q can be represented as a �nite sequence of the segments of globules
of form $p$σ$q with p, q ∈ Q and σ ∈ �. Each segment represents a transition
of A of form δ(p, σ) = q. Of course, for such a representation we need a further
globule representing the separator $. Obviously, since δ is a nondeterministic
relation in its representation as stated before, there can be transitions with the
same left{hand side. Assuming that the respective globules have strong bonds
on their poles the entire δ can be represented as a linear strand of globules with
the given syntax. W.l.o.g. we can join the ends of this strand to form a ring.
To simplify the explanation we will call the �rst occurrence of Q in the segment
$Q$�$Q$ as the \current state" whereas the second occurrence as the \new
state". For technical reasons we will add to our representation of δ a transition
of form δ(q0, b) = q0, with b 6∈ � and b 6∈ E (i.e., a globule in state b will never
appear at the input to M).

In order to enable a smooth working of M we will further assume that the
basic structure of M is created by a double{ring: in parallel, and bonded to
the just described ring there exists a second auxiliary ring. This ring consists
of segments of form $a$b$a$, with a 6∈ Q, b 6∈ �. The $ symbols match in both
rings and thus the globules in state a match the states from Q and the globules
in state b match elements from � in the segment representation of δ in the
original ring. This second ring is bonded to the �rst ring via bonds between the
corresponding globules. The original ring will be called the �rst track whereas
the auxiliary ring the second track.

Next M has to remember the current state q ∈ Q of A. To represent the
current state of A we will mark the right{hand side of the transition rule whose
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application has caused A to enter state q. The marking will be realized in the
second track (under the new state in the respective segment in the �rst track)
by changing the state of the corresponding globule to state s 6∈ Q.

Now we need to de�ne the input mechanism to our globular representation
of A. In accordance with the assumption that the globules will appear at places
when we need and where we need we will simply assume that the input globules
in state σi ∈ � will interact with all globules in the ring but only globules b in
track two will react to the input and change their states to σi.

Now we are in a position to describe one move of a globular automaton.
The situation before the move is as follows: under each globule from � in the

�rst track there is a globule x = σi ∈ � corresponding in the second track to the
symbol read by A at that time, under each globule, representing a state from
Q in each segment, there is an auxiliary globule in state a. The only exception
is in exactly one segment where under the second occurrence of a state from Q
there is globule s marking the current state of A. Initially, s is placed under the
second occurrence of q0 in the \arti�cially added" transition δ(q0, b) = q0.

Next we must �rst distribute the information on the current state of A into
all segments. To this end s will interact with q and change its state to q. Then it
will interact with its left neighbor in order to propagate q to the next segment
until the whole ring gets circumvented. After this action under the �rst two
symbols in each segment there is a pair (q, x) denoting the current state and
symbol read by A. Then again the whole ring is circumvented by a signal to
see if there is a match between the pair (q, x) and the globules above it. All
matches get marked by setting the states of globules under the new state in the
auxiliary ring to a distinguished state m 6∈ Q.

If there is no match discovered, i.e., in the case that the computation of A
has stuck in a con�guration from which there is no continuation, the initial state
q0 is entered and the recognition of a new sequence of inputs will begin.

If there is a match, then we have identi�ed the set of transitions that can
be potentially applied in this con�guration of A. To apply a transition we non-
deterministically select one from among all marked transitions and mark it by
setting the state under the new state globule to state s. Then we \reset" all
globules in the second track, except the one in state s, to their initial values a
or b, respectively. Resetting is done by sending a signal around the ring and
changing the states of globules m to a and those of globules x to b. In the next
move, we assume that the globules from the previous input wave (i.e., globules
\read" by the globular automaton) have left the observable universe. If the state
marked by s is not a �nal state from set F the globular automaton is ready for
the next move.

Otherwise, M enters the initial state of A, stops recognition and starts the
self{replication. The replication proceeds as follows. It starts in the segment
with the initial state. Therefrom a special signal is sent moving around the
double{ring and doubling its structure. The new ring is built from the incoming
globules by transcribing the states of the globules from the original ring into
the new ring. The new ring touches the old one only at the currently copied
segment. Of course, the newly copied parts do not remain attached to the old
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ring | the respective bonds get cancelled. The new ring \grows" by inserting
further segments to it. The whole process looks as though the new ring \rolled"
over the old one and grew on this occasion. If the copying is done faithfully, the
result of this process will be an exact replica that is separated from the old ring.
However, the copying process can also be carried out nondeterministically, with
alternatives introducing changes into the segments of the replicated ring.

In the sequel we will describe the design of a nondeterministic evolutionary
mechanism which will generate an o�spring with a modi�ed transition function
of the underlying �nite state automaton A. These changes will not be completely
arbitrary, e.g. they will preserve the chosen syntax of the transition relation.
The new transition relation can either have the same number of segments, or
more segments than the original relation.

The case with a transition relation having the same number of segments is
easy | it is enough to introduce nondeterministic alternatives into the process of
transcribing the elements of δ from the original to its copy. The copying process
can be even designed so as to nondeterministically decide to skip copying of
certain segments. To remain consistent with the idea of two rings rolling one
on each other, the simplest way to achieve the desired e�ect of skipping one
segment is to copy a junk segment (i.e. one which could never be interpreted
due to its parameters) into the place of the skipped segment. Note that such a
process can lead to a \backward" evolution, in a sense that an o�-spring can be
generated with a transition relation which might have been already generated
in a previous generation.

The case when the new transition relation will have more segments then the
original one is realized by letting the copying mechanism nondeterministically
decide to copy certain segments twice. This is done as follows: after copying a
given segment, the copying site (a signal, in fact) can change its direction and
instead of proceeding further and carrying out the copying process it will back-
track one segment without carrying the copying process, but freing the already
copied segment and binding the previous one in the original back to its coun-
terpart in the copy. As a result, the copied ring roles backwards on the original
ring by one segment. Then again the direction of the copying signal is reversed
and the copying process can be resumed. Note that by backtracking both in the
original and in the copied segment, the newly copied segment (and indeed, all
subsequent segments) will be copied before the already copied segment, but this
makes no harm since our representation of the transition relation is insensitive
to the order of segments in it. On the occasion of its second copying the copied
segment can be modi�ed. It is clear that the new individuum can recognize a
di�erent regular language and can, but need not be able to self{replicate.

Now it should be clear that over a �xed set Q and � the evolutionary mech-
anism just described can generate arbitrary transition functions for A. That is,
we still cannot \enumerate" all �nite state control mechanisms (over all sets of
states and all alphabets). In order to do so we must relax our assumption on the
size of cardinalities of Q, � and C. However, if the cardinalities of both � and
Q are larger than the cardinality of C we cannot map elements of Q and � to
elements of C as before. Then we must encode elements of � and Q in a unary
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notation into strings of identical globules from C. This will complicate the de-
sign of the self{replicating automaton but the above mentioned ideas will work
also in this case. Especially, the evolutionary mechanism will now be free to
generate \new" states and \new" symbols for A and this will enable evolutions
leading to arbitrary complex transition relations. In this case M will become
a real self{replicating evolutionary globular automaton according to De�nition
4.3. This ends the sketch of the proof of theorem 5.1.

After presenting the construction of the previous self{reproducing evolution-
ary automaton two remarks are in order.

The �rst remark concerns the properties of universes in which self{reproducing
evolutionary globular automata cannot exist. Namely, it is clear that our con-
struction cannot be realized in case the cardinality of C is too small to al-
low encodings needed for a globular automaton to work as envisaged. Thus it
seems that there is a lower bound on the cardinality of globular con�guration
space below which no self{reproducing evolutionary automata can exist even if
a self{assembly within the respective universe is possible. Moreover, even if a
con�guration space of a given universe is su�ciently large, there still need not
exist transitions among the states of globules which would allow constructing a
self{reproducing evolutionary automaton.

The second remark concerns further properties of self{reproducing evolu-
tionary automata which we did not pay attention to in our design. It appears
that our self-replicating automaton can easily be made individuated in the fol-
lowing sense: arbitrary o�springs of a self{reproducing evolutionary automaton
will maintain their separate identities also in a direct contact. This can be
achieved by designing the universe and constructing M in such a way that the
globules from which the globular automata are made bind only with the glob-
ules from the environment. This condition for automata to be individuated has
been suggested by McMullin in [2].

6 Conclusion

In the paper we presented three main achievements. The �rst one was the de-
sign of a globular universe which enabled a study of self{assembly in a more
general setting than the previous models did. This has been mainly due to
getting rid of the rigid structure of cellular space (as in the case of classical
cellular automata) or of the necessity to deal with explicit dynamic aspects of
particle motion (as in the case of lattice gas automata). The introduction of
nondeterminism both into the self{assembly process and into the dynamic input
appearance in the observable part of the globular universe enabled concentra-
tion to principal existential questions related to the self{assembly of globular
objects. A view of a basically continuous evolutionary process as that of a �-
nite series of con�gurations taken at interaction times and related via sets of
on{line interactions enabled a formal treatment of evolution much in the spirit
of the computational theory. An application of ideas from the computational
complexity theory has led to the second achievement, viz the formal de�nition
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of a self{reproducing evolutionary automaton. Last but not least, the third
achievement was the design of a speci�c nondeterministic globular universe and
a constructive proof of the existence of a self{reproducing evolutionary automa-
ton within this universe. The automaton itself is substantially simpler than
the automata designed by other authors. Moreover, our automaton includes
a nondeterministic evolutionary mechanism which guarantees the existence of
evolutionary paths towards more complex automata thus answering positively
von Neumann's question from the introduction in a constructive way.

We believe that the framework of a globular universe, or a similar one, will
enable a further, more detailed study of questions related to self{reproduction,
evolution and to the self{emergence of self{reproducing evolutionary machines.
As far as the latter machines are concerned, machines with \more complicated"
evolving bodies would be of interest. A possible avenue would be to consider the
ideas from theoretical biology related to arti�cial life synthesis (cf.[5]). Here cell-
like systems controlled by a genom and embedded in a membrane are considered.
The �rst ideas along these lines in the spirit of our modelling have been sketched
in [7]; in fact, the current paper emerged as a result of an e�ort to bring more
formalism into the respective research.

References

[1] Herman, G. T.: On universal computer constructor. Information Process-
ing Letters, Vol 2, pp. 61{64, 1973

[2] McMullin, B.: Some remarks on autocatalysis and autopoiesis. Annals of
the New York Academy of Sciences, Vol. 901, pp. 163{174, 2000

[3] McMullin, B.: John von Neumann and the Evolutionary Growth of Com-
plexity: Looking Backwards, Looking Forwards... Arti�cial Life, Vol 6.
Issue 4, Fall 2000, pp. 347-361

[4] Rothemund, P., Winfree, E.: The program-size complexity of self-
assembled squares (extended abstract). In Proceedings of the thirty-
second annual ACM symposium on Theory of computing, pages 459-468.
ACM Press, 2000.

[5] Szostak, J. W., Bartel, D. P., Luisi, P. L.: Synthesizing Life. Nature 409
(2001), pp. 389-390.

[6] von Neumann, J.: Theory of Selfreproducing Automata. A. Burks (Ed.),
University of Illinois Press, Urbana and London, 1966

[7] Wiedermann, J.: Coupling computational and non{computational pro-
cesses: minimal arti�cial life. Pre{proceedings of the Fifth Workshop on
Membrane Computing (WMC5), G. Mauri, Gh. Paun, C. Zandroni (Eds.),
Dept. of Comp. Sci., University of Milan | Bicocca, Italy, June 16{19,
2004, 444 p.

15


