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ABSTRACT
Multi-agent systems typically utilize a non-blocking asyn-
chronous communication in order to achieve required flex-
ibility and adaptability. High performance computing tech-
niques exploit the current hardware ability of overlapping
asynchronous communication with computation to load the
available computer resources efficiently. On the contrary,
widely used parallel processes modeling methodologies do
not often allow for an asynchronous communication de-
scription. At the same time those models do not allow their
user to select the granularity level and provide only a fixed
set of machine and algorithm description quantities. We
address these issues and design a new parallel processes
modeling methodology.
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1 Introduction

The motivation for this research comes from computational
intelligence, an area of artificial intelligence encompass-
ing approaches as artificial neural networks, genetic algo-
rithms, or fuzzy logic. These methods are typically very
time consuming, requiring both some empirical knowledge
and computational resources.

In our project [4] we develop a multi-agent system
aimed at hybrid computational intelligence models repre-
sented as a collection of autonomous agents in a multi-
agent system [8]. One of the goals was to develop a uni-
fying framework allowing time complexity estimates for
agents encompassing computational methods on one hand,
and a computer-aided performance analysis of the real
agents behavior in a distributed environment on the other.
Since a good fit of theoretical estimates to measured perfor-
mance data is needed, we decided to sacrifice the simplicity
of the model (as opposed to e.g. BSP [7] or LogP [2]) for
better accuracy. This feature can be compensated for by a
semi-automated way the parameters of the model are ob-
tained for a particular computer architecture.

In this paper we demonstrate the above mentioned ap-
proach first on a general methodology, and then for deriv-
ing a concrete complexity model called NASP. This model
is further tuned for various computer architectures, from
SMPs to clusters of workstations. Experimental perfor-
mance evaluation has been made for a genetic algorithm [6]
suite of agents.

2 The serial Model

There is a gap between a complexity theory and a program-
ming practice. While the theoretical RAM model [3] of
serial computation is clear and widely accepted, the exist-
ing program developing tools target mainly real computers
and their machine codes. We aim for blurring the edge be-
tween the theoretical models of computation and objects
they are supposed to model—the computational processes
of real computers. We provide it by enhancing the RAM
model definition such that its programming language is a
real computer assembler. This approach has the advantage
of generating such models by machine compilation from
high-level programming languages. Also the possibility
of direct execution and measurements of these models is
valuable especially for the complex computations. This ap-
proach is flexible enough so that even distributed and paral-
lel computational processes can be modeled in this manner.

Definition 1 A x86 random access machine (86-RAM)
consists of a single processor P , an unbounded data seg-
ment, an input segment , and a finite program. The proces-
sor has a fixed set of registers including a program counter.
All memory locations and registers are capable of holding
integers of fixed size. The program consists of a sequence of
addressable IA-32 instructions [1]. Operands may be liter-
als, addresses, or indirect addresses according to the spec-
ification. Initially the input to the 86-RAM is placed in the
input segment, one bit per byte, and pointer to it is passed
to in the ebp register. The whole data segment is cleared,
the length of the input is placed in the eax register, and
the processor is started at the beginning of the program. At
each step in the computation the processor executes the in-
struction given by its program counter in one unit of time,
then advances its counter by one. A ret instruction of
the top level program routine causes the processor to stop
running. Execution continues until the processor executes
top level ret instruction. The input is accepted only if the
computation ends with non-zero in the eax register.

Definition 2 A language L is in the class T (n)-time-86-
RAM if there is a 86-RAM M such that for all words x of
length n, x is in L if and only if x is accepted by M and
requires time at most T (n).

Considering the properties of the new model, we
claim the 86-RAM model has these advantages: The 86-
RAM model is close enough to the traditional determinis-
tic RAM model, so we can compare and share results on



both these architectures. There are freely available com-
pilers from several modern high-level languages into the
x86 assembler and thus into the 86-RAM programs. The
86-RAM programs are directly executable on a large set
of IA32 computers if the execution fits into the memory
and number size bounds given by the computer. There are
freely available tools for measuring performance charac-
teristics of a running program applicable also to running
86-RAM programs.

Next we show that the original RAM and newly de-
fined 86-RAM models are polynomially equivalent:

Theorem 1 For any deterministic RAM machine M run-
ning in time T , there is an equivalent 86-RAM machine
N bounded by time Tc, where c is a program independent
constant.

A sketch of proof. We construct the machine N by
direct translation of the machine M program. All labels
are kept unchanged at their places. The result is a correct
and equivalent 86-RAM program. If the 86-RAM machine
N is generated this way, the ebp register is never modified
and so it is safe to use it as an input segment base during
the whole computation. Since there is no subroutine call in
such 86-RAM machine, any ret instruction is the top level
ret and thus equivalent to HALT instruction of RAM. For
complete construction cf. [5]. 2

Theorem 2 For any 86-RAM machine N running in time
T , there is an equivalent RAM machine M bounded by time
Tc, where c is a program independent constant.

A sketch of proof. We construct the machine M by di-
rect translation of the machine N program. The RAM ma-
chine M simulate 86-RAM’s larger registers set and a spe-
cial memory segment of stack in its only memory space via
preallocation and interleaving.Since we assume both 86-
RAM and RAM models to operate on bounded numbers
(though not necessary to the same limit), for each 86-RAM
instruction a RAM subroutine executable in a constant time
can be constructed and the c scale factor can be set as the
maximum of such RAM subroutine execution times. The
86-RAM instruction set is large and the complete transla-
tion table from 86-RAM to RAM is beyond the limits of
this text. 2

In the following, an algorithm generalized model—a
function returning cost estimates—is named A.

Definition 3 Generalized serial model of an algorithm A
is a function A on task size J and computer description M

returning cost estimates c of the algorithm A implementa-
tion running on the M computer given the J-large task to
solve.

We see that in order to be able to make predictions
on algorithm costs, we need to obtain the model function
A, the computer description M, and the task description
J. Further we assume that the J is generally simple, such

as the input data size or few other characterizations of the
task we can easily obtain. Now we focus on the machine
independent model creation process.

At the beginning, an algorithm descriptionA in a pro-
gramming language is given. The goal is to estimate the A
run costs on a target machine with the description M. Let
us further assume that we can run A on a different machine
M

′ where we can do extra performance measurements of
the execution. First choice is to select an atomic operations
set A. Those operations define basic metrics in which al-
gorithm requirements are modeled and measured. This se-
lection influences the accuracy the model can achieve: the
larger the set is, the more accurate the model can be. The
simplest atom set has the only member—an instruction, a
two member set is a better selection—an integer instruc-
tion and a floating point instruction. More complex models
count also cache misses, page faults, branch instructions,
context switches, function invocations etc. On one hand,
our choice is limited by the available means of measuring
like the selected machine M

′ hardware counters and com-
piler tool chain support. On the other hand, too narrow
selection neglects many algorithm features and makes the
model inaccurate. There is no single selection that is suit-
able for all users, so the process is made open for various
choices.

Next, the algorithm implementation is executed on the
M

′ computer for various tasks J, and the measurements of
the atomic operations A are done. The task size descrip-
tion J is a generalization of the more traditional variable N

meaning the input data size in bits. After that, a suitable
regression technique is applied to get a function approxi-
mation F of these, depending on the task size J. Notice
that most of this work could be done automatically once
the benchmarking tools are available. The function F maps
task size description J in the atoms counts space N |A|. To
obtain time, space and other costs c from these counts, the
atomic operations benchmark on the target machine can be
used. It is common to unify such machine benchmark re-
sults with the machine description M. Finally, a functional
composition of the approximation function F and machine
description argument defines the generalized model func-
tion of A : M × J → c. The exact meta-algorithm of
model creation is shown in Table 1.

3 The parallel model

Definition 4 An asynchronous parallel machine (ASP) is a
universal computation device consisting of a fixed set of
86-RAM machines C = P0, P1, ...Pp−1 and a communica-
tion interconnect N. Each 86-RAM machine provides ad-
ditional routines available through the call instruction.
These routines include the machine index reading function
and functions for sending and receiving data across the net-
work.

The ASP machine description M is a quartet M =
[p,A,N, c]. The p is a number of processors. The A is a
matrix p×qC, the qC is number of sequential atomic opera-



1. Implement the algorithm in a programming language.

2. Select a reference computer M
′.

3. Select a model atomic operations set A.

4. Benchmark the atomic operations A on the M
′ com-

puter.

5. Execute the algorithm implementation on the M
′ ma-

chine through the range of tasks J and count the atoms
A for each run.

6. Interpolate the atoms A counts on the whole do-
main of task J and name this interpolation function
F : J → N |A|.

7. Compound the F function and functions mapping the
atoms A to the desired costs quantities c to create
function A : M × J → c. This function A is the
algorithm generalized model (GM)—it maps the ma-
chine and task size descriptions in the costs space.

Table 1. The generalized model (GM) construction using
86-RAM tools.

tions, Ai,j is the j-th atomic operation cost when executed
on the i-th processor. N is basic communication routines
cost functions Ni : (|δ|, src, dst,Lsrc

C
,Ldst

C
,LN) → c

vector of size qN. And c is a 13-tuple containing a col-
lection of private data and the following functions:

Cost combination rules:

SeqOver : (c, c) → c

SeqNext : (c, c) → c

SeqOver : (N , c) → c

SeqNext : (N , c) → c

ParOver : (c, c) → c

ParNext : (c, c) → c

Cost reduction operators:

T : c → R+

S : c → N p
0

UC : c → [0, 1]p

UN : c → [0, 1]

OC : c → R+p
0

ON : c → R+

0

The flexibility of ASP model definition leaves inten-
tionally some parameters—like a number and meanings
of atomic operations—unspecified. This makes from ASP

something like an abstract template base upon which vari-
ous but related models can be built. We define one repre-
sentative of the ASP models family by selecting the ASP
free parameters. It is called NASP and we will use it later
in this work.

Definition 5 A normal asynchronous parallel machine (NA
SP) is an ASP device with the following configuration. The
qC equals to 6 and the sequential atomic operations are:
fast integer operation, fast float number operation, slow in-
teger operation, slow float number operation, memory al-
location, and memory deallocation. The qN is 3 and the
communication operations are: send, transfer, and receive.

The speed of numeric operations is expected to be in-
fluenced by factors like cache and processor pipeline uti-
lization etc. Though the actual parameters of real proces-
sors differ, the algorithm properties like the ratio of sequen-
tial and other cache-friendly memory accesses or the num-
ber of pipeline breaking constructs are stable for most of
given tasks and thus it makes sense to make these coef-
ficients explicitly or implicitly part of algorithm descrip-
tions.

Definition 6 An ASP model A of a given algorithm is a
function A : M × J → c on a machine and task descrip-
tions returning cost estimates for the A algorithm running
on the M machine given the J task instance.

An essential feature of such machine description is
that it is both rich enough to be able to express a broad
set of architectures and still sufficiently simple so it can be
obtained.

The ASP machine is a set of connected Vin Neumann
machines. Each computation node is modeled by a single
86-RAM. The ASP machine description M combines fea-
tures of isolated computers such as the A atomic operations
costs with the interconnect network description of N. Fur-
ther it contains the number of computation nodes p and the
structure c, which keeps track of all various costs relation-
ships, combination rules, and reductions.

The A matrix can be understood as a vector of proces-
sors descriptions, each independent of the others. In each
processor description, the first pair —the costs of single in-
teger and floating point operations—is responsible for se-
rial computation time estimates; while the other pair —the
costs of dynamic memory allocation and deallocation—is
used for memory space estimates.

Similarly the N vector provides cost c for various ba-
sic operations related to network communication.

The c cost structure—the last component of the M

machine description— contains all the costs combination
logic and its instances keep track of all various costs the
algorithm in question pays for. The c object can have a
dominant value on the time axis like the case of the inte-
ger operation cost, or it may have the time component zero
and the memory space bigger like the memory allocation



operation has. It can also have more important attributes
as for example network send operation has— it takes some
time, loads the processor and at the same time loads the
interconnect network.

4 Case study: genetic algorithm

Figure 1 shows a block diagram of one iteration of genetic
algorithm. Each iteration starts with the fitness function
evaluation for each genome that has changed from the last
iteration—that is phase A. Then, the best genome is found
and sent to the next one in the parallelization ring in phase
B2. The B2 code is executed only if the elite genome has
come to the actual process and only once for any such in-
coming genome. Next, in phase C, a new generation is
created in cooperation with the selection and genetic oper-
ators. When the new population is large enough, the iter-
ation ends and a new one is started. Any time during the
iteration, an elite genome may come up and be processed—
phase B1. This completes the analysis of AGenetics
code run. But other agents are executed as well. We name
the fitness function code as F, the selection code S, and the
metrics and genetic operators code M/O. The inter-agent
communication channel names are composed of two phase
(or block) names they bind together.

The invocations of creation operators are ignored be-
cause they can occur only in the first generation.

In order to create the NASP model a number of runs of
the whole GA suite, together with various measurements,
is required. In the next stage, we will call the computer
where such a run has been done a reference machine. We
investigated the behavior of the algorithm for the popula-
tion of the varying sizes from 30 to 300 with step of 30 and
for the mutation genetic operator probabilities from zero
to one with the step of 0.2. For most runs, the number of
GA generations was set to 10, and the data were averaged
over 10 runs. Only for the CO, CM, and CS communica-
tion measurements was the number of generations in each
of ten runs raised to 50 to compensate for a higher variance
in the data.

For each of the computation blocks
(A,B1,B2,C,F,M/O,S), the following properties were
measured: integer operations, floating point operations,
processor cycles, the number and type of communications
performed together with the sizes of transferred data. For
the main blocks A,B1,B2,C, the amount of used memory
was also measured.

5 Experiments

To test the constructed model of our genetic algorithm, we
obtained descriptions of various machines available to us,
calculated predictions of iteration times on those machines,
and measured those times on the real GA running there for
comparison. Reference machine is a regular IA32 com-
puter with Mobile Intel(R) Celeron(R) CPU 2.00GHz, and

S S S S S S S S SS

AGenetics

AFitness30

AOPack30

ASelection

A

S

A B2 C B1

M/O

CS

F

B2B1AF

CM/CO

A The fitness function is evaluated.
B1 An elite genome is received from the pre-

vious AGenetics in the parallelization ring.
B2 If there is an elite genome from outside, it

is added to the current population and the
best genome is sent next through the ring.

C The selection is called and the operator
package applies genetic operators.

F The fitness function evaluation.
M The metric operator evaluation.
O The genetic operator evaluation.
S The selection process.
AF The communication between AGenetics

and AFitness30.
B1B2 The communication between two AGenet-

ics in the parallelization ring.
CO The communication between AGenetics

and AOPack30 during evaluation of a ge-
netic operator.

CM The communication between AGenetics
and AOPack30 during evaluation of a met-
ric operator.

CS The communication between AGenetics
and ASelection.

Figure 1. Generalized genetic algorithm implementation.

256MB RAM. SGI Origin 2000 is a RISC computer with
two R12000 processors running on 270MHz each and 1 GB
RAM. Sun ULTRA 10 is a RISC computer with one Ul-
traSPARC IIi processor running on 333MHz and 512 MB
RAM. The next machine is an IBM PC based CISC system
with one Pentium II processor running on 400 MHz with
128 MB RAM. Joyce is a PC/Linux cluster of 16 nodes and
1 server connected via a 100-Mbit Ethernet star-topology
network. For our experiments, we used a subset of 3 nodes
for running GA and 1 node for running control and GUI
agents. All the nodes participating in the experiment are
the same PCs with one Athlon XP processor running at 1.7
GHz and 1 GB RAM. The performance benchmark results
are listed in Table 2.

First, experimental measurements of the genetic algo-
rithm run are compared to the GA models predictions for



Comp. Peak
MIPS

Peak
MFLOPS

Low
MIPS

Low
MFLOPS

Comm.
time

Ref.e 2400 990 138 42 1.3 e-4
SGI 280 98 130 38 0.02
Sun 266 118 30 106 0.02
PC 459 213 142 7 1.8 e-3
Joyce 2496 1323 260 1150 4.2e-5

Table 2. Test computers performance measurement results.

Computer Graph Max E Avg E Min E
SGI 2 2.2 1.6 1.2
Sun 3 4.2 1.8 1.7
PC 4 1.21 1.16 1.04
Joyce 5 2.4 1.3 1.1

Table 3. Model evaluation on test computers.

all of the test computers. The average relative errors are
between 1.16—in the case of PC—and 1.8—for the Sun
computer. Table 3 and Figures 2, 3, 4, 5 gather these re-
sults.

measurements
predictions

 0
 1

 2
 3

 4
 5  0

 1
 2

 3
 4

 5
 6

 7
 8

 9

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Figure 2. GA iteration time measurements and model pre-
dictions on Origin.

Next, the parallel model is compared to the parallel
run of the genetic algorithm. To be able to construct the
model of parallel genetic algorithm, a network inter-node
communication time has to be analyzed. Similarly to the
other distributed memory parallel machines, in the case of
Joyce the communication time depends on the amount of
transferred data. Measurements of these times have been
done for a whole scale of data sizes and the following for-
mula approximates the obtained data best:

T (x) = max(1.65x, 5000 + 0.75x) − 2500µs

In our parallel model of GA, we want to predict
how many iteration would proceed between successor elite
genome arrivals into a particular node. To do so, we need
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Figure 3. GA iteration time measurements and model pre-
dictions on Sun.
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Figure 4. GA iteration time measurements and model pre-
dictions on IBM PC.

to model the inter-node communication and the overall sys-
tem behavior with respect to the asynchronous nature of its
processes (see Figure 6).

For our test, we selected a configuration of 3 compu-
tational GA nodes. The computational nodes run unsyn-
chronized, thus we can consider the elite genome income
to occur in a random phase of the iteration. Since the elite
genome can be emitted only from a fixed point of the it-
eration cycle the expected slow-down is one half (of the
iteration cycle) per parallelization ring node. That is for
the time the elite genome spends waiting for the target pro-
cess. Besides this, there is also the time spent communicat-
ing the elite genome among computational nodes which, if
expressed in iterations, is tc

tG
per parallelization ring node.

Thus it can be easily observed that the expected number of
iterations between two elite genomes comings is:

X =
3

2
+ 3

tc

tG

The graph in Figure 7 shows the measured numbers
of iterations between elite genomes comings X in the real
parallel runs of GA together with two model predictions of
these. The first prediction (green line) shows directly the
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Figure 5. GA iteration time measurements and model pre-
dictions on Joyce node.
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Figure 6. Parallel run of GA on 3 nodes.

predictions of unmodified model; while the second predic-
tion (blue line) shows the predictions where the calculated
iteration times estimates for the additional population sizes
(2,5,10) were scaled according to the ratio of predicted and
measured iteration times for the population size of 30—the
nearest point in the regular model domain—and thus we
compensated for leaving the original model domain.

6 Conclusions

In this work we addressed the issues connected to designing
a hybrid computational multi-agent system, and designed
a new parallel processes modeling methodology. Its main
features include an open set of atomic operations that are
calculated and predicted for the algorithm in question, and
the computer aided semi-automatic measuring of operation
counts and approximation of cost functions. This allows
not only for tuning the model granularity as well as accu-
racy according to user needs, but also for reaching a such
description complexity that would be very difficult to ob-
tain without any computer aid. A case study of an applica-
tion of our framework to the genetic algorithm problem is
provided.
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Figure 7. The number of iterations between elite genomes
comings in real measurements and two models.
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