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Abstract

A formalism for the logical description of computational
agents and multi-agent systems is given. It is explained how
it such a formal description can be used to configure and
reason about multi-agent systems realizing computational
intelligence models. A usage within a real software system
Bang 3 is demonstrated. The logical description of multi-
agent systems opens Bang 3 for interaction with ontology
based distributed knowledge systems like the Semantic Web
or the Knowledge Grid.

1. Introduction

The use of distributed Multi-Agent Systems (MAS) in-
stead of monolithic programs has become a popular topic
both in research and application development. Autonomous
agents are small self-contained programs that can solve sim-
ple problems in a well-defined domain [19]. In order to
solve complex problems, agents have to collaborate, form-
ing Multi-Agent Systems (MAS). A key issue in MAS re-
search is how to generate MAS configurations that solve a
given problem [9]. In most Systems, an intelligent (human)
user is required to set up the system configuration. Develop-
ing algorithms for automatic configuration of Multi-Agent
Systems is a major challenge for AI research.

Bang 3 is a platform for the development of Multi-Agent
Systems [15], [18]. Its main areas of application are com-
putational intelligence methods (genetic algorithms, neural
networks, fuzzy controllers) on single machines and clus-
ters of workstations. Hybrid models, including combina-
tions of artificial intelligence methods such as neural net-
works, genetic algorithms and fuzzy logic controllers, seem
to be a promising and extensively studied research area [5].
Bang 3 — as a distributed multi-agent system — provides

a support for an easy creation and execution of such hybrid
AI models.

Bang 3 applications require a number of cooperating
agents to fulfill a given task. So far, MAS are created and
configured manually. In this paper, we introduce a logi-
cal reasoning component for Bang 3. With this compo-
nent, Bang 3 system configurations can be created auto-
matically and semi-automatically. The logical description
of MAS opens Bang 3 for interaction with ontology based
distributed knowledge systems like the Semantic Web [13]
and the Knowledge grid [23].

The description of Bang 3 by formal logics enhances the
construction, testing, and application of Bang 3-MAS in nu-
merous ways:

• System Checking
A common question in Multi-Agent System design

is whether a setup has certain properties. By the use of
formal descriptions of the agents involved in a MAS
and their interactions, properties of the MAS can be
(dis-)proved [17].

• System Generation
Starting with a set of requirements, the rea-

soning component can be used to create a MAS.
The formal logical component augments evolution-
ary means of agent configuration that are already
present in Bang 3 [4].

• Interactive System Generation
The reasoning component can also be used to create

agents in semi-automated ways. Here, the reasoning
component acts as a helper application aiding a user in
setting up MAS by making suggestions.

• Interaction with ontology based systems
There is a growing interest in creating common log-

ical frameworks (ontologies) that allow the interaction
of independent, distributed knowledge based system.
The most prominent one is the Semantic Web, which



attempts to augment the World Wide Web with onto-
logical knowledge. Using formal logics and reasoning
in Bang 3 allows to open this world to Bang 3.

2. Logical Description of Bang 3 MAS

In order to satisfy these requirements, the logical formal-
ism must fulfill the following requirements:

1. It must be expressive enough to describe Bang 3 MAS.

2. There must be efficient reasoning methods.

3. It should be suitable to describe ontologies

4. It should interface with other ontology based systems.

There is a lot of research in how to use formal logics to
model ontologies. The goal of this research is to find log-
ics that are both expressive enough to describe ontological
concepts, and weak enough to allow efficient formal reason-
ing about ontologies.

The most natural approach to formalize ontologies is the
use of First Order Predicate Logics (FOL). This approach
is used by well known ontology description languages like
Ontolingua [10] and KIF [12].

The disadvantage of FOL-based languages is the expres-
sive power of FOL. FOL is undecidable [8], and there are
no efficient reasoning procedures. Nowadays, the de facto
standard for ontology description language for formal rea-
soning is the family of description logics. Description log-
ics are equivalent to subsets of first order logic restricted to
predicates of arity one and two [7]. They are known to be
equivalent to modal logics [1].

Description logics are used in the Semantic Web, a
project of the Internet standardization body W3C. The Se-
mantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers to deal with that information in a formal way. [3].
The Knowledge Grid project [23], [22] builds on top of the
Semantic Web to create an intelligent environment allow-
ing agents (both software and human) to share and manage
knowledge. The objectives of the Knowledge Web are to
support of team-work, problem-solving and decision mak-
ing. Description logics is also the main topic of interest
in other projects dealing with the standardization of inter-
agent communications.

For the purpose of describing multi-agent systems, de-
scription logics are sometimes too weak. In these cases, we
want to have a more expressive formalism. We decided to
use Prolog-style logic programs for this. In the following
chapters, we describe how both approaches can be com-
bined together.

Description logics and Horn rules are orthogonal sub-
sets of first order logic [7]. During the last years, a num-
ber of approaches to combine these two logical formalisms

in one reasoning engine have been proposed. Most of these
approaches use tableaux-style reasoners for description log-
ics and combine them with Prolog-style Horn rules. In [14],
Hustadt and Schmidt examined the relationship between
resolution and tableaux proof systems for description log-
ics. Baumgartner, Furbach and Thomas propose a combi-
nation of tableaux based reasoning and resolution on Horn
logic [2]. Vellion [20] examines the relative complexity of
SL-resolution and analytic tableau. The limits of combining
description logics with horn rules are examined by Levy and
Rousset [16]. Borgida [6] has shown that Description Log-
ics and Horn rules are orthogonal subsets of first oder logic.

In our approach, we use the Description Logics compo-
nents of the generic theorem prover KR-Hyper [21] aug-
mented by Prolog-style Horn clauses.

2.1. Describing Bang 3 Agents

An agent is an entity that has some form of percep-
tion of its environment, can act, and can communicate with
other agents. It has specific skills and tries to achieve goals.
A Multi-Agent System (MAS) is an assemble of interacting
agents in a common environment [11].

In order to use automatic reasoning on a MAS, the MAS
must be described in formal logics. For the Bang 3 system,
we define a formal description for the static characteristics
of the agents, and their communication channels. We do not
model dynamic aspects of the system yet.

Bang 3 agents communicate via messages and triggers.
Messages are XML documents send by an agent to another
agent. A triggers are XML patterns with an associated func-
tion. When an agent receives a message matching the XML
pattern of one of its triggers, the associated function is ex-
ecuted. In order to identify the receiver of a message, the
sending agent needs the message itself and a link to the re-
ceiving agent. A conversation between two agents usually
consists of a number of messages. For example, when a neu-
ral network agent requests training data from a data source
agent, it may send the following messages:

• Open the data source located at XYZ,

• Randomize the order of the data items,

• Set the cursor to the first item,

• Send next item.

These messages belong to a common category: Mes-
sages requesting input data from a data source. In order
to abstract from the actual messages, we subsume all these
messages under a message type when describing an agent in
formal logics.



class(decision tree)
type(decision tree, computational agent)
has gate(decision tree, data in)
gate type(data in, training data)
interface(decision tree, control messages)

Figure 1. Example agent class definition.

Definition 1 Message type
A message type identifies a category of messages that can

be send to an agent in order to fulfill a specific task. We re-
fer to message types by unique identifiers.

The set of message types understood by an agent is called
its interface. For outgoing messages, each link of an agent
is associated with a message type. Via this link, only mes-
sages of the given type are sent. We call a link with its as-
sociated message type a gate.

Definition 2 Interface
An interface is the set of message types understood by a
class of agents.

Definition 3 Gate
A gate is a tuple consisting of a message type and a named
link.

Now it is easy to define if two agents can be connected:
Agent A can be connected to agent B via gate G if the
message type of G is in the list of interfaces of agent B.
Note that one output gate sends messages of one type only,
whereas one agent can receive different types of messages.
This is a very natural concept: When an agent sends a mes-
sage to some other agent via a gate, it assigns a specific role
to the other agent, e.g. being a supplier of training data. On
the receiving side, the receiving agent usually should un-
derstand a number of different types of messages, because
it may have different roles for different agents.

Definition 4 Connection
A connection is described by a triple consisting of a send-

ing agent, the sending agent’s gate, and a receiving agent.

Next we define agents and agent classes. Bang 3 is ob-
ject oriented. Agents are created by generating instances of
classes. An agent derives all its characteristics from its class
definition. Additionally, an agent has a name to identify it.
The static aspects of an agent class are described by the in-
terface of the agent class (the messages understood by the
agents of this class), the gates of the agent (the messages
send by agents of this class), and the type(s) of the agent
class. Types are nominal identifiers for characteristics of an
agent. The types used to describe the characteristics of the
agents should be ontological sound.

Concepts
mas(C) C is a Multi-Agent System
class(C) C is the name of an agent class
gate(C) C is a gate
m type(C) C is a message type

Roles
type(X,Y) Class X is of type Y
has gate(X,Y) Class X has gate Y
gate type(X,Y) Gate X accepts messages of type Y
interface(X,Y) Class X understands mess. of type Y
instance(X,Y) Agent X is an instance of class Y
has agent(X,Y) Agent Y is part of MAS X

Table 1. Concepts and roles used to describe
MAS.

Definition 5 Agent Class
An agent class is defined by an interface, a set of message
types, a set of gates, and a set of types.

Definition 6 Agent
An agent is an instance of an agent class. It is defined by its
name and its class.

2.2. Describing multi-agent systems

Multi-Agent Systems are assembles of agents. For now,
only static aspects of agents are modeled. Therefore, a
Multi-Agent System can be described by three elements:
The set of agents in the MAS, the connections between
these agents, and the characteristics of the MAS. The char-
acteristics (constraints) of the MAS are the starting point of
logical reasoning: In MAS checking the logical reasoner de-
duces if the MAS fulfills the constraints. In MAS genera-
tion, it creates a MAS that fulfills the constraints, starting
with a partial MAS.

Definition 7 Multi-Agent System
Multi-Agent Systems (MAS) consist of a set of agents, a

set of connections between the agents, and the characteris-
tics of the MAS.

Description logics know concepts (unary predicates) and
roles (binary predicates). In order to describe agents and
Multi-Agent Systems in description logics, the definitions 1
to 7 are mapped onto description logic concepts and roles
as shown in table 1.

An example agent class description is given in figure 1. It
defines the agent class “decision tree”. This agent class ac-
cepts messages of type “control message”. It has one gate
called “data in” for data agent and emits messages of type
“training data”.

In the same way, A-Box instances of agent classes are
defined:



instance(decision tree, dt instance)

An agent is assigned to a MAS via role “has agent”. In
the following example, we define “dt instance” as belong-
ing to MAS “my mas”:

has agent(my mas, dt instance)

Since connections are relations between three elements,
a sending agent, a sending agent’s gate, and a receiving
agent, we can not formulate this relationship in traditional
description logics. It would be possible to circumvent the
problem by splitting the triple into two relationships, but
this would be counter-intuitive to our goal of defining MAS
in an ontological sound way. Connections between agents
are relationships of arity three: Two agents are combined
via a gate. Therefore, we do not use description logics, but
traditional logic programs in Prolog notation to define con-
nections:

connection(dt instance, other agent, gate)

Constraints on MAS can be described in Description
Logics, in Prolog clauses, or in a combination of both. As
an example, the following concept description requires the
MAS “dt MAS” to contain a decision tree agent:

dt MAS w masuhas agent.(∃instance.decision tree)

An essential requirement for a MAS is that agents are
connected in a sane way: An agent should only connect to
agents that understand its messages. According to defini-
tion 4, a connection is possible if the message type of the
sending agent’s output gate matches a message type of the
receiving agent s interface. With the logical concepts and
descriptions given in this section, this constraint can be for-
mulated as a Prolog style horn rule. If we are only inter-
ested in checking if a connection satisfies this property, the
rule is very simple:

connection(S,R,G)←
instance(R, RC) ∧
instance(S, SC) ∧
interface(RC, MT)∧
has gate(SC, G) ∧
gate type(G, MT)

The first two lines of the rule body determine the classes
RC and SC of the sending agent S and the receiving agent
R. The third line instantiates MT with a message type un-
derstood by RC. The fourth line instantiates G with a gate
of class SC. The last line assures that gate G matches mes-
sage type MT .

The following paragraphs show two examples for logi-
cal descriptions of MAS. It should be noted that these MAS
types can be combined, i.e. it is possible to query for trusted,
computational MAS.

Computational MAS A computational MAS can be de-
fined as a MAS with a task manager, a computational
agent and a data source agent which are connected
(cf. Fig. 3):

comp MAS(MAS)←
type(CAC, computational agent)∧
instance(CA, CAC)∧
has agent(MAS, CA)∧
type(DSC, data source)∧
instance(DS, DSC)∧
has agent(MAS, DS)∧
connection(CA, DS, G)∧
type(TMC, task manager)∧
instance(TMC, TM)∧
has agent(MAS, TM)∧
connection(TM, CA, GC)∧
connection(TM, GC, GD)

Trusted MAS A MAS is trusted if all of its agents
are trusted. This examples uses the Prolog predi-
cate findall. findall returns a list of all in-
stances of a variable for which a predicate is true. In
the definition of predicate all_trusted the usual
Prolog syntax for recursive definitions is used.

trusted MAS(MAS)←
findall(X, has agent(MAS,X), A))∧
all trusted(A)

all trusted([])← true
all trusted([F|R])←

instance(F,FC)∧
type(FC, trusted)

3. Implementation

The above described concepts and algorithms are im-
plemented within the Bang 3 software system as the BOA
agent. This agent works with ontological description files of
the two kinds: the Description Logics description of agent
hierarchies, their gates, interfaces and message types, and
the Prolog clauses describing more complicated properties
and concepts, such as the form of computational MAS, or
the notion of trust.

Figure 3 shows an example of the most simple compu-
tational MAS in Bang 3 which consists only of the com-
putational agent, data and a task manager (which can be a
user interacting via GUI, or more complicated agent per-
forming series of experiments over a cluster of worksta-
tions). A more typical computational MAS configuration is



shown on figure 3, where two more complicated computa-
tional agents — an RBF network and an Evolutionary algo-
rithm cooperating with each other — together with several
simpler agents to solve a given task.

Multilayer 
perceptron Data Source

Manager
Comp. Task

Figure 2. Example of a small computational
MAS consisting of a Task Manager agent,
Data Source agent, and a computational
agent (Multilayer Perceptron).

Data Source

Manager
Comp. Task

RBF Network 

Quantization

Pseudoinverse

Evolutionary

TunerShaper

Fitness

Vector

Matrix

Alg. Core Chromozome

Gradient
Learning

Figure 3. Example of a more complicated
computational MAS consisting of a Task
Manager agent, Data Source agent, and a
suite of cooperating computational agents
(an RBF network agent and Evolutionary
agent with necessary additional agents).

Descriptions of the above shown — and similar — sys-
tems are generated by the BOA agent in a formal descrip-
tion language. This description is then sent to the MAS
manager agent, which is able to take care of creating the
whole system 3. This includes creating suitable agents (ei-
ther new ones, or reusing free existing ones, or even find-
ing suitable ones by means of ontology services), linking
their gates and interfaces, sending them appropriate initial-
ization messages, etc.

Another way of BOA work, which is currently being de-
veloped, is an integration with GUI MAS designer, where

BOA invalidates connections that are not correct, and sug-
gests suitable partners for a connection.

Data Source

Manager
Comp. Task

RBF Network 

Quantization

Pseudoinverse

Evolutionary

TunerShaper

Fitness

Vector

Matrix

Alg. Core Chromozome

Gradient
Learning

BOA

BOS

MASMAN

Figure 4. The BOA agent generates a MAS
configuration description and sends it to the
MAS manager agent, which takes care of
MAS creation and run. They both query the
BOS ontology services agent.

4. Conclusion

We have shown how formal logics can be used to de-
scribe computational MAS. We presented a logical formal-
ism for the description of MAS. In this, we combined De-
scription Logics with traditional Prolog rules. The system
we implemented allows the practical application of these
technologies. We have demonstrated how this approach
works in practice within the hybrid computational environ-
ment Bang 3.

So far, we only describe static aspects of MAS. Further
research will be put in the development of formal descrip-
tions of dynamic aspects of MAS. In particular, this means
to work with ontological description of tasks and to gather
knowledge about computational agents performance. Cur-
rently within Bang 3, there is a BDI-based mechanism that
supports decisions of a computational agent based on its
previous experience. This will blend smoothly with our ap-
proach, which in turn allows to provide more suitable MAS
solutions. In particular, if there are more agents satisfying
the constrains, we will be able to sort them according to
their past performance in the required context. Thus, bet-
ter partners for an agent can be supplied. Further in the fu-
ture we plan to employ proactive mechanisms for and agent
(again BDI-based), which will be allowed to improve its
knowledge in its free time, such as trying to solve bench-
mark tasks and recording the results.

The hybrid character of the system, with both a logical
component and soft computing agents, also makes it inter-
esting to combine these two approaches in one reasoning



component. In order to automatically come up with feasi-
ble hybrid solutions for specific problems, we plan to com-
bine two orthogonal approaches: a soft computing evolu-
tionary algorithm with a formal ontology-based model. So
far, in [4] we have tried the isolated evolutionary approach,
and the results, although satisfiable, are difficult to scale up
to larger configurations. We expect synergy effects from us-
ing formal logics to aid evolutionary algorithms and vice
versa.
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