
LEARNING IN RADIAL BASIS FUNCTION NETWORKS
AND REGULARIZATION NETWORKS

Kudová P. and Neruda R. (petra@cs.cas.cz,roman@cs.cas.cz),

Institute of Computer Science, Academy of Sciences of the Czech Republic

Abstract

We discuss two approaches to supervised learning, namely regularization
networks and RBF networks, and demonstrate their performance on experi-
ments. We claim that the performance of these two models is comparable,
so the RBF networks can be used as a cheaper alternative to regularization
networks.

Motivation

The problem of learning from examples is a subject of great interest. It
can be formulated as follows. We are given a set of examples {(~xi, yi) ∈
Rd × R}mi=1 that was obtained by random sampling of some real function
f , generally in the presence of noise. Our goal is to recover the function f
from data, or find the best estimate of it, with respect to generalisation.
Artificial neural networks are typically used in such situations. There is a
good supply of network architectures and corresponding supervised learning
algorithms. Moreover the problem has been thoroughly studied as a func-
tion approximation problem. Since it is ill-posed, regularisation techniques
are used.

H [f] =
1

N

N∑

i=1

(f (~xi)− yi)2 + γΦ[f]

FIGURE 1: Regularization scheme. Φ is a stabilizer, γ > 0 the regu-
larization parameter.

Regularization Networks

Poggio and Smale in [PS03] proposed a learning algorithm (Algorithm 1)
derived from the regularization scheme (Fig. 1). They choose the hypothe-
sis space as a Reproducing Kernel Hilbert Space (RKHS)HK defined by an
explicitly chosen, symmetric, positive-definite function K~x(~x′) = K(~x, ~x′).
As a stabilizer the norm of the function in HK is taken. They proved that
the problem has an unique solution.
The power of the Algorithm 1 is in its simplicity and effectiveness. It’s
drawbacks are the high model complexity and explicit parameters (γ, for
Gaussian kernels also width d). We use cross-validation to estimate these
parameters.

Input: Data set {~xi, yi}mi=1 ⊆ X ×Y Output: Function f.

1. Choose a symmetric, positive-definite function
K~x(~x′), continuous on X ×X.

2. Create f : X → Y as f (~x) =
∑m
i=1 ciK~xi(~x)

and compute ~c = (c1, . . . , cm) by solving

(mγI +K)~c = ~y,

where I is the identity matrix, K is the matrix
Ki,j = K(~xi, ~xj), and ~y = (y1, . . . , ym), γ > 0 is real
number.

Algorithm 1

gamma

w
id

th

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

glass1, test set error

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

Training set error
Test set error

FIGURE 2: a) The dependence of the error function (computed on test
set) on parameters γ a d. b) The relation between γ and training and
testing error.

RBF Neural Networks

y(~x) = ϕ

(‖ ~x− ~c ‖C
b

)

fs(~x) =

h∑

j=1

wjsϕ

(
‖ ~x− ~cj ‖Cj

bj

)

FIGURE 3: a) RBF network architecture b) RBF network function

An RBF network represents a relatively new model of NN, as a network with
local units. We are using a general model with weighted norms (see Fig. 3).
The two most significant algorithms, Three step learning and Gradient
learning, are sketched in Algorithm 2 and Algorithm 3. See also [NK04].

Input: Data set {~xi, ~yi}Ni=1 Output: {~ci, bi, Ci, wij}j=1..m
i=1..h

1. Set the centers ~ci by a vector quantization
algorithm.

2. Set the widths bi and matrices Ci by unsupervised
optimization.

3. Set the weights wij by solving ΦW = D.

Dij =

N∑

t=1

~ytje
−
(
‖~xt−ci‖Ci

bi

)2

,Φqr =

N∑

t=1

e
−
(
‖~xt−cq‖Cq

bq

)2

e
−
(‖~xt−cr‖Cr

br

)2

Algorithm 2

Input: Data set {~xi, ~yi}Ni=1 Output: {~ci, bi, Ci, wij}j=1..m
i=1..h

1. Put a part (10%) of data aside as an evaluation
set ES, keep the rest as a training set TS .

2. ∀j ~cj(i)← random sample from TS1,
∀j bj(i),Σ

−1
j (i)← small random value, i← 0

3. ∀j, p(i) in ~cj(i), bj(i),Σ
−1
j (i):

∆p(i)← −εδE1
δp + α∆p(i− 1), p(i)← p(i) + ∆p(i)

4.E1←
∑
~x∈TS1

(f (~x)− yi)2, E2←
∑
~x∈TS2

(f (~x)− yi)2

5. If E1 and E2 are decreasing, i ← i + 1, go to 3,
else STOP. If E2 started to increase, STOP.

Algorithm 3

Experiments

Described algorithms were tested on chosen tasks from Proben1 [Pre94]
data repository and on the prediction of flow rate on the river Ploucnice.
In all experiments we use the normalized error Ets = 100 1

N

∑N
i=1 ||~yi −

f (~xi)||2.

RN RBF MLP
Ets d γ Ets std arch Ets std arch

cancer1 1.60 1.0 0.0002 1.64 0.16 20 1.60 0.41 4+2
cancer2 2.99 1.4 0.0002 2.89 0.07 20 3.40 0.33 8+4
cancer3 2.76 1.3 0.0005 2.74 0.20 20 2.57 0.24 16+8
cancer 2.45 2.42 2.52
glass1 6.75 0.3 0.0008 6.59 0.32 15 9.75 0.41 16+8
glass2 7.28 0.3 0.0014 7.85 0.43 15 10.27 0.40 16+8
glass3 6.48 0.2 0.0017 6.95 0.26 15 10.91 0.48 16+8
glass 6.84 7.13 10.31
hearta1 4.44 1.9 0.0008 4.84 0.25 30 4.76 1.14 32+0
hearta2 4.32 1.9 0.0012 4.66 0.08 30 4.52 1.10 16+0
hearta3 4.45 1.9 0.0008 4.54 0.06 30 4.81 0.87 32+0
hearta 4.40 4.68 4.70

FIGURE 4: Comparison of Regularization Network, RBF network and
multilayerperceptron.

Task Type n m Train. set size Test set size
Cancer Class. 9 2 525 174
Glass Class. 9 6 161 54
Heart Approx. 35 1 690 230

FIGURE 5: Overview of data sets from Proben1 database.

FIGURE 6: Comparison of RN, RBF, MLP: test set error.

RN RBF
time units time units

cancer 9s (1 run of Alg1) 525 14s (100 iters of Alg3) 20
glass 1s (1 run of Alg1) 161 9s (100 iters of Alg3) 15
hearta 22s (1 run of Alg1) 690 74s (100 iters of Alg3) 30
ploucnice 55s (1 run of Alg1) 1000 28s (1 run of Alg2) 15

FIGURE 7: Time requirements, target processor was AMD Athlon(tm)
XP 2100+.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400

Ploucnice I

plouc-1.test
RN width=0.5, gamma=2e-05 (plouc-1.train)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250 300 350 400

Ploucnice I

plouc-1.test
RBF network (15units)

FIGURE 8: Prediction of the flow rate on the river Ploucnice: a) by RN
b) by RBF

Conclusion

We showed that the performance of described algorithms are comparable
and so the RBF networks can be used as an alternative to RN in applica-
tions where lower model complexity is desirable. On the Ploucnice task we
demonstrated the applicability of both methods on real life problems.

References
[NK04] R. Neruda and P. Kudová. Learning methods for RBF neural net-

works. Future Generations of Computer Systems, 2004. In press.

[Pre94] L. Prechelt. Proben1 – a set of benchmarks and benchmarking rules
for neural network training algorithms. Technical Report 21/94,
Universitaet Karlsruhe, 1994.

[PS03] T. Poggio and S. Smale. The mathematics of learning: Dealing with
data. Notices of the AMS, 50, No.5:537–544, 2003.

This research has been supported by the National Research Program Information Society
project 1ET100300419.

