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ABSTRACTDis
overing the 
omplex relationships between entities isone way of bene�tting from the Semanti
 Web. This paperdis
usses new approa
hes to implementing �-operators intoRDF querying engines whi
h will enable dis
overing su
hrelationships viable. The 
ornerstone of su
h implementa-tion is 
reating an index whi
h des
ribes the original RDFgraph. The index is 
reated by re
ursive appli
ation of atransformation of graph to forest of trees. At ea
h step, theRDF graph is transformed into forest of trees and then toea
h tree its extended signature is 
reated. The signaturesare a

ompanied by the additional information about trans-formed problemati
 nodes breaking the tree stru
ture. The
omponents des
ribed by the signatures are assumed as asingle node in the following step. The transitions betweenthe signatures represent edges.
1. INTRODUCTIONOne form of retrieving information from the Semanti
Web isto sear
h for relations among entities. The simple relationssu
h are the is-a or is-part-of relations 
an be found easily.For example using RQL [4℄ one 
an �nd dire
t relationshipamong entities. This means that we are able to retrieve allthe des
ending 
lasses of one 
lass, even on a di�erent level.For example the user 
an ask for all instan
es of a 
lass`artist' as it is shown in Figure 1. The answer to su
h querywould be all instan
es of both its sub
lasses in the knowledgebase, all painters and s
ulptors. But in the Semanti
 Webthere 
an be observed more 
omplex relationships amongentities [9℄ than those simple ones.Su
h 
omplex relationship 
an be represented by a path be-tween two entities 
onsisting of other entities and their prop-erties. To dis
over su
h 
omplex relationships �-operators[1℄ have been developed. In this paper, the 
omplex rela-tionships are dis
ussed and are referred to as Semanti
 As-so
iations [9℄. The �-operators are pre
isely the tools for

dis
overing su
h Semanti
 Asso
iations. This 
lass 
ontains� path, � 
onne
t and � iso operators.� path - This operator returns all paths between two enti-ties in the graph. An example of su
h relation 
an beseen in Figure 1 between resour
es &r1 and &r4. Su
hasso
iation represents an information that a painter
alled Pablo Pi
asso had painted a painting whi
h isexhibited in Reina So�a Museum.� 
onne
t - This one returns all pairs of paths that inter-se
t in one 
ommon node and whi
h initial nodes arethe two entities for whi
h we are sear
hing the asso
i-ation. An example of su
h � 
onne
tion between theresour
es &r6 and &r9 in the Figure 1 is represented bythe paths from resour
e &r6 to &r8 and from resour
e&r9 to &r8 where the resour
e &r8 is the 
ommon node.This asso
iation represents a fa
t that two artists hadtheir artifa
ts (in one 
ase it was a painting and in theother a s
ulpture) exhibited in the same museum.� iso - This operator implies a similarity of nodes and edgesalong two paths. The similarity of the the paths, onestarting in resour
e &r1 and ending in &r4 and these
ond one going from &r6 to &r8. The two pathsare � isomorphi
 sin
e they both represent an artist
reating artifa
t, that is exhibited in a museum.The possible usage of sear
hing su
h 
omplex asso
iations
an be found in the �eld of national se
urity. For examplethe system 
ould be used on airports to help to identifysuspi
ious passengers by looking for available 
onne
tionsbetween them.In this paper we mainly fo
us on the former two operatorswhi
h are the � path and � 
onne
t. We introdu
e a designof a indexing stru
ture for the RDF graph that will make thedis
overy of the relationships des
ribed by these � operatorse�e
tive.Se
tion 3 dis
usses the related work to the topi
 of indexingRDF graphs. Se
tion 2 
ontains a brief introdu
tion intothe RDF and the RDF S
hema. In Se
tion 4 we presentour 
ontribution to the issue by introdu
ing the transforma-tion of the RDF graph into forest of trees and after-wardsthe appli
ation of tree signatures to those trees. Se
tion 5
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&r11Figure 1: An example of RDF graphdemonstrates the new approa
h of re
ursive appli
ation ofthe graph transformation, the grouping of 
omponents andan example of the 
reation of the index and demonstratesthe implementation of the � path and 
onne
t operators.Se
tion 6 outlines possible improvements to the indexingstru
ture that is designed in this paper. Finally Se
tion 7
on
ludes the whole paper.
2. PRELIMINARIESThe RDF graph depi
ted in Figure 1 is visualization of anRDF and RDF S
hema notation. These two languages areused to state the meta information about resour
es. Thefollowing subse
tions brie
y des
ribe this te
hnology. In thes
ope of this paper the RDF is used to 
reate the knowledgebase and the RDF s
hema to build the s
hema parts of theRDF graph.
2.1 RDFThe abbreviation RDF stands for Resour
e Des
ription Frame-work and a

ording to [5℄ is supposed to be a foundation forpro
essing metadata. It basi
ally provides a data model fordes
ribing ma
hine-pro
essable semanti
s of data. The RDFstatement is a triple (S, P, O) whose parts stand for Subje
t,Property and Obje
t. Subje
t is usually identi�ed by URI.It is basi
ally a resour
e. The obje
t 
an be either an ex-pli
it value or a resour
e also. Sin
e this triple itself 
an be


onsidered as a resour
e it 
an appear in an RDF statementas well. This means that the data model 
an be envisionedas a labeled hypergraph (ea
h node 
an be an entire graph)where an edge between two nodes represents the propertybetween a subje
t and an obje
t.
2.2 RDF SchemaBe
ause the modeling primitives of RDF are so basi
, thereis no way to de�ne the 
lass-sub
lass relation. Thereforean externally spe
i�ed semanti
s to some resour
es was pro-vided. Su
h enri
hed RDF is 
alled RDF S
hema [3℄. Thosespe
i�
 resour
es are for example rdfs:
lass and rdfs:sub
lass.In su
h enri
hed environment we are able to de�ne a simplemodel of 
lasses and their relations. This 
an be used to de-�ne simple ontologies in the web spa
e. The RDF S
hemastatements are expressed using XML together with its spe-
i�
 namespa
e. Even RDF statements 
an be expressedusing XML with its spe
i�
 namespa
e.
3. RELATED WORKTo make the best of the � operators, they should be im-plemented into an RDF querying system. One of su
h im-plementation is presented in [6℄. The e�ort des
ribed theredemonstrates an implementation of � path operator abovethe RDF Suite [4℄. The implementation 
ornerstones are
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Sig T = (A, 1, 8), (B, 2, 4), (D, 3, 1), (E, 4, 2), (F, 5, 3), (C, 6, 7), (G, 7, 5), (I, 8, 6)Figure 2: An example of a tree signature for a treeT.two indi
es, Path index and S
hema index. The former oneis a two-dimensional array of paths - it 
arries the infor-mation about all paths between Class i and Class j in thes
hema part of the RDF graph. The latter one is used tosear
h for a path between 
lasses in di�erent s
hemas. ThePath index is very memory intensive when the data growsto large amounts. Therefore, this paper dis
usses a di�erentapproa
h to index the data for the purpose of dis
overingSemanti
 Asso
iations.It has been showed that the problem of sear
hing relation-ship in Semanti
 Web is equivalent to sear
hing paths of
ertain properties in dire
ted graphs. Therefore, known 
on-
lusions and results got from the graph theory 
an be used toimplement the � operators. A work des
ribed in [7℄ 
ontainsa solid base for su
h work. Unfortunately, there is not anypublished work dis
ussing the use of su
h graph algorithmsto implement the � operators.
4. INDEXING RDF GRAPHSThe idea of indexing RDF graph demonstrated in this paperis based on a transformation of the graph into tree or forestof trees in whi
h the sear
hing for relationship between par-ti
ular nodes will be mu
h easier than in general dire
tedgraph. Considering �-path and �-
onne
t operators, the ob-je
tive is to �nd 
ertain paths that represent the asso
iationsamong parti
ular nodes. Therefore a 
onvenient indexingstru
ture to ea
h tree is deployed to make su
h sear
hing aseÆ
ient as possible. Thus the signature [10℄ to ea
h tree isto be 
reated. This approa
h solves the problem of gettingthe relationship between ea
h pair of nodes in a tree by anatomi
 operation. Su
h relationship between two nodes in atree is represented by their mutual position in su
h tree (i.e.an
estor, des
endant, pre
eding or following node). The treesignatures are further des
ribed in the following subse
tion.
4.1 Tree signaturesThe idea of the tree signature is to maintain a small butsuÆ
ient representation of the tree stru
tures. The preorderand postorder ranks1 are used as suggested in [8℄ to linearizethe tree stru
ture.The basi
 tree signature is a list of pairs. Ea
h pair 
ontainsa tree node name along with the 
orresponding postorder1How the preorder and postorder ranks are obtained pleaserefer to [10℄.
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nFigure 3: Properties of the preorder and postorderranks.rank. The list is ordered a

ording to the preorder rankof nodes. An example of a simple tree T des
ribed by itssignature Sig T 
an be found in Figure 2. In the example,the preorder rank of ea
h node is in
luded for illustration.Given a node v with parti
ular preorder and postorder ranks,their properties 
an be summarized in a two-dimensional di-agram, as illustrated in Figure 3, where an
estors ANC(v),des
endants DES(v), pre
eding PRE(v) and following FOL(v)nodes of v in the parti
ular tree are 
learly separated in theirproper regions. Due to these properties the mutual positionof two nodes within one signature is 
lear immediately afterreading a re
ord of either of them in the parti
ular signature.A

ording to the signature stru
ture the basi
 tree signature
an be further extended. To ea
h entry a pair of preordernumbers is added. Those numbers represent pointers to the�rst following, and the �rst an
estor nodes of a given node.If no terminal node exists, the value of the �rst an
estor iszero and the value of the �rst following node is n+1, wheren is the number of nodes in a tree. Su
h an enri
hed signa-ture is 
alled extended signature. Later on when we refer tosignature we will mean the extended one.
4.2 Transforming the graph into forest of treesThe stru
ture of the RDF S
hema and the knowledge base
an be envisioned as a dire
ted graph with ar
s providedwith labels, example is shown in Figure 1. The in
onve-nien
e of this stru
ture lies in the problem of sear
hing pathbetween nodes. Su
h sear
hing algorithms work with greattime 
omputational 
omplexity.Be
ause the stru
ture depi
ted above is not really a generaldire
ted graph, we 
an get the bene�t of the s
hema partof the stru
ture sin
e it 
arries useful information about theknowledge base. The s
hema part has the same fun
tionas a s
hema in the relational database. Then if we 
ouldredu
e the problem of sear
hing in the whole graph to theproblem of sear
hing in the s
hema, whi
h is 
onsiderablysmaller, we 
ould use the same algorithms with better time
omplexity results. But sin
e the graph 
an 
ontain severals
hema de�nitions and the resour
es 
an be derived frommore than one s
hema, the desired paths 
an only be foundusing the real data be
ause they would not be in
luded inthe s
hema de�nition.



BAFigure 4: Dire
ted graphs that are not trees.
4.2.1 Knowledge base transformationA tree 
an be de�ned as a dire
ted graph in whi
h is truethat (1) ea
h node has zero or one in
oming edge and (2) itdoes not 
ontain a 
y
le. Dire
ted graphs marked as A andB depi
ted in Figure 4 break those rules respe
tively. Thetransformation of the dire
ted graph into forest of trees liesin the removal of su
h problemati
 
ases.If we 
onsider the problem marked as (A) in Figure 4, part(1) in Figure 5 shows a transformation to a
hieve stru
ture
onforming to the rule marked as (1). The bla
k node in thephase 1 in Figure 5, means that the node will be `divided'into two nodes in the following phase. The next phase hastwo alternatives, phase 2a demonstrates the division of anode with a dupli
ation of all des
endants to all dividednodes. Phase 2b shows the division without dupli
ation.The right way to handle su
h situation is to use the lat-ter method sin
e it prevents the un
ontrollable growth ofthe stru
ture. This assures that the stru
ture will grow inlinear spa
e instead of possible exponential growth. The de-s
ending nodes should be 
ut o� into stand alone 
omponentto avoid `short 
uts' within one 
omponent. This be
omesimportant in the moment of �nding paths between nodes.Thus the whole graph is traversed and all the nodes thathave more than one in
oming edge are divided into exa
tamount of nodes that is the number of that node's in
omingedges. This transformation 
an lead to breaking the graph2into several 
omponents. These 
omponents are either treesor dire
ted graphs 
ontaining a 
y
le. To identify whi
h
omponents are trees a rule that a graph is a tree only ifit has exa
tly n+1 edges, where n represents the number ofnodes in a parti
ular 
omponent. The non-tree 
omponentsare then transformed as follows.The transformation of the dire
ted graph 
ontaining a 
y
leis depi
ted in the part marked as (2) in the Figure 5. The2We 
onsider that at the beginning the graph 
onsists fromonly one 
omponent.

2a1 2b 1 2

(1) (2)Figure 5: Transformation of a graph to 
onform withrules (1) and (2) respe
tively.

spanning tree of su
h 
omponent is found and the nodes,whi
h edges are not 
ontained in the spanning tree are di-vided. The transformation works in the way that it dividesthe parti
ular node into two, that the �rst one 
ontains allthe edges that have the original node as the terminal one,and the extra node has all the edges that had the originalas a initial one.Obviously, after transforming all the non-tree 
omponents,we get a forest of trees representing the original graph. Of
ourse we have to store the information about the dividednodes to assure that no information 
ontained in the originalgraph will be lost in the new stru
ture. Su
h informationis stored in two inverted �les where the �rst one is used toget all the multiple nodes3 in the parti
ular signature, andthe se
ond table stores to ea
h multiple node all signatures itappears in. Those two inverted �les 
onne
t the 
omponentsba
k into the original graph.The time 
omputation 
omplexity of the transformation ofa general dire
ted graph into forest of trees is estimated toO(4 � 
ard(E)) in the worst 
ase. The algorithm traversesthe graph to identify the nodes with more then one inputedge and divides su
h node, this 
an be done at most thetotal number of edges in the graph. Thus the 
omplexitydepends rather on the number of edges than the number ofnodes.
4.3 Motivation for the recursionOn
e we have obtained the desired forest of trees we 
reatea signature for ea
h 
omponent (tree) of the transformedgraph whi
h together with the additional information aboutmultiple nodes will represent the index to the original RDFgraph. The time 
omputational 
omplexity of su
h opera-tion is equal to O(n) sin
e the algorithm used traverses ea
hnode in ea
h 
omponent on
e. The additional information
onne
ting signatures together is built along and deploysonly atomi
 operations. Su
h information about the multi-ple nodes is represented by two inverted �les. One has inea
h row a name of a multiple node together with a parti
u-lar signature or signatures it appears in. And the other onehas a row for ea
h signature with a list of multiple nodes
ontained in it.Above su
h index algorithms implementing the � path and �
onne
t operators have been designed. The outline of thosealgorithms is demonstrated in the following se
tions. Themore detailed insight into those algorithms 
an be found in[2℄.
4.3.1 Algorithm for discovering pathsThis algorithm returns an answer whether there exists apath between two nodes. The algorithm traverses the forestof trees only in one dire
tion, so to tell whether the pathbetween two nodes exist we have to swit
h the start andend node and deploy the algorithm again if the sear
h hasnot been su

essful for the �rst time. As a by-produ
t italso 
reates a list of multiple nodes that lie on the pathbetween the two nodes. The exa
t path is not 
omputed3A node whi
h was represented as a one in the originalgraph, but is represented by several nodes in the new stru
-ture.



at this point. Another fun
tion to whi
h this list is passedtakes 
are of the exa
t path 
omputation. To make the mostfrom the tree stru
ture of this index, the path is 
omputedfrom the bottom to the top, the �rst an
estor pointer fromthe signature is used to traverse the path.Therefore the algorithm traverses the index stru
ture in onlyone dire
tion, from bottom to top, it has to be deployedtwi
e unless the path has not been found in the �rst de-ployment. Thus to 
he
k whether there is not a path be-tween two nodes we have to exe
ute the algorithm twi
ewith both nodes used as a starting point respe
tively. Thisimplies that the time 
omputational 
omplexity of �ndinga path between two nodes mainly depends on existen
e ofsu
h path and in the worst 
ase is O(n). The problem ofdual exe
ution 
ould be solved if we 
ould tell the mutualposition of the two nodes in the indexing stru
ture. Then we
ould deploy the algorithm exa
tly on
e with the 
orre
tly
hosen starting node.
4.3.2 Algorithm for discovering connectionsAs for the � 
onne
t operator, the nature of the designedindex stru
ture implies that the 
onne
tion, the interse
tingnode, 
an only be a multiple node. Therefore the problemof �nding two paths that interse
t is redu
ed to �nding amultiple node, to whi
h exists a path from either node. Sothis sear
hes the index stru
ture in a dire
tion that the edgeshave. Its starting nodes are the two nodes to whi
h it islooking for 
onne
tion.Throughout the algorithm a set of multiple nodes, nodeswhi
h lie below the parti
ular starting node and are possibleinterse
tion, a set of 
he
ked nodes, nodes through whi
h thealgorithm already swit
hed to di�erent signatures and gotall usable multiples in it, and a set of to do multiple nodes,nodes that have to be still 
he
ked, are built to ea
h startingnode. In ea
h 
y
le iteration those sets are updated for ea
hstarting node separately, ea
h starting node gets one turn to
he
k one multiple node. At the end of ea
h iteration, thealgorithm 
he
ks whether there is a non-empty interse
tionof possible interse
ting nodes and if su
h interse
tion exists,it 
he
ks whether there exist paths from this node to bothstarting nodes.The above outlined algorithm for �nding path interse
tionalso very intensively depends on the existen
e of su
h in-terse
tion. So far we 
an not stop the algorithm withoutsear
hing the entire index that is rea
hable from the twostarting points. It obviously also su�ers from the impos-sibility of telling the mutual position of two nodes in theindexing stru
ture. Therefore the time 
omputational 
om-plexity is una

eptably high when looking for a 
onne
tionthat apparently does not exist in a very large graph.
4.3.3 SummarizationAs is dis
ussed at ea
h of above algorithms, they both su�erfrom the ignoran
e of mutual position of the signatures inthe index. Therefore in a 
y
li
 graph, the algorithms haveto sear
h throughout the whole graph, in the means of theindexing stru
ture, to 
he
k almost all signatures, to �ndall paths between two nodes. Though the indexing stru
-ture 
ontains 
onsiderably less signatures than the originalgraph 
ontained nodes. After all, the ignoran
e of the mu-

tual position of two nodes in the indexing stru
ture 
an beseen 
learly at the path algorithm, it 
an not de
ide whi
hnode should be the starting one.Another drawba
k presented by the above algorithms 
ausedby the ignoran
e of the mutual position is that the outputof the algorithms is some path or a 
onne
tion, not all pathsand 
onne
tion as it would be desired.Hen
e, it is logi
al to improve this indexing stru
ture byanother level that would ease the problem of telling the mu-tual position of nodes in the graph and that would also makepossible to instantly query for all paths of desired proper-ties. The notion of the se
ond level is the use of the sameidea of transforming the graph into forest of trees and thatis exa
tly the aim of the approa
h dis
ussed in the followingse
tion.
5. RECURSIVE APPLICATION OF GRAPH

TO TREE TRANSFORMATIONThe tree signatures together with its inverted �les fully rep-resent the original RDF graph. In the �rst sight, this in-formation 
an be used to 
reate a undire
ted graph, whereindividual signatures represent verti
es and divided multiplenodes represent edges between the parti
ular verti
es. Sin
ewe would like to apply the graph to forest of trees again, theundire
ted graph is not desired. But under 
loser investiga-tion, dire
tions to the edges in the newly built graph 
an beadded. This 
an be done by taking into a

ount the fashionin whi
h the multiple node has been divided and a dire
tionof edges pointing to and from it. Basi
ally, the node thathas been divided represents a set of new nodes, those 
an bedivided into two groups, one that 
ontains nodes that haveout-
oming edges and the other group 
ontaining those thathave only in
oming edge. Then an edge is 
reated for ea
hsignature 
ontaining a node from the latter group and thesignature from the former group with this dire
tion. Thisidea represents the dire
tion of a path in the RDF graphand is represented in Figure 6.
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Figure 6: Giving the edges between signatures itsdire
tions.From the graph theory we 
an represent dire
ted graph byits in
iden
e matrix. Sin
e ea
h matrix also represents somerelation a transitive 
losure of su
h relation 
an be built toget immediate information about 
onne
tivity of ea
h pairof verti
es. Su
h transitive 
losure is t(M) = P1n=1Mn.Where M is our in
iden
e matrix. A

ording to GT thenumber of powers 
omputed is at most the size of the ma-trix. A

ording to graph theory, ea
h step in the 
omputa-tion represents paths of length l between two verti
es wherel is the 
urrent power. Then ea
h number in the t(M) is



Step # ofnodesinorig-inalgraph # ofnodesaftertrans-for-ma-tion # of
om-po-nents Avg# ofnodesin
om-po-nent Minnodesin
om-po-nent Maxnodesin
om-po-nent1 169,271 273,140 17,453 15 2 25782 15,214 77,526 11048 7 2 9243 10,109 62,756 9,194 6 2 8224 8,834 59,360 8,574 6 2 7895 8,402 58,312 8,324 7 2 7826 8,283 58,033 8,256 7 2 779Table 1: Summarization of individual steps of graphto forest of trees transformations.equal to the amount of paths between the two verti
es. Ifwe a

ompany this number by a set of the parti
ular pathsas they were built during the 
omputation of the transi-tive 
losure, we 
ould immediately tell whether there is apath between any two nodes and further more, we 
ould tellthrough whi
h verti
es it goes.Su
h an approa
h 
ould be used dire
tly on the originalgraph, but the problem is the memory intensiveness of su
ha solution. The size of the matrix would limit this solutionto relatively small numbers of nodes in the original graph.The mentioned small numbers represent thousands of nodesbut the real data 
an 
omprise of hundreds of thousands ofnodes.As for the matrix, if the transformed graph 
omprises oflarger amount of nodes than is our limit for 
reating in
i-den
e matrix the whole pro
edure 
an be applied again. Thematrix does not have to be built sin
e we are transformingthe graph into trees in whi
h we 
an tell the mutual positionof ea
h pair of nodes.
5.1 Overhead in the resultThe data that is being used to investigate possibilities of thedesigned stru
ture is a part of the Open Dire
tory Proje
t4that is in RDF format and represent a graph 
omprising ofabout 170,000 nodes.If we apply the graph to forest of trees transformation tothis RDF graph we get a new graph 
omprising of 273,000nodes and 17,000 
omponents. Then the average amountof nodes in a 
omponent is 15 nodes. The maximum andminimum number of nodes in a 
omponent is 2500 and 2,respe
tively. This unbalan
e rises from a fa
t that we tookonly a part of the whole Open Dire
tory by extra
ting the�rst 100,000,000 lines of the RDF dump of the Open Dire
-tory Proje
t. This 
on
ludes that the graph on the input
ontains more then one 
omponent. The indexing stru
ture
omprising of the signatures of the individual 
omponentsand the inverted �les is then 
reated. As the newly 
re-ated graph 
omprises of 17,000 nodes against the 170,000of nodes of the original graph, it is still too mu
h to 
reatethe in
iden
e matrix and to 
ompute its transitive 
losure.Therefore we apply the same transformation again. Table1 summarizes the information about the parameters of thetransformed graphs.The results depi
ted in Table 1 demonstrate that the re
ur-4Can be found at http://www.dmoz.org.

sive appli
ation of the graph to tree transformation 
onsider-ably diminishes the amount of the nodes in the transformedgraph. It also shows that this progress 
onverges to somelimit, in this 
ase the limit is around 8 thousand. The ob-servation also is that the di�eren
e between the third andfourth appli
ation of the transformation is so negligible thatmakes it questionable if the transformation is worth the ef-fort sin
e the overhead of the added nodes is 
onsiderablygreat.The overhead of newly added nodes due to the transforma-tion in the �rst step is about 60%. In the following steps, theoverhead is about �ve to seven times the amount of trans-formed nodes, but on average it is a 38% of the number ofnodes in the original graph. But we should 
onsider that inthe ea
h following step the resulting set of signatures mustnot 
ontain the unique names of dived nodes, it 
an dire
tlypoint to a parti
ular signature on the lower level to whi
hthe parti
ular divided node refers.
5.2 Putting signatures into groupsThe pre
eding se
tion 
on
luded that the re
ursive appli
a-tion of the graph to forest of trees transformation redu
esthe amount of nodes in ea
h step. In the �rst few steps thenumber of redu
ed nodes is signi�
ant. In large s
ale data itstill 
ould not be enough to make possible to built the in
i-den
e matrix due to the limitation of a slow 
onvergen
e toa 
ertain limit. Therefore we have to deploy other approa
hto diminish the number of nodes in the transformed graph.Still it has to be done in a way to preserve the properties ofthe designed indexing stru
ture.To get over the limit of the re
ursive appli
ation of the graphto forest of trees transformation we have to �nd anotherway to de
rease the number of nodes in the transformedgraph. The transformation used is putting signatures intogroups.The parti
ular group is also a

ompanied by the in
i-den
e matrix to maintain the information about the rea
ha-bility of the parti
ular signatures in that group. Speaking inthe terms of graph theory we allo
ate subgraphs of a 
ertainsize whi
h are then represented as a single node in the trans-formed graph. Hen
e we have to store the in
iden
e matrixor its transitive 
losure the size of the subgraph must be
onsiderable.
5.2.1 Multiple edges between groupsIn the respe
t of allo
ating subgraphs in the graph therearises a problem of multiple edges between them. Thismeans that there would exist at least two di�erent edgesof the same dire
tion between two groups. This fa
t rep-resents that there are at least two di�erent paths betweentwo groups represented by one sequen
e of 
omponents. A�eld in the matrix stores unique sequen
e of 
omponentsrepresenting the path, but if we had more then one edgebetween two groups the sequen
es stored at that �eld wouldnot be distin
t. This would lead into problems with path
omputation on the lower level.So if we avoided su
h multiple edges between groups thepath stored in the matrix would dire
tly 
orrespond to asequen
e of nodes on the lower level.But the problem is that the limitation of single edges be-
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Figure 7: Phase 0: Original graph.tween groups 
an lead into a hard 
omputational problemof �nding su
h subgraphs that would satisfy su
h 
ondition.
5.3 Searching the Rho associations using the

indexing structureLet now investigate the usage of the designed indexing stru
-ture on an example of sear
hing asso
iations between nodes.Figure 7 represents a graph where we would like to sear
hthe asso
iations. Firstly, the transformations applied to theoriginal graph will be presented. Then the usage of the in-dex that is 
reated along the transformations of the graphwill be demonstrated.
5.3.1 Phase 1Firstly we apply the graph to forest of trees transformation.The result of su
h transformation is depi
ted in Figure 8.The groups in frames represent tree 
omponents. The bla
knodes indi
ate the nodes that had been divided. The listson the right represent the inverted �les that store the infor-mation about multiple nodes in the tree 
omponents. Onthe left side of the �gure, the smaller graph represents thenew graph 
onsidering ea
h 
omponent as a single node andthe edges of the graph represent the transitions among thetree 
omponents.
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Figure 9: Phase 2: The graph to forest of treestransformation applied on the result of Phase 1.
5.3.2 Phase 2To demonstrate the re
ursive appli
ation of the graph to for-est of trees approa
h the result of the Phase 1 represented asa graph is taken and the same graph to forest of trees trans-formation is applied again. The result is depi
ted in Figure9. The matri
es in the bottom of the �gure represent the
omputation of a transitive 
losure of the �rst in
iden
e ma-trix H. Computing the third power of the in
iden
e matrixis enough to get the whole transitive 
losure sin
e in thefollowing powers the numbers are in
reasing due to the 
y-
le between node IV and V but does not 
ompute any newpath.Again, the boxes in Figure 9 de�ne newly transformed tree
omponents and the inverted �les on the right side trans-fer the information about the 
onne
tedness of the dividednodes from the lower level of the indexing stru
ture.
5.3.3 Composition of the resulting indexing structureThe resulting 
omposition of the designed indexing stru
-ture after Phase 2 is depi
ted in the Figure 10. The bottomlevel number 0 represents the nodes of the original graph.The level marked as level 1 
orresponds to the graph afterthe �rst transformation to forest of trees. The highest levelof the stru
ture 
ontains the transitive 
losure of the ma-trix H. The matrix H is gained observing transitions among
omponents of the graph after the last transformation orgrouping. In our simple example the matrix H representsthe graph where the nodes are the 
omponents got in thePhase 2 and the edges are the transitions between those
omponents. The transition are made through the multiplenodes 
reated during the transformation of the graph into aforest of trees.
5.3.4 � path operatorAs it was already mentioned in Se
tion 1, the � path op-erator returns a set of all paths between a pair of nodes.Figure 11 demonstrates the pro
edure of sear
hing paths inthe indexing stru
ture proposed in this paper. The sear
hesare exe
uted above the indexing stru
ture built for the orig-inal graph depi
ted in Figure 7. The pair of nodes to whi
hthe � path is sear
hed are "1" and "10". Sin
e all nodes
arry also the information into whi
h 
omponents of the
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Figure 10: Visualization of the indexing stru
ture.transformed graphs they belong, the names of the top level
omponents to whi
h the nodes "1" and "10" belong are re-trieved. In this 
ase those 
omponents are "A" and "C" inthe se
ond level. On the third level it is "I" for the node"1" and "I", "IV" and "V" for the node "10". Generally,when looking for the 
omponents to whi
h the examinednodes belong, the visualization of the indexing of the index-ing stru
ture 
an be used. It starts at the lowest level andgoes against the dire
tion of the edges to get to the root ofthe graph. Therefore, in 
ase of the node "10", the node "C"is visited on the se
ond level and nodes "I", "IV" and "V"are visited on the third level of the indexing stru
ture. Thisidea is in the opposition to the notion of the usage of theindexing stru
ture, sin
e it is used in the top down fashion.
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Figure 11: Sear
hing paths using the indexing stru
-ture.The �elds (I, I), (I, IV), (I, V) where the paths from "1"to "10" should be stored and the �elds (IV, I) and (V, I)for paths going from "10" to "1" are retrieved from the topmatrix t(H). This part of the pro
edure is depi
ted in Figure11 as a Step 1. In our example, the �elds (IV, I) and (V,I) are empty, that indi
ates that there does not exists any
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D: 9, 12
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(A      C)     {}  = {3}

Path 1:

Multiple node sequence: 3

(D      C)     {12}  = {9}
(G      D)     {14}  = {12}
(E      G)     {8}  = {14}
(B      E)     {6}  = {8}
(A      B)     {}  = {6}

Path 2:

Multiple node sequence: 6, 8, 14, 12, 9

Path 1’: 1, 2, 3, 9, 10
Path 1’’:1, 4, 3, 9, 10

1, 4, 6, 8, 14, 15, 12, 11, 9, 10Path 2:

Step 4

Sig E = ("8’’’", 1, 2), ("14’", 2, 1)

Sig A = ("1", 1, 6, 0), ("2", 2, 2, 1), ("3’", 3, 1, 2), ("4", 4, 5, 1), ("3’’", 5, 3, 4), ("6’", 6, 4, 4)
Sig B = ("5", 1, 5, 0), ("6’’", 2, 2, 1), ("8’", 3, 1, 2), ("7", 4, 4, 1), ("8’’", 5, 2, 4) 
Sig C =("3’’’", 1, 4, 0), ("9’’", 2, 3, 1), ("10", 3, 2, 2),  ("12’", 4, 1, 3)
Sig D = ("12’’’", 1, 3, 0), ("11", 2, 2, 1), ("9’", 3, 1, 2)

Sig F = ("13", 1, 2, 0), ("14’’", 2, 1, 1)
Sig G = ("14’’’", 1, 3, 0), ("15", 2, 2, 1), ("12’", 3, 1, 2)

Step 5Figure 12: Sear
hing paths using the indexing stru
-ture part 2.path either from "IV" to "I" or "V", "I" in our originalgraph and therefore there does not exist any path betweennodes "10" and "1". The �eld (I, I) is a spe
ial 
ase that isexamined dire
tly on the lower level be
ause it falls into as
ope of one signature where the mutual position of any twonodes is 
lear. The other results bring the �elds (I, IV) and(I, V). Those �elds 
ontain the number 2 and 3 respe
tivelyand sets of �ve paths from "I" to "IV" and "V". Threeof those paths 
an be immediately omitted in the followingsteps sin
e they 
ontain some other path as a pre�x. Thatindi
ates a 
y
le on some of the lower levels. In Figure 11,the resulting paths are marked as Path 1 and Path 2.In the se
ond step of the pro
edure, we des
end in the in-dexing stru
ture one level lower and retrieve a multiple nodesequen
e for ea
h path gained in the �rst step. This methodis presented in Figure 11 as a Step 2. The sequen
e is gainedfrom the inverted �le that stores to ea
h 
omponent the setof multiple nodes it 
ontains. The multiple nodes are theonly nodes taken into a

ount at this moment sin
e onlythose 
an represent a way of getting from one 
omponent toanother. The sequen
e then represent an order of transfersbetween the parti
ular 
omponents. Basi
ally, the path wastranslated from the terms of one level to the terms of thelower level.After the sequen
e of multiple nodes for ea
h path is gained,the a
tual tree signatures are 
onsulted to 
ompute the ex-a
t path from the initial node to the terminal one. In thisexample at the se
ond level, the initial node is "A" and theterminal node is "C". At this point the 
omputation takesinto a

ount the information got in Step 1 that "A" and "C"lie in the same 
omponent. Their mutual position in 
om-ponent "I" is read from its tree signature. Sin
e the gainedpath is pre
isely one of the already a
quired paths it is nottaken into a

ount further on. The signatures des
ribingthe individual 
omponents depi
ted in Figure 9 are shown



in Step 3 of Figure 11. The signatures are listed at an abbre-viated way, the last number representing the pointer to the�rst following node is left out5, sin
e it is not used at thispoint. Using the �rst an
estor pointer stored at ea
h node inthe signature, the sequen
e of multiple nodes is transformedinto a path in
luding also the nodes that are not multipletogether with the initial and the terminal node.The sear
h 
ontinues in Step 4 where the method des
endto a lower a level of the indexing stru
ture again. The in-verted �le of a 
omponents gained in the Phase 1 depi
tedin Figure 8 is used to 
ompute the order of transitions be-tween 
omponents along the path using the pre
omputedsequen
e of 
omponents from the Step 3. This pro
edure isdemonstrated in Figure 12.After the multiple node sequen
e on this level is gained atthe Step 4, the tree signatures are used to 
ompute the exa
tpath between the input nodes. Sin
e this is the lowest levelof the indexing stru
ture, the three sequen
es of nodes 
om-puted in Step 5 marked as Path 1, 1' and 2 are the a
tualpaths and are the result of the � path operator applied to apair of nodes "1" and "10" in the original graph.Path 1 and1' are derived from one multiple node sequen
e got from thehigher level. This was 
aused by the fa
t that node "3" isin our example 
ontained twi
e in the the 
omponent "A"and from the node "1" exists a path to both o

uren
es ofthe node "3".The Steps 4 and 5 represent the same operations above theindexing stru
ture as the Steps 2 and 3. The only di�eren
eis that ea
h pair of steps is 
arried out on a di�erent level ofthe index. This 
on
ludes that the general method of path
omputation would 
onsist of initial Step 1 and then Step2 and 3 repeated while the lowest level of the index is notrea
hed where the input of the following pair of steps is theoutput of the pre
eding pair of steps. If also the groupingof 
omponents that is dis
ussed in Se
tion 5.2 is involvedin the index, the Step 1 is also repeated at the levels thatrepresent the grouping.
5.3.5 � connect operatorThe obje
tive of �nding all interse
ting paths going fromtwo given nodes in the original graph maps to an obje
tiveof �nding a multiple nodes in the indexing stru
ture thathave those two paths as a 
ommon terminus. Those mul-tiple nodes are the 
onne
ting nodes as are de�ned by the� 
onne
t operator. Essentially, the 
onne
ting node has tobe a node in the original graph that has input degree greaterthan one, sin
e it has to be a terminus of two distin
t paths.But su
h node has to be, of 
ourse, divided during the trans-formation sin
e it breaks the desired tree stru
ture. So the
onne
ting node 
an only be some of the divided nodes whi
hare referred to as multiple ones. Hen
e, the obje
tive now isto �nd a path to a 
ommon multiple node from both giveninitial nodes. The top level matrix t(H) is 
onsulted againto �nd su
h paths. The �elds that lie on the row indi
atedby ea
h initial node and whi
h have positive numbers in the5The format of ea
h entry in the signature is:(name of the node, preorder rank, postorder rank, pre-order rank of �rst an
estor). The entries are sorted bytheir preorder ranks.
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Step 2Figure 13: Evaluating � 
onne
t operator.same 
olumn are retrieved be
ause those pre
isely indi
atea path from either node to a 
ommon pla
e in the graph.To demonstrate the whole pro
edure, the � 
onne
t operatoris applied to a pair of nodes "1" and "13". Firstly, the infor-mation to whi
h 
omponents the nodes "1" and "13" belongis retrieved. It is 
omponent "A" and "F" at the �rst leveland "I" and "III" at the se
ond level of the index. Se
ondly,the possible paths to a 
onne
ting nodes are retrieved usingthe top matrix t(H). This step is depi
ted in Figure 13. Inthat �gure, the pairs of 
olored �elds represent a possible an-swer to the query. On the right of the matrix in this �gure,the paths those �elds represent are listed. Again, the paths
ontaining 
y
les 
an be immediately omitted. The de�ni-tion of � 
onne
tion operator says that the two paths 
anhave exa
tly one node in 
ommon. This fa
t states anotherrule that makes possible to omit some paths in the following
omputation even before verifying their 
onne
tedness. Thepro
edure does not have to test those pairs of paths thathave more than one node in 
ommon. In the lower part ofthe Figure 13, the arrows indi
ate whi
h pairs of paths willbe taken into a

ount in the following 
omputation.In the se
ond step, the pro
edure des
ends to a lower levelanalogously to Step 2 of the pre
eding se
tion. The onlydi�eren
e between those two steps is that the pro
edure 
annot tell the terminus of ea
h path in advan
e so it has totake into a

ount all rea
hable multiple nodes in the target
omponent. If the path on the lower level would 
ontain
y
le after adding some multiple node to it, the path 
an beomitted. The transformed paths are depi
ted in Figure 13in Step 2. The possible extension of the path is indi
ated asa node in square bra
kets at the end of the parti
ular path.The pro
edure then des
ends even lower in the index whereit a
tually �nds the multiple node sequen
es that identifya
tual pairs of paths to the parti
ular 
onne
ting node. Inthe example, the three 
onne
tions found at Step 1 were



A: 3, 6
B: 6, 8
C: 3, 9, 12
D: 9, 12
E: 8, 14
F: 14
G: 12, 14

Path 1: 1, 3, 9

Path 5: 1, 6, 8, 14
Path 3: 1, 3, 12

Path 6: 13, 14, 12, 9

Path 1’: 1, 2, 3, 9

Path 5: 1, 4, 6, 8, 14

Path 1’: 1, 4, 3, 9

Path 3: 1, 3, 9, 10, 12 Path 7: 13, 14, 15, 12

Path 8: 13, 14

Path 6: 13, 14, 15, 12, 11, 9

Step 3

Step 4

Path 7: 13, 14, 12
Path 8: 13, 14

Figure 14: Evaluating � 
onne
t operator part 2.all veri�ed to be a
tual result of the � 
onne
tion operator.Moreover, the �rst option tested turned out to be a represen-tation of two 
onne
tions at the lowest level. The reasons ofthe Path 1 re�nement are the same as were presented in thepre
eding subse
tion. The result is presented in the Figure14. It represents Step 4 and Step 5 of the pro
edure pre-sented in the previous se
tion. Finally, the answer to thequery represented by the � 
onne
tion applied to nodes "1"and "13" are four 
onne
tions represented by seven pathsand three 
onne
ting nodes.
6. FUTURE WORKThe �rst obje
t for the future work is to explore the resultsof the proposed pro
edures of implementing the � operatorsusing the indexing stru
ture. Then we would like to makeoptimizations to the pro
ess of 
reating the index. As itwas mentioned at the examples of using the index, there
an be several paths thrown away by observing the 
y
lesthey 
ontain. The 
ore of the optimization is that the matrixshould not 
ontain su
h redundant paths at the �rst pla
e.So instead using the usual matrix operations '+' and '*'during the 
omputation of its transitive 
losure, a spe
ialrede�ned operations should be used to eliminate this kindof redundan
y.The future work will 
ontain also an examination of opti-mization of the graph to tree transformation sin
e it is themajor produ
er of the overhead in the index. Te
hniquesto redu
e the amount of nodes added to the index by thetransformation will be studied.Finally, experiments measuring the time needed to the eval-uation of the � operators using the index will be 
arried outand 
ompared to the graph algorithms 
omputing the sametask. Some of su
h graph algorithms are proposed in [7℄.
7. CONCLUDING REMARKSThe re
ursion proved to be promising approa
h to in
orpo-rate the additional information of mutual position of nodesin the graph into the indexing stru
ture. The in
onvenien
eof this approa
h is the slow 
onvergen
e to reasonable amountof nodes in the top level. Though this diÆ
ulty was solvedby the grouping of 
omponents.

In 
omparison to the index stru
ture designed in [6℄ theapproa
h proposed in this paper solves the problem of thein
onvenient size of the matrix representing the path indexof the RDF graph. The matri
es in our solution are used atthe top levels and the size of them is all in the 
ontrol of theuser.The time 
omplexity of 
reation of the index dis
ussed inthis paper does not depend on the amount of the nodes of theRDF graph to whi
h the index is 
reated but rather on theamount of the edges. That determines the amount of nodesthat have to be divided to 
onform with the tree stru
tureand the height of the tree, sin
e it also indire
tly proposesthe amount of individual 
omponents in the transformedgraph. So in the worst 
ase the input is a 
omplete graphand all the nodes have to be divided. Then the amount of
omponents is equal to the amount of nodes in the originalgraph so the approa
h of grouping of the 
omponents mustbe used sin
e the transformed graph is of the same size asthe original one. Then the time 
omplexity depends on themaximal size of the matri
es that are built for ea
h group.The maximal size is set before the 
reation of the index.The aim of this proje
t is to 
reate a s
alable indexing stru
-ture for RDF graphs a

ompanied with algorithms providingthe � operators fun
tionality with a

eptable time and spa
e
omputational 
omplexity. In the present time the designedindexing stru
ture provides solid base for su
h work.
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