Indexing Structure for Discovering Relationships in RDF
Graph Recursively Applying Tree Transformation

Stanislav Barton
Faculty of Informatics
Masaryk university
Brno, Czech republic

xbarton@fi.muni.cz

ABSTRACT

Discovering the complex relationships between entities is
one way of benefitting from the Semantic Web. This paper
discusses new approaches to implementing p-operators into
RDF querying engines which will enable discovering such
relationships viable. The cornerstone of such implementa-
tion is creating an index which describes the original RDF
graph. The index is created by recursive application of a
transformation of graph to forest of trees. At each step, the
RDF graph is transformed into forest of trees and then to
each tree its extended signature is created. The signatures
are accompanied by the additional information about trans-
formed problematic nodes breaking the tree structure. The
components described by the signatures are assumed as a
single node in the following step. The transitions between
the signatures represent edges.

1. INTRODUCTION

One form of retrieving information from the Semantic Web is
to search for relations among entities. The simple relations
such are the is-a or is-part-of relations can be found easily.
For example using RQL [4] one can find direct relationship
among entities. This means that we are able to retrieve all
the descending classes of one class, even on a different level.
For example the user can ask for all instances of a class
‘artist’ as it is shown in Figure 1. The answer to such query
would be all instances of both its subclasses in the knowledge
base, all painters and sculptors. But in the Semantic Web
there can be observed more complex relationships among
entities [9] than those simple ones.

Such complex relationship can be represented by a path be-
tween two entities consisting of other entities and their prop-
erties. To discover such complex relationships p-operators
[1] have been developed. In this paper, the complex rela-
tionships are discussed and are referred to as Semantic As-
sociations [9]. The p-operators are precisely the tools for

discovering such Semantic Associations. This class contains
p path, p connect and p iso operators.

p path - This operator returns all paths between two enti-
ties in the graph. An example of such relation can be
seen in Figure 1 between resources &r1 and &r4. Such
association represents an information that a painter
called Pablo Picasso had painted a painting which is
exhibited in Reina Sofia Museum.

p connect - This one returns all pairs of paths that inter-
sect in one common node and which initial nodes are
the two entities for which we are searching the associ-
ation. An example of such p connection between the
resources &r6 and &r9 in the Figure 1 is represented by
the paths from resource &r6 to &r8 and from resource
&r9 to &r8 where the resource &r8 is the common node.
This association represents a fact that two artists had
their artifacts (in one case it was a painting and in the
other a sculpture) exhibited in the same museum.

p iso - This operator implies a similarity of nodes and edges
along two paths. The similarity of the the paths, one
starting in resource &ril and ending in &r4 and the
second one going from &r6 to &r8. The two paths
are p isomorphic since they both represent an artist
creating artifact, that is exhibited in a museum.

The possible usage of searching such complex associations
can be found in the field of national security. For example
the system could be used on airports to help to identify
suspicious passengers by looking for available connections
between them.

In this paper we mainly focus on the former two operators
which are the p path and p connect. We introduce a design
of a indexing structure for the RDF graph that will make the
discovery of the relationships described by these p operators
effective.

Section 3 discusses the related work to the topic of indexing
RDF graphs. Section 2 contains a brief introduction into
the RDF and the RDF Schema. In Section 4 we present
our contribution to the issue by introducing the transforma-
tion of the RDF graph into forest of trees and after-wards
the application of tree signatures to those trees. Section 5

location
trin; .
2 g i > g
E]namg -7\ 1 I A NN working_hours
tring . | 1 I f ~ " .
(5] - ! sculpts ! ! ! : 7
= Sculptor L : Sculpture R
- - Rt Integer
, 7 o~ 7 . . [tmeger |
: ’ AN F
v ! :
: ./e% "oil on canvas"”
&r2 07 :
B L a 2000-06-09T12:30:34
" " last_modified -~
- exhibited "Reina Sofia Museum"
S i &rd
g)[) "Michelangelo" sculpts &r5 B
D -
3 : : &7 cxbibited - location FRANCE
= & B
= : : ibi - &r8 working_hours :
paints =
arn)
title
—————— = subClassOf, subPropertyOf (is—a) Abraham and Isaac
= typeOf (instance)

Figure 1: An example of RDF graph

demonstrates the new approach of recursive application of
the graph transformation, the grouping of components and
an example of the creation of the index and demonstrates
the implementation of the p path and connect operators.
Section 6 outlines possible improvements to the indexing
structure that is designed in this paper. Finally Section 7
concludes the whole paper.

2. PRELIMINARIES

The RDF graph depicted in Figure 1 is visualization of an
RDF and RDF Schema notation. These two languages are
used to state the meta information about resources. The
following subsections briefly describe this technology. In the
scope of this paper the RDF is used to create the knowledge
base and the RDF schema to build the schema parts of the
RDF graph.

21 RDF

The abbreviation RDF stands for Resource Description Frame-
work and according to [5] is supposed to be a foundation for
processing metadata. It basically provides a data model for
describing machine-processable semantics of data. The RDF
statement is a triple (S, P, O) whose parts stand for Subject,
Property and Object. Subject is usually identified by URI.
It is basically a resource. The object can be either an ex-
plicit value or a resource also. Since this triple itself can be

considered as a resource it can appear in an RDF statement
as well. This means that the data model can be envisioned
as a labeled hypergraph (each node can be an entire graph)
where an edge between two nodes represents the property
between a subject and an object.

2.2 RDF Schema

Because the modeling primitives of RDF are so basic, there
is no way to define the class-subclass relation. Therefore
an externally specified semantics to some resources was pro-
vided. Such enriched RDF is called RDF Schema [3]. Those
specific resources are for example rdfs:class and rdfs:subclass.

In such enriched environment we are able to define a simple
model of classes and their relations. This can be used to de-
fine simple ontologies in the web space. The RDF Schema
statements are expressed using XML together with its spe-
cific namespace. Even RDF statements can be expressed
using XML with its specific namespace.

3. RELATED WORK

To make the best of the p operators, they should be im-
plemented into an RDF querying system. One of such im-
plementation is presented in [6]. The effort described there
demonstrates an implementation of p path operator above
the RDF Suite [4]. The implementation cornerstones are

D E F G |

—~

3,1)

~

4,2)

—~

5,3) (7,5

—_
©
o)

SigT=(A,1,8),(B,2,4),(D,31),(E42),(F573),(C6,7),(G,75),(,8,6)

Figure 2: An example of a tree signature for a tree

T.

two indices, Path index and Schema index. The former one
is a two-dimensional array of paths - it carries the infor-
mation about all paths between Class 7 and Class j in the
schema part of the RDF graph. The latter one is used to
search for a path between classes in different schemas. The
Path index is very memory intensive when the data grows
to large amounts. Therefore, this paper discusses a different
approach to index the data for the purpose of discovering
Semantic Associations.

It has been showed that the problem of searching relation-
ship in Semantic Web is equivalent to searching paths of
certain properties in directed graphs. Therefore, known con-
clusions and results got from the graph theory can be used to
implement the p operators. A work described in [7] contains
a solid base for such work. Unfortunately, there is not any
published work discussing the use of such graph algorithms
to implement the p operators.

4. INDEXING RDF GRAPHS

The idea of indexing RDF graph demonstrated in this paper
is based on a transformation of the graph into tree or forest
of trees in which the searching for relationship between par-
ticular nodes will be much easier than in general directed
graph. Considering p-path and p-connect operators, the ob-
jective is to find certain paths that represent the associations
among particular nodes. Therefore a convenient indexing
structure to each tree is deployed to make such searching as
efficient as possible. Thus the signature [10] to each tree is
to be created. This approach solves the problem of getting
the relationship between each pair of nodes in a tree by an
atomic operation. Such relationship between two nodes in a
tree is represented by their mutual position in such tree (i.e.
ancestor, descendant, preceding or following node). The tree
signatures are further described in the following subsection.

4.1 Treesignatures

The idea of the tree signature is to maintain a small but
sufficient representation of the tree structures. The preorder
and postorder ranks' are used as suggested in [8] to linearize
the tree structure.

The basic tree signature is a list of pairs. Each pair contains
a tree node name along with the corresponding postorder

!How the preorder and postorder ranks are obtained please
refer to [10].

> post

n pre

Figure 3: Properties of the preorder and postorder
ranks.

rank. The list is ordered according to the preorder rank
of nodes. An example of a simple tree T described by its
signature Sig T can be found in Figure 2. In the example,
the preorder rank of each node is included for illustration.

Given a node v with particular preorder and postorder ranks,
their properties can be summarized in a two-dimensional di-
agram, as illustrated in Figure 3, where ancestors ANC(v),
descendants DES(v), preceding PRE(v) and following FOL(v)
nodes of v in the particular tree are clearly separated in their
proper regions. Due to these properties the mutual position
of two nodes within one signature is clear immediately after
reading a record of either of them in the particular signature.

According to the signature structure the basic tree signature
can be further extended. To each entry a pair of preorder
numbers is added. Those numbers represent pointers to the
first following, and the first ancestor nodes of a given node.
If no terminal node exists, the value of the first ancestor is
zero and the value of the first following node is n+1, where
n is the number of nodes in a tree. Such an enriched signa-
ture is called extended signature. Later on when we refer to
signature we will mean the extended one.

4.2 Transformingthegraphintoforest of trees
The structure of the RDF Schema and the knowledge base
can be envisioned as a directed graph with arcs provided
with labels, example is shown in Figure 1. The inconve-
nience of this structure lies in the problem of searching path
between nodes. Such searching algorithms work with great
time computational complexity.

Because the structure depicted above is not really a general
directed graph, we can get the benefit of the schema part
of the structure since it carries useful information about the
knowledge base. The schema part has the same function
as a schema in the relational database. Then if we could
reduce the problem of searching in the whole graph to the
problem of searching in the schema, which is considerably
smaller, we could use the same algorithms with better time
complexity results. But since the graph can contain several
schema definitions and the resources can be derived from
more than one schema, the desired paths can only be found
using the real data because they would not be included in
the schema definition.

Figure 4: Directed graphs that are not trees.

4.2.1 Knowledge base transformation

A tree can be defined as a directed graph in which is true
that (1) each node has zero or one incoming edge and (2) it
does not contain a cycle. Directed graphs marked as A and
B depicted in Figure 4 break those rules respectively. The
transformation of the directed graph into forest of trees lies
in the removal of such problematic cases.

If we consider the problem marked as (A) in Figure 4, part
(1) in Figure 5 shows a transformation to achieve structure
conforming to the rule marked as (1). The black node in the
phase 1 in Figure 5, means that the node will be ‘divided’
into two nodes in the following phase. The next phase has
two alternatives, phase 2a demonstrates the division of a
node with a duplication of all descendants to all divided
nodes. Phase 2b shows the division without duplication.
The right way to handle such situation is to use the lat-
ter method since it prevents the uncontrollable growth of
the structure. This assures that the structure will grow in
linear space instead of possible exponential growth. The de-
scending nodes should be cut off into stand alone component
to avoid ‘short cuts’ within one component. This becomes
important in the moment of finding paths between nodes.

Thus the whole graph is traversed and all the nodes that
have more than one incoming edge are divided into exact
amount of nodes that is the number of that node’s incoming
edges. This transformation can lead to breaking the graph?
into several components. These components are either trees
or directed graphs containing a cycle. To identify which
components are trees a rule that a graph is a tree only if
it has exactly n+1 edges, where n represents the number of
nodes in a particular component. The non-tree components
are then transformed as follows.

The transformation of the directed graph containing a cycle
is depicted in the part marked as (2) in the Figure 5. The

*We consider that at the beginning the graph consists from
only one component.

1 2 » 1

<

Figure 5: Transformation of a graph to conform with
rules (1) and (2) respectively.

spanning tree of such component is found and the nodes,
which edges are not contained in the spanning tree are di-
vided. The transformation works in the way that it divides
the particular node into two, that the first one contains all
the edges that have the original node as the terminal one,
and the extra node has all the edges that had the original
as a initial one.

Obviously, after transforming all the non-tree components,
we get a forest of trees representing the original graph. Of
course we have to store the information about the divided
nodes to assure that no information contained in the original
graph will be lost in the new structure. Such information
is stored in two inverted files where the first one is used to
get all the multiple nodes® in the particular signature, and
the second table stores to each multiple node all signatures it
appears in. Those two inverted files connect the components
back into the original graph.

The time computation complexity of the transformation of
a general directed graph into forest of trees is estimated to
O(4 * card(E)) in the worst case. The algorithm traverses
the graph to identify the nodes with more then one input
edge and divides such node, this can be done at most the
total number of edges in the graph. Thus the complexity
depends rather on the number of edges than the number of
nodes.

4.3 Motivation for the recursion

Once we have obtained the desired forest of trees we create
a signature for each component (tree) of the transformed
graph which together with the additional information about
multiple nodes will represent the index to the original RDF
graph. The time computational complexity of such opera-
tion is equal to O(n) since the algorithm used traverses each
node in each component once. The additional information
connecting signatures together is built along and deploys
only atomic operations. Such information about the multi-
ple nodes is represented by two inverted files. One has in
each row a name of a multiple node together with a particu-
lar signature or signatures it appears in. And the other one
has a row for each signature with a list of multiple nodes
contained in it.

Above such index algorithms implementing the p path and p
connect operators have been designed. The outline of those
algorithms is demonstrated in the following sections. The
more detailed insight into those algorithms can be found in

[2).

4.3.1 Algorithmfor discovering paths

This algorithm returns an answer whether there exists a
path between two nodes. The algorithm traverses the forest
of trees only in one direction, so to tell whether the path
between two nodes exist we have to switch the start and
end node and deploy the algorithm again if the search has
not been successful for the first time. As a by-product it
also creates a list of multiple nodes that lie on the path
between the two nodes. The exact path is not computed

8A node which was represented as a one in the original
graph, but is represented by several nodes in the new struc-
ture.

at this point. Another function to which this list is passed
takes care of the exact path computation. To make the most
from the tree structure of this index, the path is computed
from the bottom to the top, the first ancestor pointer from
the signature is used to traverse the path.

Therefore the algorithm traverses the index structure in only
one direction, from bottom to top, it has to be deployed
twice unless the path has not been found in the first de-
ployment. Thus to check whether there is not a path be-
tween two nodes we have to execute the algorithm twice
with both nodes used as a starting point respectively. This
implies that the time computational complexity of finding
a path between two nodes mainly depends on existence of
such path and in the worst case is O(n). The problem of
dual execution could be solved if we could tell the mutual
position of the two nodes in the indexing structure. Then we
could deploy the algorithm exactly once with the correctly
chosen starting node.

4.3.2 Algorithmfor discovering connections

As for the p connect operator, the nature of the designed
index structure implies that the connection, the intersecting
node, can only be a multiple node. Therefore the problem
of finding two paths that intersect is reduced to finding a
multiple node, to which exists a path from either node. So
this searches the index structure in a direction that the edges
have. Its starting nodes are the two nodes to which it is
looking for connection.

Throughout the algorithm a set of multiple nodes, nodes
which lie below the particular starting node and are possible
intersection, a set of checked nodes, nodes through which the
algorithm already switched to different signatures and got
all usable multiples in it, and a set of to do multiple nodes,
nodes that have to be still checked, are built to each starting
node. In each cycle iteration those sets are updated for each
starting node separately, each starting node gets one turn to
check one multiple node. At the end of each iteration, the
algorithm checks whether there is a non-empty intersection
of possible intersecting nodes and if such intersection exists,
it checks whether there exist paths from this node to both
starting nodes.

The above outlined algorithm for finding path intersection
also very intensively depends on the existence of such in-
tersection. So far we can not stop the algorithm without
searching the entire index that is reachable from the two
starting points. It obviously also suffers from the impos-
sibility of telling the mutual position of two nodes in the
indexing structure. Therefore the time computational com-
plexity is unacceptably high when looking for a connection
that apparently does not exist in a very large graph.

4.3.3 Summarization

As is discussed at each of above algorithms, they both suffer
from the ignorance of mutual position of the signatures in
the index. Therefore in a cyclic graph, the algorithms have
to search throughout the whole graph, in the means of the
indexing structure, to check almost all signatures, to find
all paths between two nodes. Though the indexing struc-
ture contains considerably less signatures than the original
graph contained nodes. After all, the ignorance of the mu-

tual position of two nodes in the indexing structure can be
seen clearly at the path algorithm, it can not decide which
node should be the starting one.

Another drawback presented by the above algorithms caused
by the ignorance of the mutual position is that the output
of the algorithms is some path or a connection, not all paths
and connection as it would be desired.

Hence, it is logical to improve this indexing structure by
another level that would ease the problem of telling the mu-
tual position of nodes in the graph and that would also make
possible to instantly query for all paths of desired proper-
ties. The notion of the second level is the use of the same
idea of transforming the graph into forest of trees and that
is exactly the aim of the approach discussed in the following
section.

5. RECURSIVEAPPLICATION OF GRAPH

TO TREE TRANSFORMATION

The tree signatures together with its inverted files fully rep-
resent the original RDF graph. In the first sight, this in-
formation can be used to create a undirected graph, where
individual signatures represent vertices and divided multiple
nodes represent edges between the particular vertices. Since
we would like to apply the graph to forest of trees again, the
undirected graph is not desired. But under closer investiga-
tion, directions to the edges in the newly built graph can be
added. This can be done by taking into account the fashion
in which the multiple node has been divided and a direction
of edges pointing to and from it. Basically, the node that
has been divided represents a set of new nodes, those can be
divided into two groups, one that contains nodes that have
out-coming edges and the other group containing those that
have only incoming edge. Then an edge is created for each
signature containing a node from the latter group and the
signature from the former group with this direction. This
idea represents the direction of a path in the RDF graph
and is represented in Figure 6.

[oN

\ fe N s | /- .
R e IR \/

Figure 6: Giving the edges between signatures its
directions.

From the graph theory we can represent directed graph by
its incidence matrix. Since each matrix also represents some
relation a transitive closure of such relation can be built to
get immediate information about connectivity of each pair
of vertices. Such transitive closure is ¢(M) = > °2 | M".
Where M is our incidence matrix. According to GT the
number of powers computed is at most the size of the ma-
trix. According to graph theory, each step in the computa-
tion represents paths of length [between two vertices where
1 is the current power. Then each number in the t(M) is

Step # of | # of | # of | Avg Min Max

nodes nades g%‘_“' # of innodes ?nOdes
orig- | frams- | memts | podes | com- | com-
inal fﬂ;‘. com- nent nent
graph tion E:nt

1 169,271 273,140 17,453 15 2 2578

2 15,214 77,526 11048 7 2 924

3 10,109 62,756 9,194 6 2 822

4 8,834 59,360 8,574 6 2 789

5 8,402 58,312 8,324 7 2 782

6 8,283 58,033 8,256 7 2 779

Table 1: Summarization of individual steps of graph
to forest of trees transformations.

equal to the amount of paths between the two vertices. If
we accompany this number by a set of the particular paths
as they were built during the computation of the transi-
tive closure, we could immediately tell whether there is a
path between any two nodes and further more, we could tell
through which vertices it goes.

Such an approach could be used directly on the original
graph, but the problem is the memory intensiveness of such
a solution. The size of the matrix would limit this solution
to relatively small numbers of nodes in the original graph.
The mentioned small numbers represent thousands of nodes
but the real data can comprise of hundreds of thousands of
nodes.

As for the matrix, if the transformed graph comprises of
larger amount of nodes than is our limit for creating inci-
dence matrix the whole procedure can be applied again. The
matrix does not have to be built since we are transforming
the graph into trees in which we can tell the mutual position
of each pair of nodes.

5.1 Overhead intheresult

The data that is being used to investigate possibilities of the
designed structure is a part of the Open Directory Project®
that is in RDF format and represent a graph comprising of
about 170,000 nodes.

If we apply the graph to forest of trees transformation to
this RDF graph we get a new graph comprising of 273,000
nodes and 17,000 components. Then the average amount
of nodes in a component is 15 nodes. The maximum and
minimum number of nodes in a component is 2500 and 2,
respectively. This unbalance rises from a fact that we took
only a part of the whole Open Directory by extracting the
first 100,000,000 lines of the RDF dump of the Open Direc-
tory Project. This concludes that the graph on the input
contains more then one component. The indexing structure
comprising of the signatures of the individual components
and the inverted files is then created. As the newly cre-
ated graph comprises of 17,000 nodes against the 170,000
of nodes of the original graph, it is still too much to create
the incidence matrix and to compute its transitive closure.
Therefore we apply the same transformation again. Table
1 summarizes the information about the parameters of the
transformed graphs.

The results depicted in Table 1 demonstrate that the recur-

“Can be found at http://www.dmoz.org.

sive application of the graph to tree transformation consider-
ably diminishes the amount of the nodes in the transformed
graph. It also shows that this progress converges to some
limit, in this case the limit is around 8 thousand. The ob-
servation also is that the difference between the third and
fourth application of the transformation is so negligible that
makes it questionable if the transformation is worth the ef-
fort since the overhead of the added nodes is considerably
great.

The overhead of newly added nodes due to the transforma-
tion in the first step is about 60%. In the following steps, the
overhead is about five to seven times the amount of trans-
formed nodes, but on average it is a 38% of the number of
nodes in the original graph. But we should consider that in
the each following step the resulting set of signatures must
not contain the unique names of dived nodes, it can directly
point to a particular signature on the lower level to which
the particular divided node refers.

5.2 Putting signaturesinto groups

The preceding section concluded that the recursive applica-
tion of the graph to forest of trees transformation reduces
the amount of nodes in each step. In the first few steps the
number of reduced nodes is significant. In large scale data it
still could not be enough to make possible to built the inci-
dence matrix due to the limitation of a slow convergence to
a certain limit. Therefore we have to deploy other approach
to diminish the number of nodes in the transformed graph.
Still it has to be done in a way to preserve the properties of
the designed indexing structure.

To get over the limit of the recursive application of the graph
to forest of trees transformation we have to find another
way to decrease the number of nodes in the transformed
graph. The transformation used is putting signatures into
groups.The particular group is also accompanied by the inci-
dence matrix to maintain the information about the reacha-
bility of the particular signatures in that group. Speaking in
the terms of graph theory we allocate subgraphs of a certain
size which are then represented as a single node in the trans-
formed graph. Hence we have to store the incidence matrix
or its transitive closure the size of the subgraph must be
considerable.

5.2.1 Multiple edges between groups

In the respect of allocating subgraphs in the graph there
arises a problem of multiple edges between them. This
means that there would exist at least two different edges
of the same direction between two groups. This fact rep-
resents that there are at least two different paths between
two groups represented by one sequence of components. A
field in the matrix stores unique sequence of components
representing the path, but if we had more then one edge
between two groups the sequences stored at that field would
not be distinct. This would lead into problems with path
computation on the lower level.

So if we avoided such multiple edges between groups the
path stored in the matrix would directly correspond to a

sequence of nodes on the lower level.

But the problem is that the limitation of single edges be-

e)
N)

Figure 7: Phase 0: Original graph.

tween groups can lead into a hard computational problem
of finding such subgraphs that would satisfy such condition.

5.3 Searching the Rho associations using the
indexing structure

Let now investigate the usage of the designed indexing struc-
ture on an example of searching associations between nodes.
Figure 7 represents a graph where we would like to search
the associations. Firstly, the transformations applied to the
original graph will be presented. Then the usage of the in-
dex that is created along the transformations of the graph
will be demonstrated.

53.1 Phasel

Firstly we apply the graph to forest of trees transformation.
The result of such transformation is depicted in Figure 8.
The groups in frames represent tree components. The black
nodes indicate the nodes that had been divided. The lists
on the right represent the inverted files that store the infor-
mation about multiple nodes in the tree components. On
the left side of the figure, the smaller graph represents the
new graph considering each component as a single node and
the edges of the graph represent the transitions among the
tree components.

A:3,6
B:6,8
C:391L
D:9,12
E 8,14
F: 14

G: 12,14

3AC
6:A,B
8 B,E
9:C,D
12:C,D, ¢
14 EFG

Figure 8: Phase 1: The graph to forest of trees
transformation.

[I:C,G
1:D,G
O/O”' 1I: G
L IV:D,C
V/\—\:O V:D,C
%
ClIvV,V
D:Il,1V,V
G

H| i g Vv HeH? | i e v v HHH? | 1 i i v v
i 1 1 [l 1 2i1 [1 23
1 1 n 11 1 2i1
" 1 [1 1 " 1 1i1
v 1 v 11 v 12
v 1 v 11 v 2i1

Figure 9: Phase 2: The graph to forest of trees
transformation applied on the result of Phase 1.

5.3.2 Phase?2

To demonstrate the recursive application of the graph to for-
est of trees approach the result of the Phase 1 represented as
a graph is taken and the same graph to forest of trees trans-
formation is applied again. The result is depicted in Figure
9. The matrices in the bottom of the figure represent the
computation of a transitive closure of the first incidence ma-
trix H. Computing the third power of the incidence matrix
is enough to get the whole transitive closure since in the
following powers the numbers are increasing due to the cy-
cle between node IV and V but does not compute any new
path.

Again, the boxes in Figure 9 define newly transformed tree
components and the inverted files on the right side trans-
fer the information about the connectedness of the divided
nodes from the lower level of the indexing structure.

5.3.3 Composition of the resulting indexing structure

The resulting composition of the designed indexing struc-
ture after Phase 2 is depicted in the Figure 10. The bottom
level number 0 represents the nodes of the original graph.
The level marked as level 1 corresponds to the graph after
the first transformation to forest of trees. The highest level
of the structure contains the transitive closure of the ma-
trix H. The matrix H is gained observing transitions among
components of the graph after the last transformation or
grouping. In our simple example the matrix H represents
the graph where the nodes are the components got in the
Phase 2 and the edges are the transitions between those
components. The transition are made through the multiple
nodes created during the transformation of the graph into a
forest of trees.

5.3.4 p path operator

As it was already mentioned in Section 1, the p path op-
erator returns a set of all paths between a pair of nodes.
Figure 11 demonstrates the procedure of searching paths in
the indexing structure proposed in this paper. The searches
are executed above the indexing structure built for the orig-
inal graph depicted in Figure 7. The pair of nodes to which
the p path is searched are ”"1” and "10”. Since all nodes
carry also the information into which components of the

Level 3

Level 2

Level 1

Level 0

Figure 10: Visualization of the indexing structure.

transformed graphs they belong, the names of the top level
components to which the nodes ”1” and ”10” belong are re-
trieved. In this case those components are ”A” and ”C” in
the second level. On the third level it is ”"I” for the node
”1” and "1”, ”IV” and ”V” for the node ”"10”. Generally,
when looking for the components to which the examined
nodes belong, the visualization of the indexing of the index-
ing structure can be used. It starts at the lowest level and
goes against the direction of the edges to get to the root of
the graph. Therefore, in case of the node ”10”, the node " C”
is visited on the second level and nodes "I”, "IV” and *V”
are visited on the third level of the indexing structure. This
idea is in the opposition to the notion of the usage of the
indexing structure, since it is used in the top down fashion.

I:C.G Path 1:
1:D,G ar v~ () =(c)
1I: G
Multiple node sequence: C
IvV:D,C
V:D,C Path 2:
Path 1 T~ I~ {} ={G}
(I~ V)N {C} ={D}
vy Multiple node sequence: G, D
=LILIV Path 2
Step 1 Step 2
Sig1=(A, 1,5,0), (C", 2,1, 1), (B.3, 4, 1), (E, 4,3,3), (G, 5,2, 4) Path1: A,C
Sigll=(G’, 1,2,0), (D, 2,1, 1) Path2: A B,E.G,D,C
Sigl = (F, 1,2,0), (G, 2, 1, 1)
SigIV=(D", 1,2,0), (¢ 2,1, 1)
SigV=(C,1,2,0), (D, 2,1, 1)
Step 3

Figure 11: Searching paths using the indexing struc-
ture.

The fields (I, I), (I, IV), (I, V) where the paths from ”1”
to 710" should be stored and the fields (IV, I) and (V, I)
for paths going from ”10” to ”1” are retrieved from the top
matrix ¢t(H). This part of the procedure is depicted in Figure
11 as a Step 1. In our example, the fields (IV, I) and (V,
I) are empty, that indicates that there does not exists any

Path 1: Path 2:

A:3,6

B: 6,8 AN ON{} ={3} (An B)N {} ={6}
C:3,9,12 B~ E) {6 ={8
D: 9, 12 Multiple node sequence: 3 (E~ G)~ {8 ={14}
E8 14 (G~ D) {14} ={12}
E14 (D~ O\ {12} ={9}
G: 12,14

Multiple node sequence: 6, 8, 14, 12, 9

Step 4

,) 3,1,2),("7", 4,4,1),("8"",5,2,4)
1,4,0),("9°",2,3,1), ("10", 3,2, 2), ("12",4,1,3)
,1,3,0),("11",2,2,1), ("9"", 3,1, 2)
1,2), ("14™,2,1)

"1,2,0), (147", 2,1, 1)
SigG=("14""",1,3,0), ("15", 2,2, 1), ("12", 3,1, 2)

Path1: 1,239,110
Path1':1,4,3,9,10
Path2: 1,4,6,8,14,15,12,11,9,10

Step 5

Figure 12: Searching paths using the indexing struc-
ture part 2.

path either from ”IV” to ”I” or "V”, "I” in our original
graph and therefore there does not exist any path between
nodes ”10” and ”1”. The field (I, I) is a special case that is
examined directly on the lower level because it falls into a
scope of one signature where the mutual position of any two
nodes is clear. The other results bring the fields (I, IV) and
(I, V). Those fields contain the number 2 and 3 respectively
and sets of five paths from ”I” to ”IV” and "V”. Three
of those paths can be immediately omitted in the following
steps since they contain some other path as a prefix. That
indicates a cycle on some of the lower levels. In Figure 11,
the resulting paths are marked as Path 1 and Path 2.

In the second step of the procedure, we descend in the in-
dexing structure one level lower and retrieve a multiple node
sequence for each path gained in the first step. This method
is presented in Figure 11 as a Step 2. The sequence is gained
from the inverted file that stores to each component the set
of multiple nodes it contains. The multiple nodes are the
only nodes taken into account at this moment since only
those can represent a way of getting from one component to
another. The sequence then represent an order of transfers
between the particular components. Basically, the path was
translated from the terms of one level to the terms of the
lower level.

After the sequence of multiple nodes for each path is gained,
the actual tree signatures are consulted to compute the ex-
act path from the initial node to the terminal one. In this
example at the second level, the initial node is " A” and the
terminal node is ”C”. At this point the computation takes
into account the information got in Step 1 that ”A” and ”C”
lie in the same component. Their mutual position in com-
ponent "I” is read from its tree signature. Since the gained
path is precisely one of the already acquired paths it is not
taken into account further on. The signatures describing
the individual components depicted in Figure 9 are shown

in Step 3 of Figure 11. The signatures are listed at an abbre-
viated way, the last number representing the pointer to the
first following node is left out?, since it is not used at this
point. Using the first ancestor pointer stored at each node in
the signature, the sequence of multiple nodes is transformed
into a path including also the nodes that are not multiple
together with the initial and the terminal node.

The search continues in Step 4 where the method descend
to a lower a level of the indexing structure again. The in-
verted file of a components gained in the Phase 1 depicted
in Figure 8 is used to compute the order of transitions be-
tween components along the path using the precomputed
sequence of components from the Step 3. This procedure is
demonstrated in Figure 12.

After the multiple node sequence on this level is gained at
the Step 4, the tree signatures are used to compute the exact
path between the input nodes. Since this is the lowest level
of the indexing structure, the three sequences of nodes com-
puted in Step 5 marked as Path 1, 1’ and 2 are the actual
paths and are the result of the p path operator applied to a
pair of nodes ”1” and ”10” in the original graph.Path 1 and
1’ are derived from one multiple node sequence got from the
higher level. This was caused by the fact that node ”3” is
in our example contained twice in the the component ”A”
and from the node ”1” exists a path to both occurences of
the node ”3”.

The Steps 4 and 5 represent the same operations above the
indexing structure as the Steps 2 and 3. The only difference
is that each pair of steps is carried out on a different level of
the index. This concludes that the general method of path
computation would consist of initial Step 1 and then Step
2 and 3 repeated while the lowest level of the index is not
reached where the input of the following pair of steps is the
output of the preceding pair of steps. If also the grouping
of components that is discussed in Section 5.2 is involved
in the index, the Step 1 is also repeated at the levels that
represent the grouping.

5.3.5 p connect operator

The objective of finding all intersecting paths going from
two given nodes in the original graph maps to an objective
of finding a multiple nodes in the indexing structure that
have those two paths as a common terminus. Those mul-
tiple nodes are the connecting nodes as are defined by the
p connect operator. Essentially, the connecting node has to
be a node in the original graph that has input degree greater
than one, since it has to be a terminus of two distinct paths.
But such node has to be, of course, divided during the trans-
formation since it breaks the desired tree structure. So the
connecting node can only be some of the divided nodes which
are referred to as multiple ones. Hence, the objective now is
to find a path to a common multiple node from both given
initial nodes. The top level matrix ¢(H) is consulted again
to find such paths. The fields that lie on the row indicated
by each initial node and which have positive numbers in the

5The format of each entry in the signature is:
(name_of_the_node, preorder_rank, postorder_rank, pre-
order_rank_of_first_ancestor). The entries are sorted by
their preorder ranks.

vy L

tH)| 1 mm:v: v

. ~NLILIV, V

-LV, IV =ML IL IV

-LI =1L I

Pathl: LV =——= Path6: IILILIV,V

Path2: LILIV,V Path7: I, II, IV
Path3: 1,V,1V Path 8: 1L, 11
Pathd4: LIL, 1V /
Path5: 1,11
Step 1
1:C,G Path1: A, C[.D] Path6: F,G.D,C

Path3: A, C,D
1: D, G Path5: A,G[, D]

II: G
Iv:D,C
V:D,C

Path7: F,G,D
Path8: F,G[,D]

Step 2

Figure 13: Evaluating p connect operator.

same column are retrieved because those precisely indicate
a path from either node to a common place in the graph.

To demonstrate the whole procedure, the p connect operator
is applied to a pair of nodes ”1” and ”13”. Firstly, the infor-
mation to which components the nodes ”1” and ”13” belong
is retrieved. It is component ”A” and "F” at the first level
and "I” and "III” at the second level of the index. Secondly,
the possible paths to a connecting nodes are retrieved using
the top matrix ¢(H). This step is depicted in Figure 13. In
that figure, the pairs of colored fields represent a possible an-
swer to the query. On the right of the matrix in this figure,
the paths those fields represent are listed. Again, the paths
containing cycles can be immediately omitted. The defini-
tion of p connection operator says that the two paths can
have exactly one node in common. This fact states another
rule that makes possible to omit some paths in the following
computation even before verifying their connectedness. The
procedure does not have to test those pairs of paths that
have more than one node in common. In the lower part of
the Figure 13, the arrows indicate which pairs of paths will
be taken into account in the following computation.

In the second step, the procedure descends to a lower level
analogously to Step 2 of the preceding section. The only
difference between those two steps is that the procedure can
not tell the terminus of each path in advance so it has to
take into account all reachable multiple nodes in the target
component. If the path on the lower level would contain
cycle after adding some multiple node to it, the path can be
omitted. The transformed paths are depicted in Figure 13
in Step 2. The possible extension of the path is indicated as
a node in square brackets at the end of the particular path.

The procedure then descends even lower in the index where
it actually finds the multiple node sequences that identify
actual pairs of paths to the particular connecting node. In
the example, the three connections found at Step 1 were

A:3,6 Path1: 1,3,9
B:6,8 Path 3. 1,3,12
C:3,9,12 Path5: 1,6,8,14
D:9,12

E:8 14

F: 14

G 12,14

Path 6: 13,14,12,9
Path 7. 13,14, 12
Path 8: 13,14

Step 3

Path1: 1,2,3,9
> Path 6: 13, 14, 15, 12, 11, 9
Path 1 1,4,3,9

Path3: 1,3,9,10,12 < Path7: 13,14,15,12
Path5: 1,4,6,8,14 <———— = Path8: 13,14

Step 4

Figure 14: Evaluating p connect operator part 2.

all verified to be actual result of the p connection operator.
Moreover, the first option tested turned out to be a represen-
tation of two connections at the lowest level. The reasons of
the Path 1 refinement are the same as were presented in the
preceding subsection. The result is presented in the Figure
14. Tt represents Step 4 and Step 5 of the procedure pre-
sented in the previous section. Finally, the answer to the
query represented by the p connection applied to nodes ”1”
and ”13” are four connections represented by seven paths
and three connecting nodes.

6. FUTURE WORK

The first object for the future work is to explore the results
of the proposed procedures of implementing the p operators
using the indexing structure. Then we would like to make
optimizations to the process of creating the index. As it
was mentioned at the examples of using the index, there
can be several paths thrown away by observing the cycles
they contain. The core of the optimization is that the matrix
should not contain such redundant paths at the first place.
So instead using the usual matrix operations '+’ and '*
during the computation of its transitive closure, a special
redefined operations should be used to eliminate this kind
of redundancy.

The future work will contain also an examination of opti-
mization of the graph to tree transformation since it is the
major producer of the overhead in the index. Techniques
to reduce the amount of nodes added to the index by the
transformation will be studied.

Finally, experiments measuring the time needed to the eval-
uation of the p operators using the index will be carried out
and compared to the graph algorithms computing the same
task. Some of such graph algorithms are proposed in [7].

7. CONCLUDING REMARKS

The recursion proved to be promising approach to incorpo-
rate the additional information of mutual position of nodes
in the graph into the indexing structure. The inconvenience
of this approach is the slow convergence to reasonable amount
of nodes in the top level. Though this difficulty was solved
by the grouping of components.

In comparison to the index structure designed in [6] the
approach proposed in this paper solves the problem of the
inconvenient size of the matrix representing the path index
of the RDF graph. The matrices in our solution are used at
the top levels and the size of them is all in the control of the
user.

The time complexity of creation of the index discussed in
this paper does not depend on the amount of the nodes of the
RDF graph to which the index is created but rather on the
amount of the edges. That determines the amount of nodes
that have to be divided to conform with the tree structure
and the height of the tree, since it also indirectly proposes
the amount of individual components in the transformed
graph. So in the worst case the input is a complete graph
and all the nodes have to be divided. Then the amount of
components is equal to the amount of nodes in the original
graph so the approach of grouping of the components must
be used since the transformed graph is of the same size as
the original one. Then the time complexity depends on the
maximal size of the matrices that are built for each group.
The maximal size is set before the creation of the index.

The aim of this project is to create a scalable indexing struc-
ture for RDF graphs accompanied with algorithms providing
the p operators functionality with acceptable time and space
computational complexity. In the present time the designed
indexing structure provides solid base for such work.

8. REFERENCES
[1] Kemafor Anyanwu and Amit Sheth. The rho operator:
discovering and ranking associations on the semantic
web. SIGMOD Rec., 31(4):42-47, 2002.

[2] Stanislav Bartoi. Designing indexing structure for
discovering relationships in RDF graphs. In
Proceedings of the Dateso 2004 Annual International
Workshop on DAtabases, TExts, Specifications and
Objects, pages 1-11, 2004.

[3] D. Brickley and R. V. Guha. Resource description
framework schema specification. 2000.

[4] G. Karvounarakis, S. Alexaki, V. Christophides,
D. Plexousakis, and M. Scholl. RQL: A declarative
query language for RDF. In The 11th Intl. World
Wide Web Conference (WWW2002), 2002.

[6] O. Lassila and R. R. Swick. Resource description
framework: Model and syntax specification. 1999.

[6] Agarwal Minal, Gomadam Karthik, Krishnan Rupa,
and Yeluri Durga. Rho: Semantic operator for
extracting meaningful relationships from semantic
content.

[7] Robert Endre Tarjan. Fast algorithms for solving path
problems. J. ACM, 28(3):594-614, 1981.

[8] T.Grust. Accelerating xpath location steps. In The
11th Intl. World Wide Web Conference (WWW2002),
pages 109-120, 2002.

[9] Sanjeev Thacker, Amit Sheth, and Shuchi Patel.
Complex relationships for the semantic web. In
D. Fensel, J. Hendler, H. Liebermann, and

W. Wabhlster, editors, Spinning the Semantic Web.
MIT Press, 2002.

[10] Pavel Zezula, Giuseppe Amato, Franca Debole, and
Fausto Rabitti. Tree signatures for XML querying and
navigation. Lecture Notes in Computer Science,
2824:149-163, 2003.

