Similarity Searching: Towards Bulk-loading Peer-to-Peer Networks

Vlastislav Dohnal

Jan Sedmidubsky

Pavel Zezula David Novak

Faculty of Informatics
Masaryk University
Botanicka 68a, Brno, Czech Republic
{dohnal, xsedmid, zezula, david.novak } @fi.muni.cz

Abstract

Due to the exponential growth of digital data and its
complexity, we need a technique which allows us to search
such collections efficiently. A suitable solution seems to
be based on the peer-to-peer (P2P) network paradigm and
the metric-space model of similarity. During the building
phase of the distributed structure, the peers often split as
new peers join the network. During a peer split, the local
data is halved and one half is migrated to the new peer. In
this paper, we study the problem of efficient splits of metric
data locally organized by an M-tree and we propose a novel
algorithm for speeding the splits up. In particular, we fo-
cus on the metric-based structured P2P network called the
M-Chord. In experimental evaluation, we compare the pro-
posed algorithm with several straightforward solutions on a
real network organizing 10 million images. Our algorithm
provides a significant performance boost.

1. Introduction

Current data processing applications use data with con-
siderably less structure and much less precise queries than
traditional database systems. An example is multimedia
data like images or video clips that offer query-by-example
search. This situation is what has given rise to similarity
searching. The most general approach to similarity search,
still allowing construction of index structures, is modeled in
a metric space. Many index structures were developed and
surveyed recently [25, 30]. The latest efforts in this area fo-
cus on the design of distributed access structures which ex-
ploit more computational and storage resources [2, 13, 4, 3]
in order to cope with the problem of exponential growth
of digital data that must be processed. A suitable solution
arises from peer-to-peer (P2P) networks which are scalable.

In this digital-explosion age, a P2P index structure needs
to organize a non-trivial amount of data, e.g., tens of mil-
lions of data objects (records) or even more. In this respect,

each peer of this network has to also maintain a large num-
ber of data objects, so the search within the peer is usually
sped up by a local (centralized) index structure. During the
operation of this P2P structure, peers get overloaded due to
the insertion of new data or an increasing number of queries
processed. This situation is handled by peer splits. Conse-
quently, the data content of the overloaded peer must be
halved, that is the local index structure must be split.

In this paper, we concentrate on effective splits of local
indices. We study this problem on the P2P index structure
called the M-Chord [22] which uses the M-tree [8] to index
peer’s local data. This M-tree is enriched with extensions of
the Slim-tree [28] and the PM-tree [27]. The paper is struc-
tured as follows. After related work, Section 2 contains the
description of the architecture of our image retrieval system.
In Section 3, we present four algorithms to split peers. The
paper concludes with a performance comparison.

1.1. Related work

Multimedia data are often modeled as high-dimensional
spaces, so a variety of high-dimensional index structures
were proposed, e.g., the R-tree, the TV-tree, the SS-tree or
the X-tree. A more generic approach to index such data
is to exploit the metric space model, e.g. the M-tree [8],
the Slim-tree [28], the GNAT [6], the SAT [21] or the D-
index [11].

Due to the need to organize large databases, many tech-
niques to bulk-load index structures were proposed. The
Hilbert R-tree [17] is probably the first modification of R-
tree aiming at optimized insertion of a large number of data
records. It is based on sorting the elements first and then
building the tree bottom-up. Earlier, similar techniques
were proposed for the B-tree [18] and the quadtree [23, 15],
for illustration. A bulk-loading algorithm which also opti-
mizes the tree in order to improve search efficiency is pro-
posed in [S]. It is demonstrated on the X-tree but it can
be applied to any R-tree-like structure. Another variant of
R-tree called the Priority R-tree [1] is slightly less efficient



