
Ontology-based and Evolutionary Search for Computational Agents Schemes

Roman Neruda∗

Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod vodarenskou vezi 2, 18207 Prague 8, Czech Republic
roman@cs.cas.cz

Abstract

This work deals with a problem of automatic composition of
multi-agent system satisfying given constraints. A general con-
cept of representation of connected groups of agents (schemes)
within a multi-agent system is introduced and utilized for au-
tomatic building of schemes to solve a given computational in-
telligence task. We propose a combination of an evolutionary
algorithm and a formal logic resolution system which is able
to propose and verify new schemes. The approach is illustrated
on simple examples.

1 Introduction

Autonomous agents are small self-contained programs that
can solve simple problems in a well-defined domain [10]. In
order to solve complex problems, agents have to collaborate,
forming Multi-Agent Systems (MAS). A key issue in MAS
research is how to generate MAS configurations that solve a
given problem [5]. In most Systems, an intelligent (human)
user is required to set up the system configuration. Devel-
oping algorithms for automatic configuration of Multi-Agent
Systems is a major challenge for AI research.

We have developed a platform for creating Multi-Agent
Systems [7], [9]. Its main areas of application are compu-
tational intelligence methods (genetic algorithms, neural net-
works, fuzzy controllers) on single machines and clusters of
workstations. Hybrid models, including combinations of ar-
tificial intelligence methods such as neural networks, genetic
algorithms and fuzzy logic controllers, seem to be a promis-
ing and extensively studied research area [2]. Our distributed
multi-agent system — provides a support for an easy cre-
ation and execution of such hybrid AI models utilizing the
Java/JADE environment.

The above mentioned applications require a number of co-
operating agents to fulfill a given task. So far, MAS are created

∗This research has been supported by the the project 1ET100300419 of
the Program Information Society (of the Thematic Program II of the National
Research Program of the Czech Republic) “Intelligent Models, Algorithms,
Methods and Tools for the Semantic Web Realization”.

and configured manually. In this paper, we introduce two ap-
proaches for creation and possible configuration of MAS. One
of them is based on formal descriptions and provides a logical
reasoning component for the system.

The second approach to MAS generation employs evo-
lutionary algorithm (EA) which is tailored to work on
special structures—directed acyclic graphs—denoting MAS
schemata. The advantage of EA is that it requires very little
additional information apart from a measure of MAS perfor-
mance. Thus, the typical run of EA consists of thousands of
simulations which build and assess the fitness values of various
MAS. Since the properties of logical reasoning search and evo-
lutionary search are dual, the ultimate goal of this work is to
provide a solution combining these two approaches in a hybrid
search algorithm. This paper presents the first steps towards
such a goal.

2 Description of MAS by means of Logics

The most natural approach to formalize ontologies is the
use of First Order Predicate Logics (FOL). The disadvantage
of FOL-based languages is the expressive power of FOL. FOL
is undecidable [4], and there are no efficient reasoning proce-
dures. Nowadays, the de facto standard for ontology descrip-
tion language for formal reasoning is the family of description
logics. Description logics are equivalent to subsets of first or-
der logic restricted to predicates of arity one and two [3]. They
are known to be equivalent to modal logics [1]. For the pur-
pose of describing multi-agent systems, description logics are
sometimes too weak. In these cases, we want to have a more
expressive formalism. We decided to use Prolog-style logic
programs for this. In the following we describe how both ap-
proaches can be combined together.

An agent is an entity that has some form of perception of its
environment, can act, and can communicate with other agents.
It has specific skills and tries to achieve goals. A Multi-Agent
System (MAS) is an assemble of interacting agents in a com-
mon environment [6]. In order to use automatic reasoning on
a MAS, the MAS must be described in formal logics. For the
computational system, we define a formal description for the
static characteristics of the agents, and their communication



channels. We do not model dynamic aspects of the system yet.
Agents communicate via messages and triggers. Messages

are XML-encoded FIPA standard messages. Triggers are pat-
terns with an associated behavior. When an agent receives a
message matching the pattern of one of its triggers, the associ-
ated behavior is executed. In order to identify the receiver of
a message, the sending agent needs the message itself and an
id of the receiving agent. A conversation between two agents
usually consists of a number of messages conforming to FIPA
protocols. In order to abstract from the actual messages, we
subsume all these messages under a message type when de-
scribing an agent in formal logics.

Definition 1 (Message type) A message type identifies a cat-
egory of messages that can be send to an agent in order to
fulfill a specific task. We refer to message types by unique iden-
tifiers.

The set of message types understood by an agent is called
its interface. For outgoing messages, each link of an agent is
associated with a message type. Via this link, only messages
of the given type are sent. We call a link with its associated
message type a gate.

Definition 2 (Interface) An interface is the set of message
types understood by a class of agents.

Definition 3 (Gate) A gate is a tuple consisting of a message
type and a named link.

Now it is easy to define if two agents can be connected:
Agent A can be connected to agent B via gate G if the mes-
sage type of G is in the list of interfaces of agent B. Note
that one output gate sends messages of one type only, whereas
one agent can receive different types of messages. This is a
very natural concept: When an agent sends a message to some
other agent via a gate, it assigns a specific role to the other
agent, e.g. being a supplier of training data. On the receiving
side, the receiving agent usually should understand a number
of different types of messages, because it may have different
roles for different agents.

Definition 4 (Connection) A connection is described by a
triple consisting of a sending agent, the sending agent’s gate,
and a receiving agent.

Next we define agents and agent classes. Agents are cre-
ated by generating instances of classes. An agent derives all its
characteristics from its class definition. Additionally, an agent
has a name to identify it. The static aspects of an agent class
are described by the interface of the agent class (the messages
understood by the agents of this class), the gates of the agent
(the messages send by agents of this class), and the type(s) of
the agent class. Types are nominal identifiers for characteris-
tics of an agent. The types used to describe the characteristics
of the agents should be ontological sound.

Concepts
mas(C) C is a Multi-Agent System
class(C) C is the name of an agent class
gate(C) C is a gate
m type(C) C is a message type
Roles
type(X,Y) Class X is of type Y
has gate(X,Y) Class X has gate Y
gate type(X,Y) Gate X accepts messages of type Y
interface(X,Y) Class X understands mess. of type Y
instance(X,Y) Agent X is an instance of class Y
has agent(X,Y) Agent Y is part of MAS X

Table 1. Concepts and roles used to describe MAS.

class(decision tree)
type(decision tree, computational agent)
has gate(decision tree, data in)
gate type(data in, training data)
interface(decision tree, control messages)

Figure 1. Example agent class definition.

Definition 5 (Agent Class) An agent class is defined by an in-
terface, a set of message types, a set of gates, and a set of types.

Definition 6 (Agent) An agent is an instance of an agent
class. It is defined by its name and its class.

A Multi-Agent System can be described by three elements:
The set of agents in the MAS, the connections between these
agents, and the characteristics of the MAS. The characteristics
(constraints) of the MAS are the starting point of logical rea-
soning: In MAS checking the logical reasoner deduces if the
MAS fulfills the constraints. In MAS generation, it creates a
MAS that fulfills the constraints, starting with an empty MAS,
or a manually constructed partial MAS.

Definition 7 (Multi-Agent System) Multi-Agent Systems
(MAS) consist of a set of agents, a set of connections between
the agents, and the characteristics of the MAS.

In order to describe agents and Multi-Agent Systems in de-
scription logics, the definitions 1 to 7 are mapped onto descrip-
tion logic concepts and roles as shown in table 1. An example
agent class description is given in figure 1. It defines the agent
class “decision tree”. This agent class accepts messages of
type “control message”. It has one gate called “data in” for
data agent and emits messages of type “training data”.

In the same way, A-Box instances of agent classes are de-
fined: instance(decision tree, dt instance) An agent is as-
signed to a MAS via role “has agent”. In the following exam-
ple, we define “dt instance” as belonging to MAS “my mas”:
has agent(my mas, dt instance)

Since connections are relations between three elements, a
sending agent, a sending agent’s gate, and a receiving agent,



we can not formulate this relationship in traditional descrip-
tion logics. It would be possible to circumvent the problem
by splitting the triple into two relationships, but this would
be counter-intuitive to our goal of defining MAS in an on-
tological sound way. Connections between agents are re-
lationships of arity three: Two agents are combined via a
gate. Therefore, we do not use description logics, but tradi-
tional logic programs in Prolog notation to define connections:
connection(dt instance, other agent, gate)

Constraints on MAS can be described in Description Log-
ics, in Prolog clauses, or in a combination of both. As an
example, the following concept description requires the MAS
“dt MAS” to contain a decision tree agent: dt MAS w masu
has agent.(∃instance.decision tree)

An essential requirement for a MAS is that agents are con-
nected in a sane way: An agent should only connect to agents
that understand its messages. According to definition 4, a con-
nection is possible if the message type of the sending agent’s
output gate matches a message type of the receiving agent s
interface. With the logical concepts and descriptions given in
this section, this constraint can be formulated as a Prolog style
horn rule. If we are only interested in checking if a connection
satisfies this property, the rule is very simple:

connection(S,R,G)←
instance(R, RC) ∧
instance(S, SC) ∧
interface(RC, MT)∧
has gate(SC, G) ∧
gate type(G, MT)

The following paragraphs show an example for logical de-
scriptions of MAS. Computational MAS: A computational
MAS can be defined as a MAS with a task manager, a com-
putational agent and a data source agent which are inter-
connected.

comp MAS(MAS)←
type(CAC, computational agent)∧
instance(CA, CAC)∧
has agent(MAS, CA)∧
type(DSC, data source)∧
instance(DS, DSC)∧
has agent(MAS, DS)∧
connection(CA, DS, G)∧
type(TMC, task manager)∧
instance(TMC, TM)∧
has agent(MAS, TM)∧
connection(TM, CA, GC)∧
connection(TM, DS, GD)

3 Evolutionary search

The proposed evolutionary algorithm operates on schemes
definitions in order to find a suitable scheme solving a spec-
ified problem. The genetic algorithm has three inputs: First,

the number and the types of inputs and outputs of the scheme.
Second, the training set, which is a set of prototypical inputs
and the corresponding desired outputs, it is used to compute
the fitness of a particular solution. And third, the list of types
of building blocks available for being used in the scheme.

We supply three operators that would operate on graphs
representing schemes: random scheme creation, mutation and
crossover. The aim of the first one is to create a random
scheme. This operator is used when creating the first (random)
generation. The diversity of the schemes that are generated
is the most important feature the generated schemes should
have. The goal of the crossover operator is to create offsprings
from two parents. The crossover operator proposed for scheme
generation creates one offspring. The operator horizontally di-
vides the mother and the father, takes the first part from father’s
scheme, and the second from mother’s one. The mutation op-
erator is very simple. It finds two links in the scheme (of the
same type) and switches their destinations.

4 Experiments

This section describes the experiments we have performed
with generating the schemes using the genetic algorithm de-
scribed above.

The training sets used for experiments represented vari-
ous polynomials. The genetic algorithm was generating the
schemes containing the following agents representing arith-
metical operations: Plus (performs the addition on floats), Mul
(performs the multiplication on floats), Copy (copies the only
input (float) to two float outputs), Round (rounds the incoming
float to the integer) and finally Floatize (converts the int input
to the float).

The selected set of operators has the following features: it
allows to build any polynomial with integer coefficients. The
presence of the Round allows also another functions to be as-
sembled. These functions are the ‘polynomials with steps’ that
are caused by using the Round during the computation.

The results of the experiments depended on the complex-
ity of the desired functions. The functions, that the genetic
algorithm learned well and quite quickly were functions like
x3 − x or x2y2. The learning of these functions took from
tens to hundred generations, and the result scheme precisely
computed the desired function.

Also more complicated functions were successfully
evolved. Having in mind, that the only constant that can be
used in the scheme is −1, we can see, that the scheme is quite
big (comparing to the previous example where there was only
approximately 5–10 building blocks) — see Fig. 2. It took
much more time/generations to achieve the maximal fitness,
namely 3000 in this case.

On the other hand, learning of some functions remained in
the local maxima, which was for example the case of the func-
tion x2 + y2 + x.



BlockConstNeg1 (0)

BlockFloatize (2)

0

BlockConstNeg1 (1)

BlockFloatize (3)

1

BlockMul (4)

2 3

BlockCopy (5)

4

BlockMul (6)

5 6

BlockCopy (7)

7

BlockCopy (9)

9

BlockMul (28)

34

BlockCopy (10)

10

BlockCopy (13)

13

BlockCopy (11)

11

BlockPlus (14)

14BlockCopy (12)

12

BlockMul (22)

26

15

BlockPlus (16)

18

BlockCopy (15)

1625 17

BlockMul (17)

23

BlockMul (18)

221920

BlockMul (21)

24

28

BlockMul (25)

29

BlockFloatize (19)

30

BlockConstNeg1 (20)

21

33

BlockRound (26)

31

BlockFloatize (23)

BlockPlus (27)

32

BlockConstNeg1 (24)

27

35BlockFloatize (29)

36

BlockPlus (30)

38 37

BlockPlus (31)

39

40

41

8

BlockCopy (8)

Schema Input

Scheme Output

Figure 2. Function x3 − 2x2 − 3. The scheme with fit-
ness 1000 (out of 1000), taken from 3000th generation.

5 Conclusions

We have presented a hybrid system that uses a combina-
tion of evolutionary algorithm and a resolution system to au-
tomatically create and evaluate multi-agent schemes. So far,
the implementation has focused on relatively simple agents
computing parts of arithmetical expressions. Nevertheless, the
sketched experiments demonstrate the soundness of the ap-
proach. A similar problem is described and tackled in [11] by
means of matchmaking in middle-agents where authors make
use of ontological descriptions but utilize other search methods
than EA.

In our future work we plan to extend the system in order to
incorporate more complex agents into the schemes. Our ulti-
mate goal is to be able to propose and test schemes containing a
wide range of computational methods from neural networks to
fuzzy controllers, to evolutionary algorithms. While the core
of the proposed algorithm will remain the same, we envisage
some modifications in the genetic operators based on our cur-
rent experience.

Namely, a finer consideration of parameter values, or con-
figurations, of basic agents during the evolutionary process
needs to be addressed. So far, the evolutionary algorithm rather
builds the−3 constant by combining three agents representing
the constant 1, than modifying the constant agent to represent
the −3 directly. We hope to improve this behavior by intro-
ducing another kind of genetic operator. This mutation-like
operator can be more complicated in the case of real computa-
tional agents such as neural networks, though. Nevertheless,
this approach can reduce the evolutionary algorithm search

space substantially.
We also plan to extend the capabilities of the resolution sys-

tem towards more complex relationship types than the ones
described in this paper. In our work [8] we use ontologies for
the description of agent capabilities, and have the CSP-solver
reason about these ontologies. The next goal is to provide
hybrid solution encompassing the evolutionary algorithm en-
hanced by ontological reasoning.

References

[1] F. Baader. Logic-based knowledge representation. In
M. J. Wooldrige and M. Veloso, editors, Artificial Intel-
ligence Today, Recent Trends and Developments, pages
13–41. Springer, 1999.

[2] P. Bonissone. Soft computing: the convergence of emerg-
ing reasoning technologies. Soft Computing, 1:6–18,
1997.

[3] Alexander Borgida. On the relative expressiveness of de-
scription logics and predicate logics. Artificial Intelli-
gence, 82(1–2):353–367, 1996.

[4] M. Davis, editor. The Undecidable—Basic Papers on Un-
decidable Propositions, Unsolvable Problems and Com-
putable Functions. Raven Press, 1965.

[5] J. E. Doran, S. Franklin, N. R. Jennings, and T. J. Nor-
man. On cooperation in multi-agent systems. The Knowl-
edge Engineering Review, 12(3):309–314, 1997.

[6] Jacques Ferber. Multi-Agent Systems: An Introduction
to Distributed Artificial Intelligence. Harlow: Addison
Wesley Longman, 1999.

[7] Pavel Krušina, Roman Neruda, and Zuzana Petrova.
More autonomous hybrid models in bang. In Interna-
tional Conference on Computational Science (2), pages
935–942, 2001.

[8] R. Neruda and G. Beuster. Towards dynamic gener-
ation of computational agents by means of logical de-
scriptions. In MASUPC’07 – International Workshop on
Multi-Agent Systems Challenges for Ubiquitous and Per-
vasive Computing, pages 17–28, 2007.

[9] Roman Neruda, Pavel Krušina, Petra Kudova, and Gerd
Beuster. Bang 3: A computational multi-agent system.
In Proceedings of the 2004 WI-IAT’04 Conference. IEEE
Computer Society Press, 2004.

[10] H. S. Nwana. Software agents: An overview. Knowledge
Engineering Review, 11(2):205–244, 1995.

[11] Zili Zhang and Chengqi Zhang. Agent-Based Hybrid In-
telligent Systems. Springer Verlag, 2004.


